医药数理统计习题答案解析

医药数理统计习题答案解析
医药数理统计习题答案解析

第一章数据的描述和整理

一、学习目的和要求

1. 掌握数据的类型及特性;

2.掌握定性和定量数据的整理步骤、显示方法;

3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;

4.能理解并熟练掌握样本均值、样本方差的计算;

5.了解统计图形和统计表的表示及意义;

6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。

二、容提要

(一)数据的分类

(二)常用统计量

1、描述集中趋势的统计量

2、描述离散程度的统计量

3、描述分布形状的统计量

* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。

三、综合例题解析

例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有

2

21

1

()()n

n

i

i i i x

x x C ==-≤-∑∑

证一:设 21

()()n

i i f C x C ==-∑

由函数极值的求法,对上式求导数,得

1

1

()2()22, ()2 n n

i i i i f C x C x nC f C n =='''=--=-+=∑∑

令 f '(C )=0,得唯一驻点

1

1= n

i i C x x n ==∑

由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为

21

()()n

i i f x x x ==-∑。

证二:因为对任意常数C 有

2

2

22

221

1

1

1

1

2

2221

2()()(2)

2(2)

()0

n

n n n n

i

i i

i

i i i i i i n

i i x

x x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑

故有

2

21

1

()()n

n

i

i i i x

x x C ==-≤-∑∑。

四、习题一解答

1.在某药合成过程中,测得的转化率(%)如下:

94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;

(3)根据频数分布表的分组数据,计算样本均值和样本标准差。 解:(1)所求频数分布表:

转化率的频数分布表

转化率分组频数频率累积频率

90.5~ 1 0.025 0.025

91.0~0 0.00 0.025

91.5~ 3 0. 0.10

92.0~11 0.275 0.375

92.5~9 0.225 0.60

93.0~7 0.175 0.775

93.5~7 0.175 0.95

94.0~94.5 2 0.05 1.00 (2)频数直方图:

频率折线图:

(3)由频数分布表可得

转化率分组 组中值m i 频数 90.5~ 90.75 1

91.0~ 91.25 0 91.5~ 91.75 3 92.0~ 92.25 11 92.5~ 92.75 9 93.0~ 93.25 7 93.5~ 93.75 7 94.0~94.5

94.25

2

则 825.9240

3713

40225.94025.91175.90181==?++?+?=

≈∑=i i i f m n x Λ i i i f x m n S ∑=--≈8

1

22

)(11 =

39

1

[(90.75-92.825)2×1+(91.25-92.825)2×0+…+(94.25-92.825)2×2] =0.584

或者 )(118

1

22

2

∑=--≈

i i i x n f m n S 584.0)76.9240225.94025.91175.90(39

1

2222=?-?++?+?=

Λ 2S S ==584.0≈0.7642

2.测得10名接触某种病毒的工人的白细胞(109/L )如下:

7.1,6.5,7.4,6.35,6.8,7.25,6.6,7.8,6.0,5.95 (1)计算其样本均值、方差、标准差、标准误和变异系数。 (2)求出该组数据对应的标准化值; (3)计算其偏度。

解:(1)75.6795.55.61.710

1

=+++=∑=Λi i x ,n =10

=+++=∑=22210

1

2

95.55.61.7Λi i

x

462.35

样本均值775.610

75

.6711==

=∑=n i i x n x 方差)(11122

2

∑=--=

n i i x n x n S 371.0)775.61035.462(9

12=?-= 标准差2S S ==371.0≈0.609

标准误193.040

609.0==

=

n

S S x

变异系数CV =

%100||?x S

=

%100775

.6609.0?=8.99%; (2)对应的标准化值公式为

609

.0775

.6-=-=

i i i x S x x u 对应的标准化值为

0.534,-0.452,1.026,-0.698,0.041,0.78,-0.287,1.683,-1.273,-1.355; (3)3

3)2)(1()(S

n n x x n S i k ---=

∑=0.204。

3. 已知某年某城市居民家庭月人均支出分组数据如下表所示

按月人均支出分组(元)

家庭户数占总户数的比例(%)

200以下 200~ 500~ 800~

1.5 18.2 46.8 25.3

1000以上 8.2 合计

100

试计算(1)该市平均每户月人均支出的均值和标准差; (2)并指出其月人均支出的中位数与众数所在组。 解:(1)由原分组数据表可得

支出分组(元)

组中值 比例(%)

200以下 200~ 500~ 800~ 1000以上

100 350 650 900 1100

1.5 18.2 46.8 25.3 8.2

则 3.6872.811002.183505.1100100

1

151=?++?+?=

≈∑=)(i i i f m n x Λ )(115

1

22

2

∑=--≈

i i i x n f m n S 39.524683.68752.811002.183505.110099

12222=?-?++?+?=

(Λ 06.22939.524682===S S ;

(2)由原分组数据表可得

支出分组(元)

比例(%)

累积比例(%)

200以下 200~ 500~ 800~ 1000以上

1.5 18.2 46.8 25.3 8.2

1.5 19.7 66.5 91.8 100

中位数所在组,即累积比例超过50的那个最低组,即为500~组。 众数所在组是频数即比例最大的组,也是500~组。

4.设x 1, x 2, …,x n 和y 1, y 2, …,y n 为两组样本观察值,它们有下列关系:

b

a

x y i i -=

i =1,2,…,n 其中a 、b 为常数且b ≠0,求样本均值x 与y 及样本方差2x S 和2

y S 之间的关系。

解:b a

x n na x n b b a x n y n y n i i

n i i n i i -=-=-==∑∑∑===)1(1)(111

11 ∑∑∑===--=----=--=n i n i n i i y

b

x x n b a x b a x n y y n S 121212

2)(11)(11)(11 22

1

221)(111x n i i S b x x n b =--=∑=。

五、思考与练习

(一)填充题

1. 统计数据可以分为 数据、 数据、 数据、 据等三类,其中 数据、 数据属于定性数据。

2. 常用于表示定性数据整理结果的统计图有 、 ;而 、 、 、 等是专用于表示定量数据的特征和规律的统计图。

3. 用于数据整理和统计分析的常用统计软件有 等。

4. 描述数据集中趋势的常用测度值主要有 、 、 和 等,其中最重要的是 ;描述数据离散程度的常用测度值主要有 、 、 、 等,其中最重要的是 、 。

1. 各样本观察值均加同一常数c后( )

A.样本均值不变,样本标准差改变B.样本均值改变,样本标准差不变

C.两者均不变 D. 两者均改变

2.关于样本标准差,以下哪项是错误的()。

A.反映样本观察值的离散程度B.度量了数据偏离样本均值的大小

C.反映了均值代表性的好坏D.不会小于样本均值

3.比较腰围和体重两组数据变异度大小宜采用()

A.变异系数(CV)B.方差(S2)

C.极差(R)D.标准差(S)

(三)计算题

1. 在某次实验中,用洋地黄溶液分别注入10只家鸽,直至动物死亡。将致死量折算至原来洋地黄叶粉的重量。其数据记录为(单位:mg/kg)

97.3,91.3,102,129,92.8,98.4,96.3,99.0,89.2,90.1

试计算该组数据的样本均值、方差、标准差、标准误和变异系数。

六、思考与练习参考答案

(一)填充题

1. 定类,定序,数值,定类,定序

2. 条形图、圆形图;直方图、频数折线图、茎叶图、箱形图

3.SAS、SPSS、Excel

4. 均值、众数、中位数,均值,极差、方差、标准差、变异系数,方差、标准差

1. B;

2.D;

3.A

(三)计算题

1.均值98.54、方差132.27、标准差11.501、标准误3.637、变异系数11.67%。

第二章随机事件与概率

一、学习目的和要求

1.掌握事件等的基本概念及运算关系;

2.熟练掌握古典概率及计算;

3.理解统计概率、主观概率和概率的公理化定义;

4.熟练掌握概率的加法公式、乘法公式及计算;

5.理解并掌握条件概率与事件独立性的概念并进行计算;

6.掌握并应用全概率公式和贝叶斯公式进行计算。

二、容提要

(一)基本概念

(二)事件间的关系

(三)事件的运算规律

(四)概率的定义

(五)概率的计算公式

三、综合例题解析

例1 从某鱼池中取100条鱼,做上记号后再放入该鱼池中。现从该池中任意捉来50条鱼,发现其中有两条有记号,问池大约有多少条鱼?

解:设池大约有n 条鱼,令

A ={从池中捉到有记号鱼}

则从池中捉到有记号鱼的概率

P (A )=

n

100

由统计概率的定义知,它近似于捉到有记号鱼的频率f n (A ) =

50

2

,即

50

2

100≈

n 解之得n =2500,故池大约有2500条鱼。

例2 口袋里有两个伍分、三个贰分和五个壹分的硬币,从中任取五个,求总值超过一角的概率。

解一:令A ={总值超过一角},现将从10个硬币中任取5个的每种取法作为每个基本事件,显然本例属于古典概型问题,可利用组合数来解决。所取5个硬币总值超过一角的情形,其币值由大到小可根据其中有2个伍分、有1个伍分和没有伍分来考虑。则

252126

)(5

10

2

533122523123822=++=C C C C C C C C C A P =0.5。 解二:本例也可以先计算其对立事件

A ={总值不超过一角}

考察5个硬币总值不超过一角的情形,其币值由小到大先根据壹分硬币、贰分硬币的不同个数来计算其有利情形的组合数。则

252126

1)(1)(1)(5

10

3

32512132335154555-=++++-=-=C C C C C C C C C C A P A P =0.5 或 2521261)1)(1)(5

10

3

513451258-=++-=-=C C C C C C A P A P (=0.5 例3 将n 个人等可能地分配到N (n ≤N )间房中去,试求下列事件的概率: (1)A ={某指定的n 间房中各有一人}; (2)B ={恰有n 间房,其中各有一人}; (3)C ={某指定的房中恰有m (m ≤n )个人}。

解:把n 个人等可能地分配到N 间房中去,由于并没有限定每一间房中的人数,故是一可重复的排列问题,这样的分法共有N n 种。

(1)对事件A ,对指定的n 间房,第一个人可分配到该n 间房的任一间,有n 种分法;第二个人可分配到余下的n -1间房中的任一间,有n -1种分法,以此类推,

得到A 共含有n !个基本事件,故

n

N

n A P !)(=

(2)对事件B ,因为n 间房没有指定,所以可先在N 间房中任意选出n 间房(共

有n N C 种选法),然后对于选出的某n 间房,按照上面的分析,可知B 共含有n N C ·n !

个基本事件,从而

n

n

N N

n C B P !

)(?=

(3)对于事件C ,由于m 个人可从n 个人中任意选出,故有m

n C 种选法,而其余

n -m 个人可任意地分配到其余的N -1间房中,共有(N -1)n -m 种分配法,故C 中共含

有m n C ·(N -1)n -m 个基本事件,因此

m n m m

n n

m

n m

n N

N C N N C C P ---=-=

)1

1()1(

)1()( 注意:可归入上述“分房问题”来处理的古典概型的实际问题非常多,例如: (1)生日问题:n 个人的生日的可能情形,这时N =365天(n ≤365); (2)乘客下车问题:一客车上有n 名乘客,它在N 个站上都停,乘客下车的各种可能情形;

(3)印刷错误问题:n 个印刷错误在一本有N 页的书中的一切可能的分布(n 不超过每一页的字符数);

(4)放球问题:将n 个球放入N 个盒子的可能情形。

值得注意的是,在处理这类问题时,要分清什么是“人”,什么是“房”,一般不能颠倒。

例4(1994年考研题)设A ,B 为两事件,且P (A )=p ,P (AB )=)(B A P ,求P (B )。 解:由于

)],()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=+-=+=

现因为P (AB )=)(B A P ,则

)()()(1)(AB P B P A P AB P +--=

又P (A )=p ,故

p A P B P -=-=1)(1)(。

注意:事件运算的德·摩根律及对立事件公式的恰当应用。

例5 设某地区位于河流甲、乙的交汇处,而任一何流泛滥时,该地区即被淹没。已知某时期河流甲、乙泛滥的概率分别为0.2和0.3,又当河流甲泛滥时,“引起”河流乙泛滥的概率为0.4,求

(1)当河流乙泛滥时,“引起”河流甲泛滥的概率; (2)该时期该地区被淹没的概率。 解:令A ={河流甲泛滥},B ={河流乙泛滥} 由题意知

P (A )=0.2,P (B )=0.3,P (B |A )=0.4

再由乘法公式

P (AB )=P (A )P (B |A)=0.2×0.4=0.08,

则(1)所求概率为

267.03

.008

.0)()()|(===

B P AB P B A P (2)所求概率为

P (A +B )=P (A )+P (B )-P (AB ) =0.2+0.3-0.08=0.42。

例6 设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,求P (A )。

解:由题设可知因为A 和B 相互独立,则

P (AB ) = P (A )P (B ),

再由题设可知

9

1

)()()(=

=B P A P B A P ,

)()(B A P B A P =

又因为

)()(B A P B A P =,

即 P (A -B ) = P (B -A ), 由事件之差公式得

)()()()(AB P B P AB P A P -=-

则有P (A ) = P (B ),从而有

)()(B P A P =

故有

3

1

)( ,91))((2==A P A P

即 3

2

)(1)(=

-=A P A P 。 例7(1988年考研题) 玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率相应为0,0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客开箱随机地查看4只,若无残次品,则买下该箱玻璃杯,否则退回。试求

(1)顾客买下该箱的概率α;

(2)在顾客买下的一箱中,确实没有残次品的概率β。

解:由于玻璃杯箱总共有三类,分别含0,1,2只残次品。而售货员取的那一箱可以是这三类中的任一箱,顾客是在售货员取的一箱中检查的,顾客是否买下这一箱是与售货员取的是哪一类的箱子有关系的,这类问题的概率计算一般可用全概率公式解决,第二问是贝叶斯公式也即条件概率问题。

首先令 A ={顾客买下所查看一箱};

B ={售货员取的箱中恰好有i 件残次品},i =0,1,2。

显然,B 0,B 1,B 2构成一组完备事件组。且

.19

12)(,54)(,1)(,1.0)(,1.0)(,8.0)(4204182420

41910210====

====C C B A P C C B A P B A P B P B P B P

(1)由全概率公式,有

94.019

12

1.054

1.018.0)()()(2

≈?

+?+?===∑=i i i B A P B P A P α (2)由逆概率公式,得

85.094

.01

8.0)

()

()()(000≈?≈

=

=A P B A P B P A B P β 注意:本题是典型的全概率公式与贝叶斯公式的应用。

例8.(小概率事件原理)设随机试验中某事件A 发生的概率为ε,试证明,不论ε>0如何小,只要不断独立重复地做此试验,事件A 迟早会发生的概率为1。

证:令 A i ={第i 次试验中事件A 发生}, i =1,2,3,… 由题意知,事件A 1, A 2, …, A n , …相互独立且

P (A i )=ε,i =1,2,3,…,

则在n 次试验中事件A 发生的概率

P (n A A A +++Λ21)=1-P (n A A A Λ21)

=1-n

n A P A P A P )1(1)()()(21ε--=Λ

当n →+∞, 即为事件A 迟早会发生的概率

P (ΛΛ++++n A A A 21)=n n )1(1lim ε--+∞

→=1。

四、习题二解答

1.考察随机试验:“掷一枚骰子,观察其出现的点数”。如果设

i={掷一枚骰子所出现的点数为i }, i =1,2,…,6

试用i 来表示该试验的基本事件、样本空间Ω和事件A ={出现奇数点}和事件B ={点数至少是4}。

解:基本事件:{0},{1},{2},{3},{4},{5},{6}。 样本空间Ω={ 0,1,2,3,4,5,6}。 事件A ={1,3,5};B ={4,5,6}。 2.用事件A 、B 、C 表示下列各事件: (1)A 出现,但B 、C 不出现; (2)A 、B 出现,但C 不出现; (3)三个都出现;

(4)三个中至少有一个出现; (5)三个中至少有两个出现; (6)三个都不出现; (7)只有一个出现; (8)不多于一个出现; (9)不多于两个出现。

解:(1)ABC (2)ABC (3)ABC

(4)ABC BC A C B A C AB C B A C B A C B A ++++++

或A +B +C 或C B A -Ω (5)ABC BC A C B A C AB +++ (6)ABC 或Ω-(A +B +C )或C B A ++ (7)ABC ABC ABC ++ (8)ABC ABC ABC ABC +++

(9)BC A C B A C AB C B A C B A C B A C B A ++++++

或Ω-ABC 或ABC

3.从52扑克牌中,任取4,求这四花色不同的概率。

解:现将从52扑克牌中任取4的每种取法作为每个基本事件,其结果与顺序无关,故可用组合数来解决该古典概型问题。

概率论与数理统计学1至7章课后标准答案

第五章作业题解 5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率. 解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得 )2100|7300(|)94005200(<-=<

应用数理统计吴翊李永乐第三章假设检验课后作业参考答案

第三章 假设检验 课后作业参考答案 某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36 /06.064 .261.2/u 00 -=-= -= n X σμ (3)否定域???? ??>=???? ??>?? ??? ??<=--21212 αααu u u u u u V (4)给定显著性水平01.0=α时,临界值575.2575.22 12 =-=- α αu u , (5) 2 αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测 得其寿命平均值为950(小时)。已知这种元件寿命服从标准差100σ=(小时)的正态分布, 试在显著水平下确定这批元件是否合格。 解:

{}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 某厂生产的某种钢索的断裂强度服从正态分布( )2 ,σ μN ,其中()2 /40cm kg =σ。现从一 批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比, X 较μ大20(2/cm kg )。设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提 高 解: (1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13 /4020 /u 00 == -= n X σμ (3)否定域{}α->=1u u V (4)给定显著性水平01.0=α时,临界值33.21=-αu (5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。 某批矿砂的五个样品中镍含量经测定为(%): 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为

应用数理统计课后习题参考答案

习题五 1 试检验不同日期生产的钢锭的平均重量有无显著差异?(=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5. 假设样本观测值(1,2,3,4)ij y j =来源于正态总体2 ~(,),1,2,...,5i i Y N i μσ= . 检验的问题:01251:,:i H H μμμμ===不全相等 . 计算结果: 表5.1 单因素方差分析表 ‘*’ . 查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异. 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(=0.05) 解 根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 . 假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2 ~(,),1,2,...,5i i Y N i μσ= .其中

样本容量不等,i n 分别取值为6,5,3,4 . 检验的问题:012341:,:i H H μμμμμ===不全相等 . 计算结果: 表5.2 单因素方差分析表 查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05, 所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 . 3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A , 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用. 设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ij y i j ==来源于正态总体2 ~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j = .记i α?为对应于i A 的主效应;记j β?为对应于j B 的主效应; 检验的问题:(1)10:i H α?全部等于零,11 :i H α?不全等于零; (2)20:j H β?全部等于零,21:j H β?不全等于零; 计算结果: 表5.3 双因素无重复试验的方差分析表 查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值, 或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用. 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量:

数理统计课后答案

) 数理统计 一、填空题 1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。不含任何未知参数 2、设母体σσμ),,(~2 N X 已知,则在求均值μ的区间估计时,使用的随机变量为 n X σ μ - 3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 025.010 1 5u ?± ; 4、假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 0H :05.0≤p 6、某地区的年降雨量),(~2 σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 σ的矩估计值为 。 ~ 7、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 2 *2 2*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~22 2221χχχχ,则__________,==b a 。 用 )1(~)1(22 2 *--n S n χσ,1,5-==b a 8、假设随机变量)(~n t X ,则 21 X 服从分布 。)1,(n F

9、假设随机变量),10(~t X 已知05.0)(2 =≤λX P ,则____=λ 。 用),1(~2 n F X 得),1(95.0n F =λ 10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N , X 为子样均值,而 01.0)(=>λX P , 则____=λ 01.04)1,0(~1z N n X =?λ 11、假设子样1621,,,X X X 来自正态母体),(2 σμN ,令∑∑==-=16 11 10 1 43i i i i X X Y ,则Y 的 分布 )170,10(2 σμN % 12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2 S 分别是子样均值和子 样方差,令2*2 10S X Y =,若已知01.0)(=≥λY P ,则____=λ 。)9,1(01.0F =λ 13、如果,?1θ2?θ都是母体未知参数θ的估计量,称1?θ比2?θ有效,则满足 。 )?()?(2 1θθD D < 14、假设子样n X X X ,,,21 来自正态母体),(2σμN ,∑-=+-=1 1 2 12 )(?n i i i X X C σ 是2σ的一个无偏估计量,则_______=C 。 ) 1(21 -n 15、假设子样921,,,X X X 来自正态母体)81.0,(μN ,测得子样均值5=x ,则μ的置信度是95.0的置信区间为 。025.03 9 .05u ?± 16、假设子样10021,,,X X X 来自正态母体),(2 σμN ,μ与2 σ未知,测得子样均值 5=x ,子样方差12=s ,则μ的置信度是95.0的置信区间为 。 025.0025.0025.0)99(),99(10 1 5z t t ≈?± 17、假设子样n X X X ,,,21 来自正态母体),(2 σμN , μ与2σ未知,计算得

北航应用数理统计考试题及参考解答

北航2010《应用数理统计》考试题及参考解答 09B 一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而12 15(,,)X X X 是来自X 的样本,则22 110 22 11152() X X U X X ++=++服从的分布是_______ . 解:(10,5)F . 2,?n θ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:??lim (), lim Var()0n n n n E θθθ→∞ →∞ ==. 3,分布拟合检验方法有_______ 与____ ___. 解:2 χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ . 解:推断各因素对试验结果影响是否显著. 5,多元线性回归模型=+Y βX ε中,β的最小二乘估计?β 的协方差矩阵?βCov()=_______ . 解:1?σ-'2Cov(β) =()X X . 二、单项选择题(每小题3分,共15分) 1,设总体~(1,9)X N ,129(,, ,)X X X 是X 的样本,则___B___ . (A ) 1~(0,1)3X N -; (B )1 ~(0,1)1X N -; (C ) 1 ~(0,1) 9X N -; (D ~(0,1)N . 2,若总体2(,)X N μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的 置信区间____B___ . (A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能. 3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的; (B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的. 4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .

应用数理统计,施雨,课后答案,

习题1 1.1 解:由题意95.01=? ?? ???<--u x p 可得: 95.0=??? ???????????<-σσn n u x p 而 ()1,0~N u x n σ ??? ??-- 这可通过查N(0,1)分布表,975.0)95.01(2195.0=-+=??? ? ??????????<--σσn n u x p 那么 96.1=σ n ∴2296.1σ=n 1.2 解:(1)至800小时,没有一个元件失效,则说明所有元件的寿命>800小时。 {}2.10015.0800 0015.00800 | e 0015.0800--∞ +-=∞ +-==>?e e dx x p x x 那么有6个元件,则所求的概率() 2.76 2 .1--==e e p (2)至300小时,所有元件失效,则说明所有元件的寿命<3000小时 {}5.430000 0015.03000 0015.001|e 0015.03000----=-==

因为~()i X P λ,所以 112233{,,}P X x X x X x ≤≤≤ 112233{}{}{}P X x P X x P X x =≤≤≤1233123!!! x x x e x x x ++-λ λ= 其中,0,1,2, ,1,2,3k x k == (2) 123{(,,)|0;1,2,3}k x x x x k χ=≥= 因为~()i X Exp λ,其概率密度为,0 ()0,0 x e x f x x -λ?λ≥=? ? 所以,1233 1 (,,)() f x x x b a = -,其中;1,2,3k a x b k ≤≤= (4) 123{(,,)|;1,2,3}k x x x x k χ=-∞<<+∞= 因为~(,1)i X N μ, 其概率密度为(2(),()x f x x 2 -μ) -=-∞<<+∞ 所以,3 1 1 (212332 1 (,,)(2)k k x f x x x e π2=- -μ)∑=,其中;1,2,3k x k -∞<<+∞= 解:由题意可得:()?? ???∞ <<=--,其它00,21)(i 2ln i i 2 2 i x e x x f u x σσπ 则∏ == n i x f x x f 1 i n i )(),...(=??? ????=∞<<∏=∑--=,其它0,...1,0,1 n )2()(ln 212n 1 2 i 2 i x x e i n i i u x n i σπσ

清华大学-杨虎-应用数理统计课后习题参考答案2

习题三 1 正常情况下,某炼铁炉的铁水含碳量2 (4.55,0.108)X N :.现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37. 如果方差没有改变,问总体的均值有无显著变化?如果总体均值没有改变,问总体方差是否有显著变化(0.05α=)? 解 由题意知 2~(4.55,0.108),5,0.05X N n α==,1/20.975 1.96u u α-==,设立统计原假设 0010:,:H H μμμμ=≠ 拒绝域为 {}00K x c μ=->,临界值 1/2 1.960.108/0.0947c u α-==?=, 由于 0 4.364 4.550.186x c μ-=-=>,所以拒绝0H ,总体的均值有显著性变化. 设立统计原假设 2222 0010:,:H H σσσσ=≠ 由于0μμ=,所以当0.05α=时 22220.0250.9751 1()0.03694,(5)0.83,(5)12.83,n i i S X n μχχ==-===∑% 2210.02520.975(5)/50.166,(5)/5 2.567c c χχ==== 拒绝域为 {} 222200201//K s c s c σσ=><%%或 由于22 0/ 3.167 2.567S σ=>%,所以拒绝0H ,总体的方差有显著性变化. 2 一种电子元件,要求其寿命不得低于1000h .现抽测25件,得其均值为x =950h .已知该种元件寿命2(100,)X N σ:,问这批元件是否合格(0.05α=)? 解 由题意知 2(100,)X N σ:,设立统计原假设 0010:,:,100.0.05.H H μμμμσα≥<== 拒绝域为 {}00K x c μ=-> 临界值为 0.050.0532.9c u u =?=?=- 由于 050x c μ-=-<,所以拒绝0H ,元件不合格. 3 某食品厂用自动装罐机装罐头食品,每罐标准重量为500g ,现从某天生产的罐头中随机抽测9罐,其重量分别为510,505,498,503,492,502,497,506,495(g ),假定罐头重量服从正态分布. 问 (1)机器工作是否正常(0.05α=)? 2)能

应用数理统计课后习题参考答案

习题五 1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g) 日期重旦量 1 5500 5800 5740 5710 2 5440 5680 5240 5600 4 5400 5410 5430 5400 9 5640 5700 5660 5700 10 5610 5700 5610 5400 试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05) 解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5. 2 假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5 检验的问题:H。:i 2 L 5, H i : i不全相等. 计算结果: 注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为 查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所 以拒绝H。,认为不同日期生产的钢锭的平均重量有显著差异 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 解 根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 . 2 假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .

日产量 操作工 查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。,认为在四种不同催化剂下平均得率无显著差异 3 试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另 一个是温度 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 ) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用 设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12. 2 假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j , ),i 1,2,3, j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应; 检验的问题:(1) H i 。: i 全部等于零,H i — i 不全等于零; (2) H 20 : j 全部等于零,H 21: j 不全等于零; 计算结果: 查表F 0.95(2,6) 5.143 ,局.95(3,6) 4.757 ,显然计算值F A , F B 分别大于查表值, 或p = 0.0005 , 0.0009均显著小于0.05,所以拒绝H i°,H 20,认为含铜量和试验温度 都会对钢的冲击值产生显著影响作用 . 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量: 检验的问题:H 0: 1 计算结果: H i : i 不全相等

应用数理统计习题答案 西安交大 施雨

应用数理统计答案 学号: 姓名: 班级:

目录 第一章数理统计的基本概念 (2) 第二章参数估计 (14) 第三章假设检验 (24) 第四章方差分析与正交试验设计 (29) 第五章回归分析 (32) 第六章统计决策与贝叶斯推断 (35) 对应书目:《应用数理统计》施雨著西安交通大学出版社

第一章 数理统计的基本概念 1.1 解:∵ 2 (,)X N μσ ∴ 2 (,)n X N σμ ∴ (0,1)N 分布 ∴(1)0.95P X P μ-<=<= 又∵ 查表可得0.025 1.96u = ∴ 2 2 1.96n σ= 1.2 解:(1) ∵ (0.0015)X Exp ∴ 每个元件至800个小时没有失效的概率为: 800 0.00150 1.2 (800)1(800) 10.0015x P X P X e dx e -->==-<=-=? ∴ 6个元件都没失效的概率为: 1.267.2 ()P e e --== (2) ∵ (0.0015)X Exp ∴ 每个元件至3000个小时失效的概率为: 3000 0.00150 4.5 (3000)0.00151x P X e dx e --<===-? ∴ 6个元件没失效的概率为: 4.56 (1)P e -=- 1.4 解:

i n i n x n x e x x x P n i i 1 2 2 )(ln 2121)2(),.....,(1 22 =-- ∏∑ = =πσμσ 1.5证: 2 1 1 2 2)(na a x n x a x n i n i i i +-=-∑∑== ∑∑∑===-+-=+-+-=n i i n i i n i i a x n x x na a x n x x x x 1 2 2 2 2 11) ()(222 a) 证: ) (1111 1+=+++=∑n n i i n x x n x ) (1 1 )(1 1 11n n n n n x x n x x x n n -++=++=++

数理统计试题完整版

数理统计试题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015-2016学年第1学期《数理统计学》考试试题 1、考试中可以使用不带编程功能的科学计算器。 2、计算题要求写出公式及其主要计算过程,如果没有特殊说明结果保留2位小数。 3、请将选择题的答案(用字母A 、B 、C 、D )填在下表对应题号后的空格内。 选择题答案表 一、单项选择题(每题2分,共20分,选出最为恰当的一项)。 1. 设总体),(~211σμN X ,),(~2 2 2σμN Y 相互独立,样本量分别为1n ,2n ,样本方差分别为21S ,22S ,检验2221122210::σσσσn n F S S α D. )1,1(21222 2 1-->n n F S S α 2. 假设?θ 是θ的一个点估计,那么以下说法中错误的是( )。 A.如?()E θ θ=,则?θ是θ的无偏估计 B.如?θ 是θ的无偏估计,则?()g θ是()g θ的无偏估计 C.如?θ 是θ的极大似然估计,()g θ有单值反函数,则?()g θ是()g θ的极大似然估计 D.?θ 的均方误差定义为2??()()MSE E θθθ=- 3. 设n X X X ,,,21 为来自正态分布),(2σμN 的简单随机样本,X 为样本均值, ∑=-=n i i n X X n S 1 22)(1,则服从自由度为1-n 的t 分布的统计量为( )。

应用数理统计课后习题 清华大学出版社 杨虎 钟波第三章作业参考答案

第 三 章 作 业 参 考 答 案 2、解:计算矩估计:2 1)1(1 ++= +?= ? αααα dx x x EX , 令 X EX =++= 2 1αα ,解得 1 2-1?1-=X X α ; 计算极大似然估计:α α αα α)()1()1()()(1 1 1 ∏∏∏ ===+=+= = n i i n n i i n i i x x x f L )ln()1ln()(ln 1 ∏=++=?n i i x n L ααα0 )ln(1 )(ln 1 =++= ??? ∏=n i i x n L αα α 解得 ) ) ln(1(?1 2∏=+-=n i i x n α ; 将样本观测值代入,得到估计值分别为0.3077?1=α ,0.2112?2=α。 6、 解:(1)由例3.2.3可知,μ的极大似然估计分别为 X =μ ?, 05.0)(1)(=-Φ-=>μA A X P )645.1(95.0)(Φ==-Φ?μA 645 .1+=?μA ,由46页上极大似然估计的不变性可知645.1??+=μA ; (2)由例3.2.3可知,2 σμ,的极大似然估计分别为 ∑=-= =n i i X X n X 1 2 2 ) (1 ??σ μ,, 05.0)( 1)(=-Φ-=>σ μ A A X P )645.1(95.0)( Φ==-Φ?σ μ A σ μ645.1+=?A ,由46页上极大似然估计的不变性可知σμ?645.1??+=A 。 8、解:计算2 2 2 2222)()()(σσ μC n S CE X E CS X E -+ =-=-,由题意则有 2 2 2 2 μσ σ μ=-+ C n ,解得n C 1= 。

数理统计学试题 答案

第一学期成人本科 数理统计学试题 一、选择题(每题1分,共30分) 1、样本是总体中:(D) A、任意一部分 B、典型部分 C、有意义的部分 D、有代表性的部分 E、有价值的部分 2、参数是指:(C) A、参与个体数 B、研究个体数 C、总体的统计指标 D、样本的总和 E、样本的统计指标 3、抽样的目的是:(E) A、研究样本统计量 B、研究总体统计量 C、研究典型案例 D、研究误差 E、样本推断总体参数 4、脉搏数(次/分)是:(B) A、观察单位 B、数值变量 C、名义变量D.等级变量E.研究个体 5、疗效是:(D) A、观察单位 B、数值变量 C、名义变量 D、等级变量 E、研究个体 6、抽签的方法属于(D) A、分层抽样 B、系统抽样 C、整群抽样 D、单纯随机抽样 E、二级抽样 7、统计工作的步骤正确的是(C) A、收集资料、设计、整理资料、分析资料 B、收集资料、整理资料、设计、统计推断 C、设计、收集资料、整理资料、分析资料 D、收集资料、整理资料、核对、分析资料 E、搜集资料、整理资料、分析资料、进行推断 8、实验设计中要求严格遵守四个基本原则,其目的是为了:(D) A、便于统计处理 B、严格控制随机误差的影响 C、便于进行试验 D、减少和抵消非实验因素的干扰 E、以上都不对 9、对照组不给予任何处理,属(E) A、相互对照 B、标准对照 C、实验对照 D、自身对照 E、空白对照 10、统计学常将P≤0.05或P≤0.01的事件称(D) A、必然事件 B、不可能事件 C、随机事件 D、小概率事件 E、偶然事件 11、医学统计的研究内容是(E) A、研究样本 B、研究个体 C、研究变量之间的相关关系 D、研究总体 E、研究资料或信息的收集.整理和分析 12、统计中所说的总体是指:(A) A、根据研究目的确定的同质的研究对象的全体 B、随意想象的研究对象的全体 C、根据地区划分的研究对象的全体 D、根据时间划分的研究对象的全体 E、根据人群划分的研究对象的全体 13、概率P=0,则表示(B) A、某事件必然发生 B、某事件必然不发生 C、某事件发生的可能性很小 D、某事件发生的可能性很大 E、以上均不对 14、总体应该由(D) A、研究对象组成 B、研究变量组成 C、研究目的而定 D、同质个体组成 E、个体组成 15、在统计学中,参数的含义是(D)

研究生《应用数理统计基础》庄楚强 四五章部分课后答案

4-45. 自动车床加工中轴,从成品中抽取11根,并测得它们的直径(mm )如下: 10.52,10.41,10.32,10.18,10.64,10.77,10.82,10.67,10.59,10.38,10.49 试用W 检验法检验这批零件的直径是否服从正态分布?(显著性水平05.0=α) (参考数据:) 4-45. 解:数据的顺序统计量为: 10.18,10.32,10.38,10.41,10.49,10.52,10.59,10.64,10.67,10.77,10.82 所以 6131 .0][)()1(5 1 ) (=-= -+=∑k k n k k x x a L , 又 5264.10=x , 得 38197 .0)(11 1 2 =-∑=i i x x 故 984.0) (11 1 2 2 =-= ∑=i i x x L W , 又 当n = 11 时,85.005.0=W 即有 105.0<

概率论与数理统计学习指导参考答案-常州大学

同步练习参考答案 练习 1-1 1. (1)是;(2)是;(3)是. 练习1-2 1. (1)123456{,,,,,}S e e e e e e =, 其中i e =‘出现i 点’1,2,,6i =, 246{,,}A e e e =; (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =; (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}; {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =; (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------. (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===. 2. (1)ABC ; (2)AB AC BC 或ABC ABC ABC ABC ; (3)A B C 或ABC ABC ABC ABC ABC ABC ABC ; (4)ABC ABC ABC ;(5)AB AC BC 或ABC ABC ABC ABC . 3. (1)123A A A ;(2)1 23A A A ;(3)123123123A A A A A A A A A ; (4)121323A A A A A A . 4.(C) 5. 甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;

概率论与数理统计学1至7章课后答案

一、第六章习题详解 6.1 证明(6.2.1)和(6.2.2)式. 证明: (1) ∑∑∑===+=+==n i i n i i n i i nb X a n b aX n Y n Y 1 11)(1 )(11 b X a b X n a n i i +=+=∑=1 )1( (2) ∑∑==+-+=--=n i i n i i Y b X a b aX n Y Y n S 1 212 2 )]()[(1)(11 221 2212)(1)]([1X n i i n i i S a X X n a X X a n =-=-=∑∑== 6.2设n X X X ,,,21 是抽自均值为μ、方差为2 σ的总体的样本, X 与2S 分别为该样本均值。 证明与2 (),()/E X Var X n μσ==. 证:()E X =12121 1 1 [()]()()n n E X X X E X X X n n n n μμ++ = ++== ()Var X =22 1212221 1 1[()]()()n n Var X X X E X X X n n n n n σσ++ =++ == 6.3 设n X X X ,,,21 是抽自均值为μ、方差为2 σ的总体的样本,2 21 1()1n i i S X X n ==--∑, 证明: (1) 2 S =)(11 21 2X n X n n i i --= ∑= (2) 2()E S =2σ= 证:(1) ∑∑==+--=--=n i i i n i i X X X X n X X n S 1 2212 2 )2(11)(11 ]2)([112112X n X X X n n i i n i i +--=∑∑== ])(2)([11212X n X n X X n n i i +--=∑= )(1121 2X n X n n i i --=∑=

最新研究生《应用数理统计基础》庄楚强-何春雄编制---课后答案

研究生 习题2: 2-7. 设 )1,0(~N ξ,),,,,,(654321ξξξξξξ为其一样本,而26542321)()(ξξξξξξη+++++=, 试求常数c ,使得随机变量ηc 服从2 χ分布。 2-7解:设3211ξξξη++=,所以 )3,0(~1N η 6542ξξξη++=,所以 )3,0(~2N η 所以 )1,0(~3 1 N η , )1,0(~3 2 N η )2(~)(3 1332 22212 22 1χηηηη+=??? ??+??? ?? 由于 2 22 1ηηη+= 因此 当 3 1=c 时,)2(~2 χηc 。 2-8. 设 ),,,(1021ξξξΛ为)3.0,0(2 N 的一个样本,求 ? ?? ???>∑=101244.1i i P ξ 。(参考数据:) 2-8解:因为 )3.0,0(~),,,(2 1021N ξξξξΛ=, 所以 )1,0(~3 .0N ξ , 即有)10(~3.0210 12 χξ∑=?? ? ??i i 所以 ??? ???>∑=101244.1i i P ξ??????>=∑=1012223.044.13.0i i P ξ??????>=∑=10122163.0i i P ξ ? ?? ???≤-=∑=10122163.01i i P ξ1.09.01=-= 2-14. 设总体)4,1(~N ξ,求{}20≤≤ξP 与{} 20≤≤ξP ,其中ξ是样本容量为16的样 本均值。(参考数据:)

2-14解: {}20≤≤ξP )0()2(F F -=)210()212( -Φ--Φ=)2 1 ()21(-Φ-Φ= 1)2 1 (2-Φ=3830.016915.02=-?= 由于 )4,1(~N ξ , 所以 )1,0(~21 1 16 21N -=-ξξ {} 20≤≤ξP ????? ?-≤-≤-=21122112110ξP ? ?? ???≤-≤-=22112ξP )2()2(-Φ-Φ=9545.019725.021)2(2=-?=-Φ= 2-17. 在总体)20,80(2 N 中随机抽取一容量为100的样本,问样本平均值与总体均值的差的 绝对值大于3的概率是多少?(参考数据:) 2-17解:因为 )20,80(~2 N ξ, 所以 )1,0(~2 80 100 20 80 N -= -ξξ 所以 {}380>-ξP {} 3801≤--=ξP ?? ? ?????? ?≤--=232801ξP ? ?? ???≤ -≤--=23280 231ξP )]5.1()5.1([1-Φ-Φ-= ]1)5.1(2[1-Φ-=1336.0)93319.01(2)5.1(22=-=Φ-= 2-25. 设总体ξ的密度函数为 ?? ?<<=其它 102)(x x x p 取出容量为4的样本),,,(4321ξξξξ,求: (1) 顺序统计量)3(ξ的密度函数)(3x p ;(2))3(ξ的分布函数)(3x F ;(3)??? ? ??>21)3(ξP 。 2-25解:(1)由 ()()[][])()(1)(! !1! )(1)(x p x F x F k n k n x p k n k k -----= ξ 所以 当 10<

2009(上)《数理统计》考试题(A卷)及参考解答

2009(上)《数理统计》考试题(A 卷)及参考解答 一、填空题(每小题3分,共15分) 1,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X 和129(,,)Y Y Y 是分别来自X 和Y 的样本,则U = 服从的分布是_______ . 解:(9)t . 2,设1?θ与2?θ都是总体未知参数θ的估计,且1?θ比2?θ有效,则1?θ与2 ?θ的期望与方差满足_______ . 解:1212 ????()(), ()()E E D D θθθθ=<. 3,“两个总体相等性检验”的方法有_______ 与____ ___. 解:秩和检验、游程总数检验. 4,单因素试验方差分析的数学模型含有的三个基本假定是_______ . 解:正态性、方差齐性、独立性. 5,多元线性回归模型=+Y βX ε中,β的最小二乘估计是?β=_______ . 解:1?-''X Y β= ()X X . 二、单项选择题(每小题3分,共15分) 1,设12(,,,)(2)n X X X n ≥ 为来自总体(0,1)N 的一个样本,X 为样本均值,2 S 为样本方差,则 ____D___ . (A )(0,1)nX N ; (B )2 2()nS n χ ; (C ) (1)()n X t n S - ; (D )2 12 2 (1)(1,1)n i i n X F n X =--∑ . 2,若总体2(,)X N μσ ,其中2σ已知,当置信度1α-保持不变时,如果样本容量n 增大,则μ的 置信区间____B___ . (A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能. 3,在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是____C___ . (A )α减小时β也减小; (B )α增大时β也增大; (C ),αβ其中一个减小,另一个会增大; (D )(A )和(B )同时成立. 4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方

清华大学应用数理统计课后习题及答案

清华大学应用数理统计课后习题及答案 习题三 1 正常情况下,某炼铁炉的铁水含碳量2 (4.55,0.108)X N :.现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37. 如果方差没有改变,问总体的均值有无显著变化?如果总体均值没有改变,问总体方差是否有显著变化(0.05α=)? 解 由题意知 2 ~(4.55,0.108),5,0.05X N n α==,1/20.975 1.96u u α-==,设立 统计原假设 0010:,:H H μμμμ=≠ 拒 绝 域 为 {} 00K x c μ=->,临界值 1/2 1.960.108/0.0947c u α-==?=, 由于 0 4.364 4.550.186x c μ-=-=>,所以拒绝0H ,总体的均值有显著性 变化. 设立统计原假设 2 2 2 2 0010:,:H H σσσσ=≠ 由于0μμ=,所以当0.05α=时 22220.0250.9751 1()0.03694,(5)0.83,(5)12.83,n i i S X n μχχ==-===∑% 22 10.02520.975(5)/50.166,(5)/5 2.567c c χχ==== 拒绝域为 {} 222200201//K s c s c σσ=><%%或 由于2 2 / 3.167 2.567S σ=>%,所以拒绝0H ,总体的方差有显著性变化. 2 一种电子元件,要求其寿命不得低于1000h .现抽测25件,得其均值为 x =950h .已知该种元件寿命2(100,)X N σ:,问这批元件是否合格 (0.05α=)? 解 由题意知 2 (100,)X N σ:,设立统计原假设 0010:,:,100.0.05.H H μμμμσα≥<== 拒绝域为 {} 00K x c μ=->

相关文档
最新文档