东南大学信息学院 模电实验六

东南大学信息学院 模电实验六
东南大学信息学院 模电实验六

实验六多级放大器的频率补偿和反馈

实验目的:

1、掌握多级放大器的设计,通过仿真了解集成运算放大器内部核心电路结构;

2、掌握多级放大器基本电参数的定义,掌握基本的仿真方法;

3、熟悉多级放大器频率补偿的基本方法;

4、掌握反馈对放大器的影响。

实验内容:

1、多级放大器的基本结构及直流工作点设计

基本的多级放大器如图6-1所示,主要由偏置电路,输入差分放大器和输出级构成,是构成集成运算放大器核心电路的电路结构之一。其中偏置电路由电阻R1和三极管Q4构成,差分放大器由三极管Q3、NPN差分对管U2以及PNP差分对管U1构成,输出级由三极管Q2和PNP差分对管U3构成。

图6-1. 基本的多级放大器

实验任务:

①若输入信号的直流电压为2V,通过仿真得到图6-1中节点1,节点2,和节点3的直流工作点电压;

V1(V)V2(V)V3(V)

14.42956 14.42958 8.38849

②若输出级的PNP管只采用差分对管U3中的一只管子,则放大器的输出直流电压为多少?

结合仿真结果给出U3中采用两只管子的原因。

V1(V)V2(V)V3(V)

14.41222 14.42958 7.07073

原因:将①和②对比后可以发现,V3的数值产生明显的变化。U3之所以采用两只管子,是因为这样可以增大输出电压,是工作点更稳定,提高直流工作点。

2、多级放大器的基本电参数仿真

实验任务:

①差模增益及放大器带宽

将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180。,采用AC分析得到电路的低频差模增益A vdI,并提交输出电压V(3)的幅频特性和相频特性仿真结果图;在幅频特性曲线中标注出电路的-3dB带宽,即上限频率f H;在相频特性曲线中标注出0dB处的相位。

答:低频差模增益A vdI=99.4103dB;

电压V(3)的幅频特性和相频特性仿真结果图:

由仿真图:

上限频率f H=1.3248kHz;

0dB处的相位=159.0916。

②共模增益

将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相同,采用AC分析得到电路的低频共模增益A VC,结合①中的仿真结果得到电路的共模抑制比K CMR,并提交幅频特性仿真结果图。

答:低频共模增益A VC=-12.6382dB;共模抑制比K CMR=200.61648。

幅频特性仿真结果图:

③差模输入阻抗

将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180。,进行AC分析,采用表达式R id=V(5)/I(V2)+V(6)/I(V3)得到差模输入阻抗R id,请提交R id随频率变化的曲线图,并在图上标记出100Hz处的阻抗值。

答:100Hz时的阻抗值=53.6175kΩ。

R id随频率变化的曲线图:

④输出阻抗

按照图6-2所示,在放大器输出端加隔直流电容C1和电压源V4,将V2和V3的直流电压设置为2V,AC幅度设置为0,将V4的AC幅度设置为1,进行AC分析,采用与输入阻抗类似的计算方法,得到电路的输出阻抗R0随频率的变化曲线,并标注出100Hz处的阻抗值。

图6-2. 多级放大器输出阻抗仿真电路

答:100Hz时的输出阻抗值=32.6843kΩ。

R0随频率的变化曲线:

思考:若放大器输出电压信号激励后级放大器,根据仿真得到的结果,后级放大器的输入阻抗至少为多少才能忽略负载的影响?若后级放大器输入阻抗较低,采取什么措施可以提高放大器的驱动能力?

答:后级放大器的输入阻抗至少为326.8kΩ时,才能忽略负载的影响。

在放大器输出端负载并联一个小电阻,以减小输出阻抗。

3、多级放大器的频率补偿

作为放大器使用时,图6-1所示电路一般都要外加负反馈。若放大器内部能够实现全补偿,外部电路可以灵活的施加负反馈,避免振荡的反生,即要求放大器单位增益处的相位不低于-135。。为此,需要对电路进行频率补偿。

实验任务:

①简单电容补偿

按照图6-1所示电路,将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180。,根据电路分析并结合AC仿真结果找出电路主极点位置,并采用简单电容补偿方法进行频率补偿,通过仿真得到最小补偿电容值,使得单位增益处相位不低于-135。,提交补偿后V(3)的幅频特性曲线和相频特性曲线,并标注出上限频率f H和增益为0dB时的相位。

答:最小补偿电容C1=3.35uF。

补偿后V(3)的幅频特性曲线和相频特性曲线:

②密勒补偿

按照图6-3所示电路,对电路进行密勒补偿,其中Q1和Q5构成补偿支路的电压跟随器。将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180。,进行AC仿真分析,通过仿真得到最小补偿电容值,使得输出电压V(3)在单位增益处相位不

低于-135。,提交补偿后V(3)的幅频特性曲线和相频特性曲线,并标注出上限频率f H和增益为0dB时的相位。若输出电压为V(9),补偿后相位要求相同,通过AC仿真分析得到所需要的最小补偿电容。

图6-3. 多级放大器的密勒补偿

答:(1)输出电压为V(3):

最小补偿电容值C1=113pF。

补偿后V(3)的幅频特性曲线和相频特性曲线:

(2)输出电压为V(9):

最小补偿电容值C1=205pF。

补偿后V(9)的幅频特性曲线和相频特性曲线:

4、反馈放大器

图6-1所示多级放大器具有较高的增益,线性放大时输入动态范围很小。实际使用中,必须施加负反馈才能作为线性放大器使用。在图6-3的基础上,引入电压串联负反馈,同时

改为正负电源供电,如图6-4所示(密勒补偿电容C1的值请采用实验任务3中得到的结果)。

图6-4. 电压串联负反馈放大器

实验任务:

①将输入信号V2的直流电压设置为0V,AC输入幅度都设置为1V,进行AC仿真分析,

得到输出电压V(3)的幅频特性曲线和相频特性曲线,并在图中标注上限频率f H。

答:上限频率f H=2.1801MHz;

输出电压V(3)的幅频特性曲线和相频特性曲线:

②按照实验任务2中的分析方法,通过AC仿真得到电路的输出阻抗随频率的变化曲线,并标注100Hz处的值,并与没有施加负反馈的输出阻抗进行对照,结合理论分析解释阻抗的变化。

答:100Hz时的输出阻抗值为9.6012Ω;

输出阻抗随频率的变化曲线:

没有施加负反馈的输出阻抗值为:32.6843kΩ;

分析:负反馈会使放大器指标趋于理想化,对于电压串联负反馈,输出阻抗会减小。

③反馈电阻R2和R3的值分别改为10Ω和100Ω,R4的值改为10Ω/100Ω,重复①的仿真,得到V(3)的幅频特性曲线和相频特性曲线;同时按照图6-4中V2的设置条件进行瞬态仿真,得到输出电压V(3)的波形,观察波形是否失真,并给出合理的解释。

答:(1)V(3)的幅频特性曲线和相频特性曲线:

(2)输出电压V(3)的波形:

波形失真,可能是因为输入电压过大或放大倍数太大。

思考:若图6-4所示反馈放大器电路改为单个15V电源供电,会存在什么问题?如何修改才能正常工作?

答:可能会导致U2的基极和发射极间电压不够而使得U2不能工作于放大区。

解决办法:在R2之前串联一个大电阻。

电工实验报告答案_(厦门大学)

实验四线性电路叠加性和齐次性验证表4—1实验数据一(开关S3 投向R3侧) 表4—2实验数据二(S3投向二极管VD侧 ) 1.叠加原理中U S1, U S2分别单独作用,在实验中应如何操作?可否将要去掉的电源(U S1或U S2)直接短接? 答: U S1电源单独作用时,将开关S1投向U S1侧,开关S2投向短路侧; U S2电源单独作用时,将开关S1投向短路侧,开关S2投向U S2侧。 不可以直接短接,会烧坏电压源。 2.实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。

实验五电压源、电流源及其电源等效变换表5-1 电压源(恒压源)外特性数据 表5-2 实际电压源外特性数据 表5-3 理想电流源与实际电流源外特性数据 3.研究电源等效变换的条件

图(a )计算)(6.117S S S mA R U I == 图(b )测得Is=123Ma 1. 电压源的输出端为什么不允许短路?电流源的输出端为什么不允许开路? 答:电压源内阻很小,若输出端短路会使电路中的电流无穷大;电流源内阻很大,若输出端开路会使加在电源两端的电压无穷大,两种情况都会使电源烧毁。 2. 说明电压源和电流源的特性,其输出是否在任何负载下能保持恒值? 答:电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性; 电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性; 其输出在任何负载下能保持恒值。 3. 实际电压源与实际电流源的外特性为什么呈下降变化趋势,下降的快慢受哪个参数影 响? 答:实际电压源与实际电流源都是存在内阻的,实际电压源其端电压U 随输出电流I 增大而降低,实际电流源其输出电流I 随端电压U 增大而减小,因此都是呈下降变化趋势。下降快慢受内阻R S 影响。 4.实际电压源与实际电流源等效变换的条件是什么?所谓‘等效’是对谁而言?电压源与电流源能否等效变换? 答:实际电压源与实际电流源等效变换的条件为: (1)实际电压源与实际电流源的内阻均为RS ; (2)满足S S S R I U =。 所谓等效是对同样大小的负载而言。 电压源与电流源不能等效变换。

东南大学实验模拟运算放大电路(二)

.东南大学电工电子实验中心 实验报告 课程名称:电子电路实践 第二次实验 实验名称: 院(系):专业: 姓名:学号: 实验室:实验组别:无 同组人员: 实验时间: 评定成绩:审阅老师:团雷鸣

实验报告 实验目的: 1、了解运放在信号积分和电流、电压转换方面的应用电路及参数的影响。 2、掌握积分电路和电流、电压转换电路的设计、调试方法。 3、了解精密半波整流电路及精密全波整流电路的电路组成、工作原理及参数估 算 4、学会设计、调试精密全波整流电路,观测输出、输入电压波形及电压传输特 性。 实验原理: 1、积分电路:运用下图所示电路,可构成运放积分电路,R2为分流电阻,用于稳定直流增益,以避免直流失调电压在积分周期内的积累导致运放饱和,一般取R2=10R1.输出电压与输入电压呈积分关系。 2、同相型电压/电流转换电路:利用如下图所示电路,可以构成电压/电流转换电路。由“虚短”“虚断”原理知,I L=Vi/R1,该电路属于电流串联负反馈电路,电路的输入电阻极高,其闭环跨导增益1/R1即为电路的转换系数。电路可实现线性的电压/电流转换。 3、精密整流电路:利用二极管的单向导电性,可以组成半波及全波整流电路。但由于二极管存在正向导通压降、死去压降、非线性伏安特性及其温度漂移,故当用于对弱信号进行整流时,必将引起明显的误差,甚至无法正常整流。如果将二极管与运放结合起来,将二极管至于运放的负反馈回路中,则可将上述二极管的非线性及其温漂等影响降低至可以忽略的程度,从而实现对弱小信号的精密整流或线性整流。

实验内容: 1、积分电路 用741设计一个满足下列要求的基本积分电路:输入V ip-p=1V、f=10kHz的方波。设计R、C值,测量积分输出电压波形;改变f值观察v0波形变化,并找出当f接近什么值的时候,电路近似一个反响比例运算电路。 2、同相输入比例运算电路 用741组成一个同向型电压/电流转换电路,并完成表中所列数据的测量。 3精密半波整流电路: (1)、依照10-1连接电路,原件参数:R1=R2=10K?,同时在电位器和±15V 电源之间接入510?限流电阻。 (2)、Vi输入一个频率为100Hz的正弦交流信号,有效值分别为5V、1V、10mV,用示波器观察输入输出信号波形,对结果进行分析比较。 (3)、用示波器的X-Y显示方式测试该电路的电压传输特新,调节Vi幅度,找出输出的最大值V omax。 4、精密全波整流电路 (1)、图10-2的精密全波整流电路如下图。R=10K?,电源电压±10V,二极管为1N4148。 (2)、搭接电路,重复半波整流电路(2)(3)的内容。

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

东南大学电路实验实验报告

电路实验 实验报告 第二次实验 实验名称:弱电实验 院系:信息科学与工程学院专业:信息工程姓名:学号:

实验时间:年月日 实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理 一、仿真实验 1.电容伏安特性 实验电路: 图1-1 电容伏安特性实验电路 波形图:

图1-2 电容电压电流波形图 思考题: 请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R C sin 213.0== =∴,ππ40002==T w ; 而()mA wt dt du C C sin 206.0= dt du C I C C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性 实验电路: 图1-3 电感伏安特性实验电路 波形图:

图1-4 电感电压电流波形图 思考题: 1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。 2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。 解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ 40002==T w ; 而()mV wt dt di L L cos 7.2= dt di L U L L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验 1.恒压源特性验证 表1-1 不同电阻负载时电压源输出电压 电阻()Ωk 0.1 1 10 100 1000 电源电压(V ) 4.92 4.98 4.99 4.99 4.99 2.电容的伏安特性测量

一、毕业设计(论文)格式要求-东南大学外国语学院

东南大学外国语学院英语专业毕业论文格式 1、装订顺序见模板。 2.字体、字号、页码与排版格式: (1) 一级标题粗体三号,居中;二级及以下标题粗体小四号,居左;所有标题内实义词首字母大写 (虚词位于标题开头时,首字母大写)。 (2)正文、致谢、目录、参考文献一律采用Times New Roman小四号,1.5倍行距。表格内文字5号,单倍行距。段落引用单倍行距,缩进4个字母。汉字一律用五号宋体。 (3)正文前从致谢开始编页码,用罗马数字如 i, ii, iii, iv,从正文开始用阿拉伯数字1,2,3标明页码。页码一律居右打印。 (4)英文标题下第一段落开头不缩进,第二段落起第一行缩进4个英文字母。 (5) 中英文摘要关键词:3-5个,用“;”分隔。摘要中,“Keywords”小四号粗体。“关键词”宋 体5号粗体。与摘要内容之间空一行。 (6) 目录采用word系统(路径:插入\引用\索引目录)自动生成。 3.夹注格式示例: —The underlying assumption is that language “bound up with culture in multiple and complex w ays”(Ellis 1968: 3). --Image schemas are assumed as a more primitive level of cognitive structures underlying metaphor…(Li 2002: 11). —According to Alun Rees (1986), the writers focus on the unique contribution that each individual learner brings to the learning situation. — It may be true that in the appreciation of medieval art the attitude of the observer is of primary importance (Robertson 1987). —In China, many scholars like Li Ying (2002)and Chen Yong (2007)have made a preliminary analysis of the orientational metaphors of up and down. 注意:括号内姓氏和年代之间空一格,冒号和页码之间空一格。 4.参考文献(注意每一个标点符号和空格): (1)英文参考文献在前,中文参考文献在后。英文参考文献按作者首字母顺序排列;同一作者按年排列。中文按照作者姓氏的拼音字母顺序。 (2)参考文献(即引文出处)的类型以单字母方式标识(具体使用见模板): M—专著;C—论文集; J—期刊文章;A—论文集文章; D—学位论文;R—会议论文;Z—词典,OL—网上文献 (3)第一作者姓名采用“姓,名首字母”,第二位作者起“名首字母,姓”,如:Frank Norris 与Irving Gordon应为:Norris, F. & I. Gordon。“and”用“&”。四个及以上作者时只列第一作者,后加“et al.”如:Norris,F. et al. (4)书名、期刊名、论文集名斜体,首字母大写。学位论文首字母大写,但不需斜体。 英文参考文献: (1)同一作者不同出版年的文献按出版时间的先后顺序排列,同一年出版文献按照文献标题首词的顺 序排列,在出版年后按顺序加a b c以示区别。 Chomsky, N. 1981a. Lectures on Government and Binding [M]. Dordrecht: Foris. Chomsky, N. 1981b. Theory of Markedness in Generative Grammar[M]. Pisa: Scuola Normale Superiore. (2)同一作者既有独立作者文献又有以第一者和其他作者合作的文献,独立作者文献排列在前,合作 文献排列在后。

电机实验报告东南大学自动化

东南大学 电机实验报告 姓名:学号: 专业:自动化 组员: 时间:2014年6月

实验一、二电器控制(一、二) 一、实验目的 1、了解接触器、按扭等元件的功能特点,掌握其工作原理及接线方法; 2、学会使用接触器、按钮组合控制风扇开关。 二、实验原理 1. 接触器型号划分 在电工学上。接触器是一种用来接通或断开带负载的交直流主电路或大容量控制电路的自动化切换器,主要控制对象是电动机,此外也用于其他电力负载,如电热器,电焊机,照明设备,接触器不仅能接通和切断电路,而且还具有低电压释放保护作用/。接触器控制容量大。适用于频繁操作和远距离控制。是自动控制系统 中的重要元件之一。通用接触器可大致分以下两类。 (1)交流接触器。主要由电磁机构、触头系统、灭弧装置等组成。常用的是CJ10、CJ12、CJ12B等系列。 (2)直流接触器。一般用于控制直流电器设备,线圈中通以直流电,直流接触器的动作原理和结构基本上与交流接触器是相同的。 但现在接触器的型号都重新划分了。都是AC系列的了。 AC-1类接触器是用来控制无感或微感电路的。 AC--2类接触器是用来控制绕线式异步电动机的启动和分断的。 AC-3和AC--4接触器可用于频繁控制异步电动机的启动和分断。 2. 交流接触器(CJX1-12) 实验室所用的是交流接触器(CJX1-12)如下图所示

铭牌如下 工作原理 当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联动的,因此动铁芯带动三条动触片同时运行,触点闭合,从而接通电源。当线圈断电时,吸力消失, 动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。 使用接法 1、一般三相接触器一共有8个点,三路输入,三路输出,还有是控制点两个。输出和输入是对应的,很容易能看出来。如果要加自锁的话,则还需要从输出点的一个端子将线接到控制点上面。 2、首先应该知道交流接触器的原理。他是用外界电源来加在线圈上,产生电磁场。加电吸合,断电后接触点就断开。知道原理后,外加电源的接点,也就是线圈的两个接点,一般在接触器的下部,并且各在一边。其他的几路输入和输出一般在上部。还要注意外加电源的电压是多少(220V或380V),一般都标得有。并且注意接触点是常闭还是常开。

厦门大学电子技术实验报告_实验五

实验五场效应管放大器 一、实验目的 1. 学习场效应管放大电路设计和调试方法; 2. 掌握场效应管基本放大电路的设计及调整、测试方法。 二、实验原理 1. 场效应管的主要特点 场效应管是一种电压控制器件,由于它的输入阻抗极高(一般可达上百兆、甚至几千兆),动态范围大,热稳定性好,抗辐射能力强,制造工艺简单,便于大规模集成。 因此,场效应管的使用越来越广泛。 场效应管按结构可分为MOS型和结型,按沟道分为N沟道和P沟道器件,按零栅压源、漏通断状态分为增强型和耗尽型器件,可根据需要选用。那么,场效应管由于结构上 的特点源漏极可以互换,为了防止栅极感应电压击穿要求一切测试仪器,都要有良好 接地。 2. 结型场效应管的特性 (1) 转移特性(控制特性):反映了管子工作在饱和区时栅极电压VGS对漏极电流ID 的控制作用。当满足|VDS|>|VGS|-|VP|时,ID对于VGS的关系曲线即为转移特性曲线。如图1所示。由图可知。当VGS=0时的漏极电流即为漏极饱和电流IDSS,也称 为零栅漏电流。使ID=0时所对应的栅极电压,称为夹断电压VGS=VGS(TH)。 ⑵转移特性可用如下近似公式表示: I D=I DSS1? V GS V GS TH 2 (当0≥V GS≥V p) 这样,只要I DSS和V GS TH确定,就可以把转移特性上的其他点估算出来。转移特性的斜率为: g m=ΔI D GS 它反映了VGS对ID的控制能力,是表征场效应管放大作用的重要参数,称为跨异。一般为0.1~5mS(mA/V)。它可以由式1求得:

g m=? 2I DSS GS(TH)?1? V GS GS TH ⑶输出特性(漏极特性)反映了漏源电压VDS对漏极电流ID的控制作用。图2为N 沟道场效应管的典型漏极特性曲线。 由图可见,曲线分为三个区域,即Ⅰ区(可变电阻区),Ⅱ区(饱和区),Ⅲ区(截止区)。饱和区的特点是VDS增加时ID不变(恒流),而VGS变化时,ID随之变化(受控),管子相当于一个受控恒流源。在实际曲线中,对于确定的VGS的增加,ID 有很小的增加。ID对VDS的依赖程度,可以用动态电阻rDS表示为: r DS=ΔV DS ΔI D 在一般情况下,rDS在几千欧到几百欧之间。 ⑶图示仪测试场效应管特性曲线的方法: ①连接方法:将场效应管G、D、S分别插入图示仪测试台的B、C、E。 ②输出特性测试:集电极电源为+10v,功耗限制电阻为1kΩ;X轴置集电极电压1V/度,Y轴置集电极电流0.5mA∕度;与双极型晶体管测试不同为阶梯信号,由于场效应管 为电压控制器件,故阶梯信号应选择阶梯电压,即:阶梯信号:重复、极性:一、阶 梯选择0.2V∕度,则可测出场效应管的输出特性,并从特性曲线求出其参数。 ③转移特性测试:在上述测试的基础上,将X轴置基极电压0.2V∕度,则可测出场效应管的转移特性,并从特性曲线求出其参数。 ⑷场效应管主要参数测试电路设计: ①根据转移特性可知,当VGS=0时,ID=IDSS,故其测试电路如图3所示。②根据 转移特性可知,当ID=0时,VGS=VGS(TH),故其测试电路如图4所示。 3. 自给偏置场效应管放大器 自给偏置N沟道场效应管共源基本放大器如图5所示,该电路与普通双极型晶体管放 大器的偏置不同,它利用漏极电流ID在源极电阻RS上的压降IDRs产生栅极偏压,即: VGSQ=-IDRS 由于N沟道场效应管工作在负压,故此称为自给偏置,同时Rs具有稳定工作点的作用。该电路主要参数为:电压放大倍数:AV=V0/Vi=-gmRL;?=RD‖RL‖rDS式中:RL;输入电阻:Ri≈RG输出电阻:RO=RD‖rDS;

外语类专业大学排名

2010年全国各高校外语专业排名 英语专业 1 上海外国语大学A++2 北京外国语大学A++3 北京大学A+4 南京大学A+5 厦门大学A+6 复旦大学A+7 南京师范大学A+8 山东大学A9 大连外国语学院A10 华东师范大学A11 四川外语学院A12 西南大学A13 湖南师范大学A14 北京师范大学A15 华中科技大学A16 河南大学A17 四川大学A18 华中师范大学A19 福建师范大学A20 苏州大学A21 广东外语外贸大学A22 中山大学A23 浙江大学A24 清华大学A25 南开大学A26 天津外国语学院A27 中南大学A28 西安外国语大学A29 东北师范大学A30 上海大学A31 北京语言大学AB+等(47个):上海交通大学、湖南大学、辽宁大学、中国人民大学、中国海洋大学、山东师范大学、四川师范大学、陕西师范大学、北京第二外国语学院、吉林大学、江西师范大学、安徽大学、广西师范大学、河北师范大学、宁波大学、安徽师范大学、东南大学、湘潭大学、黑龙江大学、深圳大学、河北大学、辽宁师范大学、山西大学、宁夏大学、南昌大学、上海师范大学、暨南大学、西北大学、首都师范大学、广西大学、西北师范大学、浙江师范大学、电子科技大学、华南师范大学、新疆大学、南京农业大学、重庆师范大学、中国石油大学、广西师范学院、武汉大学、上海海事大学、郑州大学、武汉理工大学、哈尔滨工程大学、大连海事大学、中国地质大学、上海对外贸易学院 日语专业全国重点学科排名1、上海外国语大学A+2、北

京外国语大学A+ 3、东北师范大学A+4、北京大学A5、对外经济贸易大学A6、吉林大学A7、天津外国语大学A8、北京师范大学A9、武汉大学A10、大连外国语学院A11、浙江大学A12、四川外语学院AB+等(18个):广东外语外贸大学、北京第二外国语学院、西安外国语大学、湖南大学、中山大学、首都师范大学、东南大学、南京农业大学、北京语言大学、四川大学、南京大学、厦门大学、上海交通大学、内蒙古大学、哈尔滨理工大学、山西大学、西北大学、复旦大学 全国高校英语专业排名:1 、北京外国语学院文学和语言学是北京外国语大学具有传统优势的两大特色学科,北外拥有一大批在国内外语教育界享有很高学术地位、在国际上也有一定影响的专家学者。 2 、上海外语学院 上外的院系极富个性与特色。其中,英语学院承担了上海市多种英语考试的辅导和阅卷工作。高级翻译学院经常承办联合国、国家政府、上海市等举办的各种重大国际活动的部分会务翻译工作,并于2009年成为国际高校翻译联合会(CIUTI)成员。 3 、北京大学 北大自创立以来就一直是国际上知名度最高的中国大学,同时也是国内最具开放性的大学。置身于此,正可以放眼世界,胸怀天下。现有来自近百个国家的四千余名留学生在北大求学,留学生人数在全

自动控制实验报告1

东南大学自动控制实验室 实验报告 课程名称:自动控制原理 实验名称:闭环电压控制系统研究 院(系):仪器科学与工程专业:测控技术与仪器姓名:学号: 实验室:常州楼五楼实验组别:/ 同组人员:实验时间:2018/10/17 评定成绩:审阅教师: 实验三闭环电压控制系统研究

一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。通过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也可以认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤:

东南大学学科设置,排名及分布

一.学科设置 建筑系 建筑系城市规划系环境设计系景观学系 生物医学工程 生物分子电子学、医学影像科学与技术、生物医学电子学 人文学院 哲学与科学系政治与公共管理系中国语言文学系旅游学系医学人文学系 经济管理学院 管理科学与工程系、经济与贸易系、工商管理系、金融系、会计系、经济学系、电子商务系和物流工程系 土木工程学院 土木工程、环境工程、力学、工程管理 交通学院 道路工程系、交通工程系、桥梁工程系、地下工程系、运输与物流工程系、港航工程系、测绘工程系、地理信息工程系 基础医学院 学院设有遗传学与发育生物学系、人体解剖学与组织胚胎学系、生理学与药理学系、病理学与病理生理学系、病原生物学与免疫学系 机械工程学院 械工程及自动化、工业工程 能源与环境学院(动力工程系) 热能与动力工程,建筑环境与设备工程 信息科学与工程学院 通信与信息系统、电磁场与微波技术、信号与信息处理、电路与系统、信息安全 电子科学与工程学院 信息显示工程、光纤技术与光纤通信、微电子技术、大规模集成电路系统工程、微波与毫米波技术、光子学和光通讯、真空电子技术和电子信息材料科学与工程。自动化学院

控制理论与控制工程、检测技术与自动化装置、模式识别与智能系统、电力电子与电力传动 计算机科学与工程学院 计算机网络及其应用、数据库及信息系统、人工智能及其应用、软件工程及理论、理论计算机科学、计算机系统结构 材料科学与工程学院 (本科)材料科学与工程,设有金属材料、土木工程材料、电子信息材料和先进材料制备与应用四个方向 (研究生)材料物理与化学”、“材料加工工程”、“材料学”、“生物材料与组织工程 电气工程学院 电机与电器、电力系统及其自动化、电力电子与电力传动、高电压与绝缘技术、电工理论与新技术、应用电子与运动控制、电气信息技术和新能源技术 外国语学院 英语及日语 仪器科学与工程学院 (本科)测控技术与仪器专业 (研究生)仪器科学与技术,精密仪器及机械、测试计量技术及仪器、微系统与测控技术,导航、制导与控制 艺术学院 工业(艺术)设计、美术学和动画 数学系 数学与应用数学、基础数学、概率与统计、信息与编码、信号与系统、计算机应用、科学计算、金融统计 物理系 物理学、应用物理、光信息科学与技术 化学化工学院 应用化学、材料物理和化学、生物材料与组织工程、制药工程 法学院

自动检测技术实验一

东南大学自动化学院 实验报告课程名称:检测技术 第1 次实验

实验名称:实验一、三、五、八、九 院(系):自动化专业:自动化 :学号: 实验室:实验组别: 同组人员:实验时间:2013 年11月16日 评定成绩:审阅教师: 实验一金属箔式应变片——单臂电桥性能实验一、基本原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。 描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压Uo1= EKε/4。 二、实验器材及连线 主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。

图2-1 应变式传感器安装示意图 图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理图 三、实验步骤 1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。 2、放大器输出调零 将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。 3、电桥调零

拆去放大器输入端口的短接线,将暂时脱开的引线复原。调节实验模板上的桥路平衡电位器RW1,使电压表显示为零。 4、应变片单臂电桥实验 在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。实验结果填入表2-1,画出实验曲线。 表2-1 重量(g) 20 40 60 80 100 120 140 160 180 200 电压(mv) 15.2 30.5 45.9 61.5 77.0 92.4 108.0 132.8 148.3 163.9 拟合方程为:0.834 4.1933 U W =?- 重量20 40 60 80 100 120 140 160 180 200

东南大学计算方法与实习上机实验一

东南大学计算方法与实习实验报告 学院:电子科学与工程学院 学号:06A12528 姓名:陈毓锋 指导老师:李元庆

实习题1 4、设S N=Σ (1)编制按从大到小的顺序计算S N的程序; (2)编制按从小到大的顺序计算S N的程序; (3)按两种顺序分别计算S1000,S10000,S30000,并指出有效位数。 解析:从大到小时,将S N分解成S N-1=S N-,在计算时根据想要得到的值取合适的最大的值作为首项;同理从小到大时,将S N=S N-1+ ,则取S2=1/3。则所得式子即为该算法的通项公式。 (1)从大到小算法的C++程序如下: /*从大到小的算法*/ #include #include #include using namespace std; const int max=34000; //根据第(3)问的问题,我选择了最大数为34000作为初值 void main(){ int num; char jus; double cor,sub; A: cout<<"请输入你想计算的值"<<'\t'; cin>>num; double smax=1.0/2.0*(3.0/2.0-1.0/max-1.0/(max+1)),temps; double S[max]; // cout<<"s["<num;){ temps=smax; S[n]=temps; n--; smax=smax-1.0/((n+1)*(n+1)-1.0); } cor=1.0/2.0*(3.0/2.0-1.0/num-1.0/(num+1.0)); //利用已知精确值公式计算精确值sub=fabs(cor-smax); //double型取误差的绝对值 cout<<"用递推公式算出来的s["<>jus; if ((int)jus==89||(int)jus==121) goto A; }

东南大学文件

东南大学文件 校通知〔2009〕151号 关于公布2010届推荐 免试攻读硕士学位研究生名单的通知 各院、系、所,各有关部、处,2010届各学生班级: 根据教学司[2009]25号和东南大学校通知[2009]127号文件精神,我校在2010届本科生中开展了推荐免试攻读硕士学位研究生的工作。各院(系)均制定了详细的推荐细则,认真组织了考核,院(系)和学校分别进行了公示。经校推荐工作领导小组复审,共批准738位2010届同学免试攻读硕士学位研究生,现将名单公布如下: 建筑学院(36人) 王欣何舒炜叶南孙晓倩盛吉顾超溢李小溪王竞楠仲早立吴欢瑜景文娟杨宇凌洁柴文远汤梦捷俞英金筱敏查曼舒何为然古振强魏祥莉 徐晨(专业学位)马明(专业学位)鲍宇廷(专业学位)吴冰璐(专业学位)仇怡嘉(专业学位)赵艳(专业学位)王伟实(专业学位)张一楠(专业学位)唐薇(专业学位)宋一鸣(专业学位)闵欣(专业学位)崔毅雄(专业学位)郭炜(专业学位)翟玉章(专业学位)张荩予(专业学位)机械工程学院(45人)

李明曹洋徐文龙范淑瑾李万宝荣杰陈建栋许爱娟姜迪王璐梁嘉震顾伟杨章群邹琳王欣魏笑敏周新龙赵国平钱伟戈亦文杨鹏春于刚刘磊黄健王俊松王钰岩温李庆王晓斌何晓华严岩焦伟饶和昌刘庆龙武春晖陈晨 景小峰(专业学位)袁周(专业学位)周立坤(专业学位)王慧军(专业学位)尹薇(专业学位)欧阳锦(专业学位)郭纬川(专业学位)张哲(专业学位)张磊(专业学位)张志庆(专业学位) 能源与环境学院(38人) 董成键王程遥刘芬密长海朱凯刘志华邓梓龙孔赟李红霞龚广杰李建席剑飞刘伟李庆伟李福健张涛韩四维严青郭文文查于东姜中孝丁洁仓宁应芝周成思祖可云贺婷姜敏陈少卿徐彬武鼎鑫江楚遥蔡小燕 仲佳鑫(专业学位)高龙(专业学位)蔡杰(专业学位)杨子萱(专业学位)潘雄伟(专业学位) 信息科学与工程学院(64人) 周浩王琳朱矿岩戴咏玉蔡菠蒋姝宋扬戴琳琳潘存华龚淑蕾钱妍池王影范小飞伍德斌黄荣芳赵梅李拟珺陈寅袁沁陶竟成吴黄洁薛敏迪陈祥蔡鹏徐志明朱德来张楠楠翟梦琳刘贺语史寅科麻常莎龚秋石吴双章婧赵鹏王文怡

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学 《自动控制原理》 实验报告 实验名称:实验三闭环电压控制系统研究 院(系):专业: 姓名:学号: 实验室: 416 实验组别: 同组人员:实验时间:年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究 一、实验目的: (1)经过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)经过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表示、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。因此,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就能够“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式能够做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的

闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制能够带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。经过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也能够认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤: (1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。

东南大学数学实验报告(1)

高等数学数学实验报告实验人员:院(系) 土木工程学院学号05A11210 姓名李贺__ 实验地点:计算机中心机房 实验一空间曲线与曲面的绘制 一、实验题目:(实验习题1-2) 利用参数方程作图,做出由下列曲面所围成的立体图形: 2 2 2 2 ⑴ Z 1 X y,x y X 及xOy平面; ⑵ z xy,x y 1 0 及z 0. 二、实验目的和意义 1、利用数学软件Mathematica绘制三维图形来观察空间曲线和空间曲面图形的特点,以加 强几何的直观性。 2、学会用Mathematica绘制空间立体图形。 三、程序设计 空间曲面的绘制 x x(u, V) y y(u,v),u [u min , max ],V [V min , V max ] 作参数方程z z(u,v)所确定的曲面图形的Mathematica命令

为: ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umi n,umax}. {v,vmi n,vmax}, 选项] ⑵ t2 = ParametricPlotJD [{u f 1 v}, [u^ ?0?§尸1}^ (v, 0F 1}, HxegLabel {"x" 11 y" J1 z" }. PlotPolnts t 5B, Dlspla^unction -> Identity」: t3 = ParametricPlotSD[{u f 0}* (u, -U.J5』1}^ {v z-0.5, 1} f AxesLabel {"x" 11y" 11 z" PlotPoints 50, Display1 unction — Identity]: Slinw[tl z t2, t3 f DisplayFunction -> SDlsplajfunction] 四、程序运行结果 ⑴ (2) 五、结果的讨论和分析 1、通过参数方程的方法做出的图形,可以比较完整的显示出空间中的曲面和立体图形。 2、可以通过mathematica软件作出多重积分的积分区域,使积分能够较直观的被观察。

英语专业研究生院校排名

英语专业研究生院校排名 1、北外 2、上外 3、北大 4、南京大学 5、复旦大学 6 、厦门大学 7、南开大学 8、对外经贸大学 9、广东外语外贸大学 10、华东师范大学 11、中山大学 12、上海交通大学 13、湖南师范大学 14 、山东大学 15、洛阳外国语大学 16、清华大学 17、北京师范大学 18 、武汉大学 19、南京师范大学

050201 英语语言文学国家重点学科/博士点/硕士点 标注Z者为一级学科国家重点学科/博士点/硕士点覆盖的二级学科国家重点学科/博士点/硕士点 二级国家重点学科 北京大学 北京外国语大学 湖南师范大学 解放军外国语学院 南京大学 上海外国语大学 中山大学 博士点 北京大学Z 北京师范大学 北京外国语大学Z 北京语言大学 东北师范大学 福建师范大学 复旦大学 广东外语外贸大学Z 河南大学

华东师范大学 华中师范大学 解放军国际关系学院 解放军外国语学院Z 南京大学Z 南京师范大学 南开大学 清华大学 山东大学 上海外国语大学Z 四川大学 苏州大学 西南大学 厦门大学 浙江大学 中国社会科学院研究生院中南大学 中山大学 硕士点 安徽大学 安徽师范大学

北京第二外国语学院Z 北京航空航天大学Z 北京交通大学 北京科技大学Z 北京理工大学 北京林业大学 北京师范大学 北京外国语大学Z 北京邮电大学 北京语言大学Z 长沙理工大学 大连海事大学 大连理工大学 大连外国语学院Z 电子科技大学 东北大学Z 东北林业大学 东北农业大学 东北师范大学 东南大学 对外经济贸易大学Z

福州大学 复旦大学 赣南师范学院 广东法商大学 广东外语外贸大学Z 广西大学 广西师范大学 广西师范学院 广州大学 贵州大学 贵州师范大学 国防科学技术大学 国际关系学院 哈尔滨工程大学 哈尔滨工业大学 哈尔滨理工大学 哈尔滨师范大学 海南大学 杭州电子科技大学 合肥工业大学 河北大学

自动检测技术实验一

自动检测技术实验一-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

东南大学自动化学院 实验报告课程名称:检测技术 第 1 次实验 实验名称:实验一、三、五、八、九 院(系):自动化专业:自动化 姓名:学号: 实验室:实验组别: 同组人员:实验时间:2013 年 11 月 16 日评定成绩:审阅教师:

实验一金属箔式应变片——单臂电桥性能实验一、基本原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。 描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压Uo1= EKε/4。 二、实验器材及连线 主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。 图2-1 应变式传感器安装示意图

图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理图 三、实验步骤 1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。 2、放大器输出调零 将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi =0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。 3、电桥调零 拆去放大器输入端口的短接线,将暂时脱开的引线复原。调节实验模板上的桥路平衡电位器RW1,使电压表显示为零。 4、应变片单臂电桥实验

厦门大学数电实验九

实验九触发器的工作特性 一、实验目的 1、掌握并验证基本RS触发器、维阻D触发器和主从JK触发器的逻辑功能; 2、掌握触发器之间的转换。 二、实验原理 1、基本RS触发器: 与非型直接RS触发器是最简单的触发器,其由两个与非门交叉耦合而成,电路如图1所示,其特性方程如下式,特性表如图1所示。 2、维阻D触发器: 维阻D触发器的逻辑符号和功能如下:

(1)低电平异步预置: D和Cp状态任意,Rd’=0,Sd’=1,Q=0;Rd’=1,Sd’=0,Q=1。 (2)上升沿边沿触发特性: 当Cp上升沿来时,输出Q按输入D的状态而变化,即Qn+1=Dn 3、主从JK触发器: 主从JK触发器的逻辑符号和功能如下: (1)低电平异步预置: J、K和Cp状态任意,Rd’=0,Sd’=1,Q=0;Rd’=1,Sd’=0,Q=1。 (2)下降沿电平触发特性: 当Cp下降沿来时,输出Q按Cp=1期间的JK状态变化(Cp=1期间,JK变化时,主触发器有一次翻转问题),即:Qn+1=JQ’n+K’Qn。 4、触发器间的转换: (1)转换:根据已有触发器(D、JK)和适当的逻辑门获得待求触发器。 (2)步骤: ①写出已有触发器和待求触发器状态方程。 ②变换待求触发器方程,使之形式与已有触发器形式一样。 ③根据逻辑函数相等原则,若变量相同,则:系数相等。 ④画出转换电路。

三、实验仪器及器件 1、示波器1台 2、函数信号发生器1台 3、数字万用表1台 4、多功能电路实验箱1台 四、实验内容 1、基本RS触发器: 按1搭接电路,Rd’、Sd’分别接逻辑开关K1、K2,用L1显示1Q,用L2显示1Q’,按照表1验证基本RS触发器功能。 2、维阻D触发器: SN74LS74是TTL型集成双D维阻触发器,管脚图如图: (1)连接电路,L1显示Q,L2显示Q’ (2)验证Rd’和Sd’低电平异步预置功能: 当Rd’=0,Sd’=1时,L1灯灭,L2灯亮; 当Rd’=1,Sd’=0时,L1灯亮,L2灯灭。(D和Cp任意) (3)验证上升沿触发特性和逻辑功能表 3、主从JK触发器: SN7476是TTL型集成双JK主从触发器,管脚图如图:

相关文档
最新文档