几何辅助线之手拉手模型初

几何辅助线之手拉手模型初
几何辅助线之手拉手模型初

手拉手模型教学目标:

1:理解手拉手模型的概念,并掌握其特点

2:掌握手拉手模型的应用

知识梳理:

1、等边三角形

条件:△OAB,△OCD均为等边三角形

结论:;;

导角核心:

2、等腰直角三角形

条件:△OAB,△OCD均为等腰直角三角形

结论:;;

导角核心:

3、任意等腰三角形

条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD

结论:;;

核心图形:

核心条件:;;

典型例题:

例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;

(3)AE与DC的夹角为60°;(4)△AGB≌△DFB;

(5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC

例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:

(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;

(4)AE与DC的交点设为H,BH平分∠AHC

例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:

(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;

(4)AE与DC的交点设为H,BH平分∠AHC

例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H

问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?

(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?

(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立?

(2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度?

(4)HB是否平分∠AHC?

例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE ,

AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。探

索GF 与GH 的位置及数量关系并说明理由。

例8:如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD 于点E.

(1)如图1,猜想∠QEP=_______°;

(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;

(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

例9:在△ABC中,AB AC

=,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD AE

=,DAE BAC

∠=∠,连接CE.

1)如图1,当点D在线段CB上,且90

∠=_______度;

BAC

∠=?时,那么DCE

(2)设BACα

∠=.

∠=,DCEβ

①如图2,当点D在线段CB上,90

∠≠?时,请你探究α与β之间的数量关系,并证明

BAC

你的结论;

②如图3,当点D在线段CB的延长线上,90

∠≠?时,请将图3补充完整,并直接写出

BAC

此时α与β之间的数量关系.

(3)结论:α与β之间的数量关系是____________.

例10:在ABC

?绕点D顺

ABC

∠=?,BD为斜边AC上的中线,将ABD

==,90

AB BC

?中,2

时针旋转α(0180

α

?,其中点A的对应点为点E,点B的对应点为点F,BE ?<

与FC相交于点H.

(1)如图1,直接写出BE与FC的数量关系:____________;

(2)如图2,M、N分别为EF、BC的中点.求证:MN=__________;

(3)连接BF,CE,如图3,直接写出在此旋转过程中,线段BF、CE与AC之间的数量关系:.

当堂练习:

1:在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为

边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G .若点D 在线段BC 上,①依题意补全图1;

②判断BC 与CG 的数量关系与位置关系,并加以证明;

2:已知:如图,点C 为线段AB 上一点,ACM ?、CBN ?是等边三角形.CG 、CH 分别是ACN ?、MCB ? 的高.求证:CG CH =.

3:如图,已知ABC ?和ADE ?都是等边三角形,B 、C 、D 在一条直线上,

试说明CE 与AC CD +相等的理由.

4:已知,如图,P 是正方形ABCD 内一点,且::1:2:3PA PB PC =,求APB ∠的度数.

5:如图所示,P 是等边ABC ?中的一点,2PA =,PB =4PC =,试求ABC ?的边长. 6:在Rt △ABC 中,90ACB ∠=?,D 是AB 的中点,DE ⊥BC 于E ,连接CD .

(1)如图1,如果30A ∠=?,那么DE 与CE 之间的数量关系是___________.

(2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论.

(3)如图3,如果A α∠=(090α?<

课后练习:

1:在ABC △中,AB AC =,BAC ∠=α()060?<α

(1)如图1,直接写出ABD ∠的大小(用含α的式子表示);

(2)如图2,150BCE ∠=?,60ABE ∠=?,判断ABE △的形状并加以证明;

(3)在(2)的条件下,连结DE ,若45DEC ∠=?,求α的值

2:如图,△ABC 中,∠BAC=90°,AB=AC ,边BA 绕点B 顺时针旋转α角得到线段BP ,连结PA ,PC ,过点P 作PD ⊥AC 于点D .

(1)如图1,若α=60°,求∠DPC 的度数;

(2)如图2,若α=30°,直接写出∠DPC 的度数;

(3)如图3,若α=150°,依题意补全图,并求∠DPC 的度数.

3:在△ABC 中,AB AC =,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α?<

(1)如图1,当100BAC ∠=?,60α=o 时,CBD ∠的大小为_________;

(2)如图2,当100BAC ∠=?,20α=?时,求CBD ∠的大小;

(3)已知∠BAC 的大小为()60120m m ?<

4:如图1,正方形ABCD 与正方形AEFG 的边()AB AE AB AE <、在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为α,在旋转过程中,两个正方形只有点A 重合,

其它顶点均不重合,连接BE DG 、.

(1)当正方形AEFG 旋转至如图2所示的位置时,求证:=BE DG ;

(2)当点C 在直线BE 上时,连接FC ,直接写出FCD ∠的度数;

(3)如图3,如果45242AB AE α=?==,,,求点G 到BE 的距离

5:将等腰Rt ABC △和等腰Rt ADE △按图1方式放置,90A ∠=?,AD 边与AB 边重合,2AB =,4AD =.将ADE △绕点A 逆时针方向旋转一个角度()α0α180?≤≤?,BD 的延长线交直线CE 于点P .

(1)如图2,BD 与CE 的数量关系是__________,位置关系是__________;

(2)在旋转的过程中,当AD BD ⊥时,求出CP 的长;

(3)在此旋转过程中,求点P 运动的路线长.

6:△ABC 中,45ABC ∠=?,AH ⊥BC 于点H ,将△AHC 绕点H 逆时针旋转90°后,点C 的对应点为点D ,直线BD 与直线AC 交于点E ,连接EH .

(1)如图1,当∠BAC 为锐角时,

①求证:BE ⊥AC ;②求∠BEH 的度数;

(2)当∠BAC 为钝角时,请依题意用实线补全图2,并用等式表示出线段EC ,ED ,EH 之间的数量关系.

7:如图1,在ACB ?和AED ?中,AC BC =,AE DE =,90ACB AED ∠=∠=?,点E 在AB 上,F

是线段BD 的中点,连接CE 、FE .

(1)请你探究线段CE 与FE 之间的数量关系(直接写出结果,不需要说明理由);

(2)将图1中的AED ?绕点A 顺时针旋转,使AED ?的一边AE 恰好与ACB ?的边AC 在同一条直线上(如图2),连接BD ,取BD 的中点F ,问(1)中的结论是否仍然成立,并说明理由;

(3)将图1中的AED ?绕点A 顺时针旋转任意的角度(如图3),连接BD ,取BD 的中点F ,问(1)中的结论是否仍然成立,并说明理由.

初中几何做辅助线知识点

初中几何做辅助线知识点 中点问题: 说明:当考试题目中出现了“中点”两个字的时候,同学们可以构造:中位线、倍长中线、斜边中线、三线合一这四种辅助线。当然如果题目非常难,很有可能同时构造这四种辅助线当中的两种甚至三种。 梯形构造辅助线的8种方法: 说明: 平移一腰:当梯形的两个底角互余时,可以选择平移一腰,把一个梯形分割成一个平行四边形和一个直角三角形。 做双高:当梯形的底角出现特殊角时,可以构造高。

构造底边中点:目的构造三个全等等边三角形。 平移对角线:当已知出现“上底加下底”,并且题目中出现对角线时,可选择平移对角线。 取一腰中点:当已知出现“上底加下底”,并且题目中无对角线时,可取一腰中点。 过上底中点平移两腰:目的构造直角三角形。 过腰中点:可构造平行四边形 延长两腰:构造三角形(可能出现三线合一) 三大变换: 说明:三大变换是初中几何的精华所在,在初三的上学期期末,一模考试以及中考中都占有很重要的位置,初二的期末考试开始逐渐向初三过度,同学们在平常的联系中也会感觉到运用三大变换进行解题的方便,故而在此次期末考试复习中,一定要尽快熟悉起三大变换。 1、平移:平移模型有三种。 a)“相等线段相交模型”我们需要通过平移将两条线段构造成共顶点的图形,进而构造出三角形去凸显条件。 b)“相等线段不相交模型”此类模型的辅助线构造方法与第一种类似,都是通过平移线段使得两条线段共顶点,进而解决问题。实际上平移线段就是构造平行四边形,而我们

初二的学习重点就是平行四边形,所以在复习过程中有关平移的题目一定不能马马虎虎。 c)当题当中出现了两条相等的线段并且相等线段共线或平行时,可选择平移。 2、旋转:一般来说旋转的模型都有着“共顶点的等长线短”这个特点,当然有些很难的题目没有这种特点那么我们则需要去将此特点构造出来,例如费马点的证明。当同学们做了很多有关旋转的题目之后可以总结出来哪些题目比较“像”能有旋转做出来的题,要多总结一些模型,例如半角模型,构造等边三角形的模型等等。下面说一些关键点给同学们参考。 a)确定有没有“共顶点等长线短”,没有则需要构造。 b)确定要旋转谁。一般来说旋转对象为等长线短其中一条所在的三角形。 c)确定转多少度。这个度数基本上由等长线短的夹角决定。 d)确定旋转之后的等量关系以及是否需要添加其他辅助线以构成特殊图形。 3、轴对称:轴对称是我们初二上学期的学习内容,期末也会考察希望同学们不要遗忘掉这部分知识。下面给出几种常见考虑要用或作轴对称的基本图形。 a)线段或角度存在2倍关系的,可考虑对称。 b)有互余、互补关系的图形,可考虑对称。 c)角度和或差存在特殊角度的,可考虑对称。

用旋转法………作辅助线证明平面几何题

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC中 B=AC;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 E C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴BP=BD AP=CD=5, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60? PD=PB=4所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

中考数学专题训练旋转模型几何变换的三种模型手拉手、半角、对角互补

几何变换的三种模型手拉手、半角、对角互补 ?????? ?? ?? ??? ???? ? ????????等腰三角形手拉手模型等腰直角三角形(包含正方形)等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角特殊角角含半角模型一般角 等线段变换(与圆相关) 【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α?<

【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=, ,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60?且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数; (2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.

例题精讲 考点1:手拉手模型:全等和相似 包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)

最新初中-数学几何图形的辅助线添加方法大全

最新初中-数学几何图形的辅助线添加方法 大全 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有

两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦

与中点有关的辅助线与模型

题型切片(三个)对应题目 题型目标三角形中位线例1,例2,例7,练习1,练习2,练习3;中点四边形例3,练习4; 直角三角形斜边中线例4,例5,例6,练习5. 题型切片 知识互联网 与中点有关的几何辅助线与模型

E D C B A F A B C E G E D C B A F E D C B A 三角形中位线 定义:连接三角形两边中点的线段; 定理:三角形中位线平行于三角形的第三边且等于第三边的一半. 如图:若DE 为ABC △的中位线,则DE BC ∥,且1 2 DE BC = 三角形中位线中隐含的重要性质: ①一个三角形有三条中位线. ②三角形的三条中位线将原三角形分割成四个全等的三角形. ③三角形的三条中位线将原三角形划分出三个面积相等的平行四边形. ④三角形的三条中位线组成一个三角形,其周长为原三角形周长的一半,其面积为原三角形面积的四分之一. 如图:EF 、GE 、GF 是ABC △的三条中位线,则有 ①AEG EBF GFC FGE △≌△≌△≌△ ②AEFG EBFG EFCG S S S ==平行四边形平行四边形平行四边形 ③12EFG ABC C C =△△,1 4 EFG ABC S S =△△ 【引例】 如图,已知ABC △,D E 、分别是AB AC 、的中点,求证:DE BC ∥且1 2 DE BC =. 【解析】 延长DE 到点F ,使EF=DE ,连接FC ,DC ,AF . ∵AE=EC ∴四边形ADCF 是平行四边形 ∴CF//DA 且CF=DA , CF //BD 且CF=BD 例题精讲 思路导航 题型一:三角形中位线

中考数学几何专题之手拉手模型(初三数学)

手拉手模型 【课堂导入】 什么是手拉手相似基本图形?与手拉手全等的基本图形类似,手拉手相似要比手拉手全等更具有一般性。 在上面右侧的四个图形中,每一个图形中都存在两对相似三角形,△ADE∽△ABC, △ADB∽△AEC,这两对相似三角形是可以彼此转化的。

【例1】已知:△ABC,△DEF 都是等边三角形,M 是 BC 与 EF 的中点,连接 AD,BE. (1)如图1,当EF 与BC 在同一条直线上时,直接写出 AD 与BE 的数量关系和位置关系; (2)△ABC 固定不动,将图1 中的△DEF 绕点M 顺时针旋转(0o≤≤90o)角,如图2 所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由; 【例2】以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD,其中∠ABO=∠DCO=30°.点E、F、M 分别是AC、CD、DB 的中点,连接FM、EM. ①如图 1,当点D、C 分别在 AO、BO 的延长线上时 F M E M ②如图2,将图1 中的△AOB 绕点O 沿顺时针方向旋转60度角,其 他条件不变,判断 F M的值是否发生变化,并对你的结论进行证明; E M

【例3】如图 1,在△ABC 中,∠ACB=90°,BC=2,∠A=30°,点 E,F 分别是线段 BC, AF=_______. AC 的中点,连结 EF.(1)线段B E 与A F 的位置关系是_______, BE (1)中的结论是(2)如图2,当△CEF 绕点C顺时针旋转α时(0°<α<180°) ,连结A F,BE, 否仍然成立.如果成立,请证明;如果不成立,请说明理由. 【例4】如图 1,在四边形 ABCD 中,点E、F 分别是AB、CD 的中点,过点E 作AB 的垂 线,过点F 作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC. (1)求证:AD=BC. (2)求证:△AGD∽△EGF. (3)如图2,若AD、BC 所在直线互相垂直,求E F A D的值.

立体几何中添加辅助线的策略

立体几何中添加辅助线的主要策略:一是把定义或者定理中缺少的线、面、体补完整;二是要把已知量和未知量统一在一个图形中,如统一在一个三角形中,这样可以用解三角形的方法求得一些未知量,再如也可以统一在平行四边形或其他几何体中。下面加以说明。 一、添加垂线策略。 因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。 例1.在三棱锥ABC O-中,三条棱OA、OB、OC两两互相垂直,且OA=OB=OC,M是AB 边的中点,则OM与平面ABC所成的角的大小是________(用反三角函数表示)。 图1 解:如图1,由题意可设a OA=,则3 ABC O a 6 1 V ,a2 CA BC AB= = = = - ,O点在底面的射影D为底面ABC ?的中心,a 3 3 S 3 1 V OD ABC ABC O= = ? -。又a 6 3 MC 3 1 DM= =,OM与平面 ABC所成角的正切值是2 a 6 6 a 3 3 tan= = θ,所以二面角大小是2 arctan。 点评:本题添加面ABC的垂线OD,正是三棱锥的性质所要求的,一方面它构造出了正三棱锥里面的ODM Rt?,ODC Rt?,另一方面也构造出了OM与平面ABC所成的角。 二、添加平行线策略。 其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。 例2.如图2,在正方体 1 1 1 1 D C B A ABCD-中, 4 B A F D E B1 1 1 1 1 = =,则 1 BE与DF所成角的余弦值是() A. 17 15 B. 2 1 C. 17 8 D. 2 3

初中几何辅助线大全-最全

三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中 ∵?? ???=∠=∠∠=∠)()() (已知已证公共角AC BD CAE DBE E E ∴△DBE ≌△CAE (AAS ) ∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。 (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 分析:要证BD =2CE ,想到要构造线段2CE ,同时 A E F A B C D E 1 7-图O

CE 与∠ABC 的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F 。 ∵BE ⊥CF (已知) ∴∠BEF =∠BEC =90° (垂直的定义) 在△BEF 与△BEC 中, ∵ ?? ???∠=∠=∠=∠)() () (21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE= 2 1 CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知) ∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中 ?? ? ??∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC ∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE 四、取线段中点构造全等三有形。 例如:如图11-1:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 分析:由AB =DC ,∠A =∠D ,想到如取AD 的中点N ,连接NB ,NC ,再由SAS 公理有△ABN ≌△DCN ,故BN =CN ,∠ABN =∠DCN 。下面只需证∠NBC =∠NCB ,再取BC 的中点M ,连接MN ,则由SSS 公理有△NBM ≌△NCM ,所以∠NBC =∠NCB 。问题得证。 证明:取AD ,BC 的中点N 、M ,连接NB ,NM ,NC 。则AN=DN ,BM=CM ,在△ABN 和△DCN 中 ∵ ?? ???=∠=∠=)() () (已知已知辅助线的作法DC AB D A DN AN 1 11-图D C B A M N

初中平面几何常见添加辅助线的方法(完整资料).doc

此文档下载后即可编辑 初中几何辅助线做法 辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 一、见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 二、在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 三、对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四、在解决圆的问题中 1、两圆相交连公共弦。 2、两圆相切,过切点引公切线。 3、见直径想直角 4、遇切线问题,连结过切点的半径是常用辅助线 5、解决有关弦的问题时,常常作弦心距。

几何辅助线之手拉手模型初

手拉手模型教学目标: 1:理解手拉手模型的概念,并掌握其特点 2:掌握手拉手模型的应用 知识梳理: 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;; 导角核心: 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形 结论:;; 导角核心: 3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;;

核心图形: 核心条件:;; 典型例题: 例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC; (3)AE与DC的夹角为60°;(4)△AGB≌△DFB; (5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC 例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE? 例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立? (2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度? (4)HB是否平分∠AHC? 例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE , AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。探 索GF 与GH 的位置及数量关系并说明理由。 例8:如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD 于点E. (1)如图1,猜想∠QEP=_______°; (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

(完整版)初中数学_巧添辅助线__解证几何题

巧添辅助线 解证几何题 [引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以 归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。 一、倍角问题 研究∠α=2∠β或∠β=1 2 ∠α问题通称为倍角问题。倍角问题分两种情形: 1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=1 2 ∠α,然后证明∠1=∠β;或把 ∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一) 2、 ∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。倍角三角形问题常用构 造等腰三角形的方法添加辅助线(如图二) [例题解析] 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。 求证:∠DBC= 1 2 ∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°-12 ∠BAC 。 ∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90° -∠C=90° -(90° - 12∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2 ∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠ A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°

1初中数学《几何辅助线秘籍》中点模型的构造1倍长中线法;构造中位线法

学生姓名学生年级学校 上课时间辅导老师科目 教学重点中点模型的构造(倍长中线法;构造中位线法;构造斜边中线法) 教学目标系统有序掌握几何求证思路,掌握何时该用何种方法做辅助线 开场:1.行礼;2.晨读;3.检查作业;4.填写表格 新 课 导 入 知识点归纳 1.已知任意三角形(或者其他图形)一边上的中点,可以考虑:倍长中线法(构造全等三角形);2.已 知任意三角形两边的中点,可以考虑:连接两中点形成中位线; 3.已知直角三角形斜边中点,可以考虑:构造斜边中线; 4.已知等腰三角形底边中点,可以考虑:连接顶点和底边中点利用“三线合一”性质. 新 课 内 容 做辅助线思路一:倍长中线法 经典例题1:如图所示,在△ABC中,AB=20,AC=12,求BC边上的中线AD的取值范围. 【课堂训练】 1.如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论: ①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是 ( ) A.①②④ B.①③④ C.①②③ D.①②③④ 第1题图第2题图 2.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1, BF=2,∠GEF=90°,则GF的长为() A. 2 B. 3 C. 4 D. 5 3.如图,在△ABC中,点D、E为边BC的三等分点,则下列说法正确的有( ) ①BD=DE=EC;②AB+AE>2AD;③AD+AC>2AE;④AB+AC>AD+AE。 A. 1个B. 2个 C. 3个 D. 4个

4.如图,在△ABC 中,A B>BC,E 为BC 边的中点,AD为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交C A的延长线于G,求证:BF=CG. 5.如图所示,已知在△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,连接BE 并延长交AC 于点F,AE =EF ,求证:AC =B F. 6.如图所示,在△ABC 中,分别以AB 、AC为直角边向外做等腰直角三角形△ABD 和△ACE,F 为BC 边上中点,FA 的延长线交DE 于点G ,求证:①DE=2AF ;②FG ⊥DE . F G E D B C A F D B C A E G F B C A D E

几何中常见的辅助线添加方法

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

初中几何经典模型总结(手拉手模型)

初中几何经典模型总结(手拉手模型) 模型可以让同学更快的进入到几何之中,产生兴趣。也是近来学习初中几何不可或缺的一种重要方法。下面给大家介绍一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。手拉手模型的概念:1、手的判别:判断左右:将等腰三角形顶角顶点朝上,正对读者,读者左边为左手顶点,右边为右手顶点。2、手拉手模型的定义:定义: 两个顶角相等且有共顶点的等腰三角形形成的图形。(左手拉左手,右手拉右手)例如:3、手拉手模型的重要结论三个固定结论:结论1:△ABC≌△AB'C'(SAS)BC=B'C'(左手拉左手等于右手拉右手)结论2:∠BOB'=∠BAB'(用四点共圆证明)结论3: AO平分∠BOC'(用四点共圆证明)例题解析:类型一共顶点的等腰直角三角形中的手拉手例1:已知:如图△ABC和△ADE都是等腰直角三角形, ∠BAC=∠DAE=90°.求证:BD=CE.分析: 要证BD=CE可转化为证明△BAE≌△CAD,由已知可证 AB=AC,AE=AD,∠BAC=∠EAD=90°,因为∠BAC ∠CAE=∠EAD ∠CAE,即可证∠BAE=∠CAD,符合SAS,即得证.解答:证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC ∠CAE=∠EAD ∠CAE,即∠BAE=∠CAD,在△BAE与△CAD中,

AB=AC,∠BAE=∠CAD,AE=AD∴△BAE≌△CAD(SAS), ∴BD=CE.类型二共顶点的等边三角形中的手拉手例2:图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形。(1)如图1,求证:AD=CE;(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°;②求证:CF BF=AF.分析:(1)如图1,利用等边三角形性质得:BD=BE,AB=BC,∠ABC=∠DBE=60°,再证∠ABD=∠CBE,根据SAS 证明△ABD≌△CBE得出结论;(2)①如图2,利用(1)中的全等得:∠BCE=∠DAB,根据两次运用外角定理可得结论; ②如图3,作辅助线,截取FG=CF,连接CG,证明△CFG 是等边三角形,并证明△ACG≌△BCF,由线段的和得出结论.解答:证明:(1)如图1,∵△ABC与△BED都是等边三角形,∴BD=BE,AB=BC,∠ABC=∠DBE=60°,∴∠ABC ∠CBD=∠DBE ∠CBD,即∠ABD=∠CBE,在△ABD和△CBE 中,AB=AC∠ABD=∠CBEBD=BE,∴△ABD≌△CBE(SAS),∴AD=CE,(2)①如图2,由(1)得:△ABD≌△CBE, ∴∠BCE=∠DAB,∵∠ABC=∠BCE ∠CEB=60°,∴∠ABC=∠DAB ∠CEB=60°,∵∠CFA=∠DAB ∠CEB,∴∠CFA=60°,②如图3,在AF上取一点G,使FG=CF,连接CG,∵∠AFC=60°, ∴△CGF是等边三角形,∴∠GCF=60°,CG=CF,∴∠GCB ∠BCE=60°,∵∠ACB=60°,∴∠ACG ∠GCB=60°, ∴∠ACG=∠BCE,∵AC=BC,∴△ACG≌△BCF,∴AG=BF,

(完整)八年级数学上几何证明中的辅助线添加方法

八年级数学(上)几何证明中的辅助线添加方法 数学组 田茂松 八年级数学的几何题,有部分题需要做出辅助线才能完成。有的时候,做不出恰当的辅助线,或者做不出辅助线,就没有办法完成该题的解答。为了能够更好的让学生在做几何题时得心应手,现在将八年级数学中几何题的辅助线添加方法总结如下。 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目。 6.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 常见辅助线的作法举例: 例1 如图1,//AB CD ,//AD BC . 求证:AD BC =. 分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。 证明:连接AC (或BD ) ∵//AB CD , //AD BC (已知) ∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等) 在ABC ?与CDA ?中 ?????∠=∠=∠=∠)(43) ()(21已证公共边已证CA AC ∴ABC ?≌CDA ?(ASA ) ∴AD BC =(全等三角形对应边相等) 例2 如图2,在Rt ABC ?中,AB AC =,90BAC ∠=?,12∠=∠,CE BD ⊥的延长于E .求证:2BD CE =. 分析:要证2BD CE =,想到要构造线段2CE ,同时CE 与ABC ∠的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F . ∵BE CF ⊥ (已知) ∴90BEF BEC ∠=∠=?(垂直的定义) 在BEF ?与BEC ?中, ?????∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE A B C D 1234图1 D A E F 12图2

初中几何专项——手拉手模型

E A D B C E A D B C E D C B A 图3图21图 O H G A B C D M P D E C B A 手拉手模型 模型 手拉手 如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB=AC ,AD=AE ,∠BAC=∠DAE= 。 结论:△BAD ≌△CAE 。 模型分析 手拉手模型常和旋转结合,在考试中作为几何综合题目出现。 模型实例 例1.如图,△ADC 与△GDB 都为等腰直角三角形,连接AG 、CB ,相交于点H ,问:(1)AG 与CB 是否相等? (2)AG 与CB 之间的夹角为多少度? 3.在线段AE 同侧作等边△CDE (∠ACE<120°),点P 与点M 分别是线段BE 和AD 的中点。 求证:△CPM 是等边三角形。

F E C B A H D E C B A 1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在 BC上,且AE=CF。 (1)求证:BE=BF; (2)若∠CAE=30°,求∠ACF度数。 2.如图,△ABD与△BCE都为等边三角形,连接AE与CD,延长AE交CD于点 H.证明: (1)AE=DC; (2)∠AHD=60°; (3)连接HB,HB平分∠AHC。

B A D C P E 3图B D A E C 图21 图P D E C B A 3.将等腰Rt △ABC 和等腰Rt △ADE 按图①方式放置,∠A=90°,AD 边与AB 边重合,AB=2AD=4。将△ADE 绕点A 逆时针方向旋转一个角度α(0°<α>180°),BD 的延长线交CE 于P 。 (1)如图②,证明:BD=CE ,BD ⊥CE ; (2)如图③,在旋转的过程中,当AD ⊥BD 时,求出CP 的长。

中考数学专题训练几何题中用旋转构造“手拉手”模型

中考专题复习——几何题用旋转构造“手拉手”模型 一、教学目标: 1.了解并熟悉“手拉手模型”,归纳掌握其基本特征. 2.借助“手拉手模型”,利用旋转构造全等解决相关问题. 3.举一反三,解决求定值,定角,最值等一类问题. 二、教学重难点: 1.挖掘和构造“手拉手模型”,学会用旋转构造全等. 2.用旋转构造全等的解题方法最优化选择. 三、教学过程: 1.复习旧知 师:如图,△ABD ,△BCE 为等边三角形,从中你能得出哪些结论? 生:(1)△ABE ≌△DBC (2)△ABG ≌△DBF (3)△CFB ≌△EGB (4)△BFG 为等边三角形 (5)△AGB ∽△DGH (6)∠DHA =60°(7)H ,G ,F ,B 四点共圆 (8)BH 平分∠AHC …… 师:我们再来重点研究△ABE 与△DBC ,这两个全等的三角形除了对应边相等,对应角相等外,还有什么共同特征呢? 生:它们有同一个字母B ,即同一个顶点B . 师:我们也可以把△DBC 看作由△ABE 经过怎样的图形运动得到? 生:绕点B 逆时针旋转60°得到. 2.引入新课 师:其实我们可以给这两个全等的三角形赋予一个模型,叫“手拉手模型”,谁可以将这个模型的特征再做进一步的简化归纳呢? 生:对应边相等. 师:我们可以称之为“等线段”. 生:有同一个顶点. 师:我们可以称之为“共顶点”. 师:等线段,共顶点的两个全等三角形,我们一般可以考虑哪一种图形运动? 生:旋转. 师: “手拉手模型”可以归纳为:等线段,共顶点,一般用旋转. H G F E D C B A

3.小题热身 图1 图2 图3 1.如图1,△BAD中,∠BAD=45°,AB=AD,AE⊥BD于E,BC⊥AD于C,则AF=____BE.2.如图2,△ABC和△BED均为等边三角形,ADE三点共线,若BE=2,CE=4,则AE=______.3.如图3,正方形ABCD中,∠EAF=45°,BE=3,DF=5,则EF=_______. 师:我们来看第1,第2题,这里面有“手拉手模型”吗?请你找出其中的“等线段,共顶点”.生:题1中,等线段是AC,BC,共顶点是C,△ACF绕点C逆时针旋转90°得△BCD.题2中,等线段是AB,BC,共顶点是B,△ABD绕点D顺时针旋转60°得△CBE. 师:我们再来看第3题,这里有“手拉手模型”吗? 生:没有. 师:那其中有没有“等线段,共顶点”呢? 生:等线段是AD,AB,共顶点是A. 师:我们可否利用旋转来构造“手拉手模型”呢? 生:将AE旋转,绕点A逆时针旋转90°. 师:为什么是逆时针旋转90°,你是如何思考的? 生:我准备构造一个和△ABE全等的三角形,AB绕点A逆时针旋转90°即为AD,那么将AE逆时针旋转90°可得AG,连接GD,证明全等. 师:说的不错,谁能再来归纳一下,借助“手拉手模型”,用旋转构造全等的方法吗? 生:先找有没有“等线段,共顶点”,再找其中一条“共顶点”的线段,将其旋转. 师:旋转角度如何确定,方向怎么选择? 生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致. 师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型”的一些条件,剩余的需要我们自己去构造,可以如何构造呢? 步骤1:先找有没有“等线段,共顶点”. 步骤2:选择其中一个三角形,将其中经过“共顶点”的线段旋转.

平面几何辅助线添加技法总结与例题详解

平面几何辅助线添加技法总结与例题详解 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形:

相关文档
最新文档