驻波比的测量 微波原理

驻波比的测量 微波原理
驻波比的测量 微波原理

电子信息工程系实验报告课程名称:微波原理

实验项目名称:驻波比的测量实验时间:2010-5-27

班级:通信072 姓名:学号:710705229

实验目的:

掌握测量驻波比的原理和常用方法

【实验内容】

在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。

【实验框图与仪器】

网络分析仪信号源被测件频谱仪

b. c.

图1 驻波比测量系统图

【实验原理】

测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及其位置,从而得到驻波比(或反射系数)和波导波长。通过驻波测量可以测出阻抗、波长、相位和Q值等其它参量。

测量电压驻波系数:

可直接由测量线探针分别处于波腹及波节位置时的电流表读出Imax 和Imin ,求出驻波比。 若驻波腹点和节点处电表读数分别为m ax I ,m in I 则电压驻波系数ρ:

min

max

min max

I I E E ==

ρ (1-2)

当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。

节点偏移法测量驻波比的测试系统如图5示。

测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中12

1

-=

λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。由所得实验曲线求得最大偏移量?,按下式求出驻波比

)

sin(1)sin(

1

1πλπρ?-?+= (1-18) 当?很小时,可近似为1

21λπρ?

+≈ (1-19)

中等驻波比测量(6≤ρ),可采用直接测量沿线驻波最大点和最小点场强的直接法来测量。为了提高

精确度,可以测量多个最大点和最小点,然后按下式求得驻波比

其中m ax I 和m in I 为指示器上对应的最大值和最小值(直线律检波)或其方根值(平方律检波)。 2、等指示度法(大驻波比 5>ρ)

当被测器件的驻波系数大于5时,驻波腹点和节点的电平相差很大,如果在最小点检波晶体的输出能使仪表有足够的指示读数,则在最大点上检波晶体的特性从平方律转向直线律,因而无法在同一情况下测得最大点和最小点,按直接法求取大驻波系数会带来较大的误差,因此采用等指示度法,也就是通过测量驻波图形中波节点附近场的分布规律的间接方法,求出驻波系数,如图6。

???

?

??????

??-=

g g

n

W W

k λπλπρsin cos

2/2

(1.2.4)

式中

min min

I kI k 最小点读数测量点读数=

n 为晶体检波律,一般n=2,'

h h l l W -==2d ,g λ为测量线上的

波长即波导波长

3、 功率衰减法

方法是:改变测量电路中可变衰减器的衰减量,使探针位于驻波腹点和节点时指示电表的读数相同,

图5 节点偏移法测量驻波比的测试系统

则驻波系数:

20

min

max 10

A A -=ρ (1.2.6)

式中max

A

和min

A

分别是探针位于驻波腹点和节点时可变衰减器的衰减量,单位为dB 。

【思考问题】

1、 开口波导的ρ≠∞,为什么?

2、 用功率衰减法测大驻波比时,可否用低频衰减器代替微波衰减器(如能否用测量放大器输入衰减器

代替微波衰减器)?为什么?

实 验 心 得:

北邮电磁场与微波测量实验实验七无线信号场强特性

电磁场与微波测量实验报告 学院:电子工程学院 班级:2011211204 执笔人: 学号:2011210986 组员:

实验目的 1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2. 研究校园内各种不同环境下阴影衰落的分布规律; 3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5. 研究建筑物穿透损耗与建筑材料的关系。 实验原理 1. 电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等 于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。当电磁波传播遇到比波长大 很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当 电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。 2. 尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗: 用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间 的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功 率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗 表示为: PL d dB PL dO 10nlog d/d0 即平均接收功率为: Pr d dBm Pt dBm PL dO 10nlog d/dO Pr dO dBm 10nlog d /dO 其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,dO为近地参考距离, d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率1OndB /1O倍程的 直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。 决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值 (对于正态分布中值就是均值)。 人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。下边介绍几种常用的 描述大尺度衰落的模型。常用的电波传播模型:

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

微波基本参数测量

浙江师范大学实验报告 实验名称微波基本参数测量班级物理071 姓名陈群学号07180116 同组人刘懿钧实验日期09/10/27 室温气温 微波基本参数测量 摘要:微波是一种波长较短的电磁波。在电磁波波谱表中,微波的波长介于无线电波与光波之间。波长较长的分米波和无线电波的性能相近,波长较短的毫米波则 与光波的性质相一致。本实验有以下目的(1)了解微波传输系统的组成部分。 (2)掌握微波的基本测量:频率、功率、驻波比和波导波长 关键词:微波功率驻波比频率特性阻抗波长可变衰减器 引言:微波通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频端与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的 波长要短的多,故把这一波段的无线电波称为微波,可划分为分米波,厘米波 和毫米波。微波有以下基本特征:1.微波的波长极短,比地球上一些物体的几 何尺寸小得多,因此当微波照射到这些物体上时,产生显著的反射,其传播特 性与几何光学相似,具有“似光性”直线传播的特点;2.微波的频率极高,即 振荡周期极短(10-9~10-12秒),与一般电真空器械中的电子渡越时间同一数量 级;3.微波可以毫无阻碍地穿过电离层,具有穿透性;4.许多的原子和分子发 射和吸收原子电磁波波长正好处于微波波段内;5.研究方法和测量技术上,要 从“电磁场”的概念去研究和分析,测量功率、驻波比、频率和特性阻抗等。 近年来,微波边缘学科,如微波超导、微波化学、微波生物学、微波医学都得 到长足的发展。 实验方案: 1、实验原理 微波的波长通常被认为在1mm~1M之间,其频率范围相当于300GHz~300MHz。如此之高的振荡频率,势必会引起一系列新的问题。现将微波与无线电波的主要不同点简述如下:(1)微波的产生具有其独特性 电子管中,电子由阴极到达阳极的时间称为“电子渡越时间”,一般是在s的数 量级。这对频率较低的无线电波来讲,几乎可被忽略。但对频率高于300 MHZ的微波,则将受到制约。若想从电子管中获得微波信号,只能借助于电子流与谐振腔相互交换能量的方式来进行。 (2)在研究方法上两者有明显的不同 在低频电路中,工作波长已远远超出实际电路的几何尺寸(例如:对应于50Hz的电磁波其波长值为6000KM)。电路中各点的电流和电压值可被认为是在同一时刻建立起来。

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

微波基本参数的测量原理

微波基本参数的测量 一、实验目的 1、了解各种微波器件; 2、了解微波工作状态及传输特性; 3、了解微波传输线场型特性; 4、熟悉驻波、衰减、波长(频率)和功率的测量; 5、学会测量微波介质材料的介电常数和损耗角正切值。 二、实验原理 微波系统中最基本的参数有频率、驻波比、功率等。要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。 1、导行波的概念: 由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。导行波可分成以下三种类型: (A) 横电磁波(TEM 波): TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。电场E 和磁场H ,都是纯横向的。TEM 波沿传输方向的分量为零。所以,这种波是无法在波导中传播的。 (B) 横电波(TE 波): TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。 (C) 横磁波(TM 波): TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。 TE 波和TM 波均为“色散波”。矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。 2、波导管: 波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。常见的波导管有矩形波导和圆波导,本实验用矩形波导。 矩形波导的宽边定为x 方向,内尺寸用a 表示。窄边定为y 方向,内尺寸用b 表示。10TE 波以圆频率ω自波导管开口沿着z 方向传播。在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到: ()sin()j t z o y x E j e ωβωμππα-=-, ()sin()j t z o x x H j e ωβμαππα -=

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告

实验名称:微波仿真实验 姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。 三、实验过程及结果

第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽 度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数 (b)根据实验要求设置相应参数

实验二 1、实验内容 了解ADS Schematic的使用和设置 2、相关截图: 打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。

3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。 实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

大连理工微波系统中电压驻波比

实验题目: 微波系统中电压驻波比的测量 实验仪器:(注明规格和型号) 导波管(BJ-100)、隔离器、衰减器、谐振式频率计、晶体检波器、驻波测量线(DH364A00)、匹配负载 实验目的: (1) 了解驻波导测量系统,熟悉基本微波原件的作用; (2) 掌握驻波测量线的正确使用方法; (3) 掌握大、中、小电压驻波系数的测量原理和方法。 实验原理简述: 1. 微波的基本知识 1.1 电磁波的基本关系 ρ=??D 0=??B t B E ??- =?? t D j H ??+ =?? (3-1-1) E D ε=,H B μ=,E J γ= (3-1-2) 如上所示, 方程组(3-1-1)为Maxwell 方程组,方程组(3-1-2)描述了介质的性质对场的影响。 1.2 矩形波导中波的传播 在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,而必须改用微波传输线。 本实验中使用的是矩形波导管, 同时对应使用的是在矩形波导中常用的微波TE 10 1.2.1 TE 10型波。 一个均匀、无限长和无耗的矩形波导。(图3-1-3)经过计算可以得到波导波长2 )2( 1a g λ λ λ-= 特点: 1,存在一个临界波长c λ=2a ,只有波长c λλ<的电磁波才能在波导管中传播 2,导波波长g λ>自由空间波长λ 3,电场只存在横向分量,电力线从一个导体壁出发,终止在另一个导体壁上,并且始终平行于导波的窄边 4,磁场既有横向分量,也有纵向分量,磁力线环绕电力线 5,电磁场的波导的纵方向(z )上形成行波

下图所示, 为TE10型波的电磁场结构 1.2.2导波的工作状态 如果导波终端负载是匹配的,传播到终端的电磁波的所有能量被吸收,这时波导中呈现的是行波。当导波终端不匹配时,就是一部分波被反射,波导中的任何不均匀性也会产生反射,形成所谓混合波。为了描述电磁波,引入反射系数与驻波比的概念,反射系数Γ定义为 φ j i r e E E ||/Γ==Γ 驻波比ρ定义为min max E E = ρ (3-1-6),其中式中,max E 和min E 分别为波腹和波节点电场E 的大小 不难看出:对于行波,1=ρ;对于驻波,∞=ρ;而当∞<<ρ1,是混合波(如上图所示) 2. 电压驻波比的测量 驻波测量是微波测量中最基本和最重要的内容之一。在测量时,通常测量电压驻波系数,即波导中电场最大与最小之比 2.1 直接法 直接法是测量沿线驻波的最大与最小场强,然后根据驻波比定义式(见上页)直接求出电压驻波比。这种方法适用于测量中、小电压驻波比 当驻波比较少时,晶体二极管为平方检波,如果驻波腹点和节点处指示电表读数分别为max I 和min I ,则式(3-1-6)可写成min max /I I = ρ 当驻波比分别在5.1005.1≤≤ρ, 以及65.1≤≤ρ时, 驻波图像分别如下所示

北邮电磁波实验一

电磁波与微波测量实验 实验一——微波测量系统的使用 班级:2009211207 姓名:乔伟(报告)马戈姜然 序号:10 11 12

一、实验目的 (1)学习微波的基本知识; (2)了解微波在波导中传播的特点,掌握微波基本测量技术; (3)学习用微波作为观测手段来研究物理现象。 二、实验仪器 它主要由微波信号源、波导同轴转换器、E-H面阻抗双路调配器、测量线和选频放大器主要部分组成。下面分别叙述各部分的功能和工作原理,其它一些微波元器件我们将在以后的实验中一一介绍。 1.微波信号源 1.1基本功能 1.1.1提供频率在8.6~9.6GHz范围连续可调的微波信号。 1.1.2该信号源可提供“等幅”的微波信号,也可工作在“脉冲”调制状态。本系统实验中指示器为选频放大器时,信号源工作在1KHz “”方波调制输出方式。 1.2.1熟悉选频放大器的使用 1.2.2熟悉谐振腔波长计的使用方法 本实验采用了吸收式波长计测量信号频率,为了确定谐振频率,用波长计测出微波信号源的频率。具体方法是:旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。反映在检波指示器上的指示是一跌落点,此时,读出波长表测微头的读书,再从波长表频率与刻度曲线上查出对应的频率。 2.波导同轴转换器 2.1基本功能 提供从同轴输入到波导输出的转换。 2.2工作原理 波导同轴转换器是将信号由同轴转换成波导传输。耦合元件是一插入波导内的探针,等效于一电偶极子。由于它的辐射在波导中建立起微波能量。探针是由波导宽边中线伸入,激励是对称的。选择探针与短路面的位置,使短路面的反射与探针的反射相互抵消,达到较佳的匹配。

北理工微波实验报告总结

实验一一般微波测试系统的调试 一、实验目的 1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。 2.掌握频率、波导波长和驻波比的测量方法。 3.掌握晶体校正曲线的绘制方法。 二、实验装置与实验原理 常用的一般微波测试系统如1-1所示(示意图)。 微波 信号源 隔离 器 可变衰减器 频率计精密 衰减 器 测量线终端 负载 测量放大器图1-1 本实验是由矩形波导(3厘米波段, 10 TE模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如

驻波比的测量 微波原理

电子信息工程系实验报告课程名称:微波原理 实验项目名称:驻波比的测量实验时间:2010-5-27 班级:通信072 姓名:学号:710705229 实验目的: 掌握测量驻波比的原理和常用方法 【实验内容】 在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。 【实验框图与仪器】 网络分析仪信号源被测件频谱仪 b. c. 图1 驻波比测量系统图 【实验原理】 测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及其位置,从而得到驻波比(或反射系数)和波导波长。通过驻波测量可以测出阻抗、波长、相位和Q值等其它参量。 测量电压驻波系数:

可直接由测量线探针分别处于波腹及波节位置时的电流表读出Imax 和Imin ,求出驻波比。 若驻波腹点和节点处电表读数分别为m ax I ,m in I 则电压驻波系数ρ: min max min max I I E E == ρ (1-2) 当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。 节点偏移法测量驻波比的测试系统如图5示。 测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中12 1 -= λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。由所得实验曲线求得最大偏移量?,按下式求出驻波比 ) sin(1)sin( 1 1πλπρ?-?+= (1-18) 当?很小时,可近似为1 21λπρ? +≈ (1-19) 中等驻波比测量(6≤ρ),可采用直接测量沿线驻波最大点和最小点场强的直接法来测量。为了提高 精确度,可以测量多个最大点和最小点,然后按下式求得驻波比 其中m ax I 和m in I 为指示器上对应的最大值和最小值(直线律检波)或其方根值(平方律检波)。 2、等指示度法(大驻波比 5>ρ) 当被测器件的驻波系数大于5时,驻波腹点和节点的电平相差很大,如果在最小点检波晶体的输出能使仪表有足够的指示读数,则在最大点上检波晶体的特性从平方律转向直线律,因而无法在同一情况下测得最大点和最小点,按直接法求取大驻波系数会带来较大的误差,因此采用等指示度法,也就是通过测量驻波图形中波节点附近场的分布规律的间接方法,求出驻波系数,如图6。 ??? ? ?????? ??-= g g n W W k λπλπρsin cos 2/2 (1.2.4) 式中 min min I kI k 最小点读数测量点读数= n 为晶体检波律,一般n=2,' h h l l W -==2d ,g λ为测量线上的 波长即波导波长 3、 功率衰减法 方法是:改变测量电路中可变衰减器的衰减量,使探针位于驻波腹点和节点时指示电表的读数相同, 图5 节点偏移法测量驻波比的测试系统

北邮-微波测量实验报告

微波测量实验报告 班级:xxx 姓名:xxxx 学号:201221xxxx

《微波测量》课程实验 实验一熟悉微波同轴测量系统 一、实验目的 1、了解常用微波同轴测量系统的组成,熟悉其操作和特性。 2、熟悉矢量网络分析仪的操作以及测量方法。 二、实验内容 1、常用微波同轴测量系统的认识,简要了解其工作原理。 微波同轴测量系统包括三个主要部分:矢量网络分析仪、同轴线和校准元 件或测量元件。各部分功能如下: 1)矢量网络分析仪:对RF领域的放大器、衰减器、天线、同轴电缆、滤波器、分支分配器、功分器、耦合器、隔离器、环形器等RF器件进行幅频特性、反 射特性和相频特性测量。 2)同轴线:连接矢量网络分析仪和校准元件或测量元件。 3)校准元件:对微波同轴侧量系统进行使用前校准,以尽量减小系统误 差。测量元件:待测量的原件(如天线、滤波器等),可方便地通过同轴线和矢量网络分析仪连起来。 2、掌握矢量网络分析仪的操作以及测量方法。

注意在实验报告中给出仪器使用报告包括下列内容:a)矢量网络分析仪的面板组成以及各部分功能

(11)电源开关打开或关闭整机电源。 (12)U盘接口Usb盘接口 (13)RF OUT 射频信号输出口,N型K头。 (射频输出) (14)RF IN 射频信号输入口,N型K头。 (射频输入) b)S参数测量步骤 1、将一个待测的二端口网络通过同轴线接入矢量网络分析仪,组成一个微波同轴测量系统,如下图所示: 2、在矢量网络分析仪上【measure】键选择测量参数, 按下后显示屏的软键菜单会显示[S11]、[S12]、[S21]、 被测 [S22]四个待选测试参数,通过按下相应软键来选择要测量的S参数。

极化波实验报告

内蒙古工业大学信息工程学院 实验报告 课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生 与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实 验室班级:电子10-1班学号:201010203008 姓名:苏宝组别: 同组人:成绩:实验日期: 2013年5月21 电磁场与电磁波实验 实验一:反射实验 实验目的 熟悉dh926ad型数据采集仪、dh926b型微波分光仪的使用方法掌握分光仪验证电磁波 反射定律的方法 实验设备与仪器 dh926ad型数据采集仪 dh926b型微波分光仪 dh1121b型三厘米固态信号源金属板 实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍 物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和 通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 如图所示,平行极化的均匀平面波以角度? 入射到良介质表面时,入射波、反射波和折 射波可用下列式子表示为 平行极化波的斜入射示意图 实验内容与步骤 系统构建时,如图1,开启dh1121b型三厘米固态信号源。dh926b型微波分光仪的两喇 叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作 平台的0-180刻度处。将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉 起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。反射全属板放到支座上时,应 使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。 将dh926ad型数据采集仪提供的usb电缆线的两端根据具体尺寸分别连接 图1 反射实验 到数据采集仪的usb口和计算机的usb口,此时,dh926ad型数据采集仪的usb指示灯 亮(蓝色),表示已连接好。然后打开dh926ad型数据采集仪的电源开关,电源指示灯亮(红 色),将数据采集仪的通道电缆线两端分别连接到dh926b型微波分光仪分度转台底部的光栅 通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。最后,察看dh1121b 型三厘米固态信号源的“等幅”和“方波”档的设置,将dh926ad型数据采集仪的“等幅/ 方波”设置按钮等同于dh1121b型三厘米固态信号源的设置。 转动微波分光仪的小平台,使固定臂指针指在某一刻度处,这刻度数就是入射角度数, 然后转动活动臂在dh926ad型数据采集仪的表头上找到一最大指示,此时微波分光仪的活动 臂上的指针所指的刻度就是反射角度数。如果此时表头指示太大或太小,应调整微波分光仪 微波系统中的可变衰减器或晶体检波器,使表头指示接近满量程做此项实验。入射角最好取 30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。做这项实验时应 注意系统的调整和周围环境的影响。 采集过程中,dh926ad型数据采集仪的usb指示灯连续闪动(蓝色),表示采集过程正在 继续。应用软件屏幕上的信号灯颜色也随着实验的继续进行红色、绿色切换。您需要顺时针

已交!3-1 微波系统中电压驻波比的测量第9周三 5-8节

3-1 微波系统中电压驻波比的测量 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波不同. 从图3-1-1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者. 与无线电波相比,微波有下述几个主要特点. 图3-1-1 电磁波的分类 1.波长短(1m ~1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用. 2.频率高:微波的电磁振荡周期(10-9~10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替. 另外,微波在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替. 3.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV ,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内. 人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟、原子钟. 4.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯、宇宙通讯和射电天文学的研究和发展提供了广阔的前景. 综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同. 微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量. 微波实验是近代物理实验的重要组成部分. 国外发达国家的微波中继通信在长途通信网中所占的比例高达50%以上. 据统计美国为66%,日本为50%,法国为54%. 我国自1956年从东德引进第一套微波通信设备以来,经过仿制和自发研制过程,已经取得了很大的成就,在1976年的唐山大地震中,在京津之 λ/m 3 6 109 1012 1015 1018 10-9 10-11 10-6 10-3 100 103 106 f /Hz 广播 电视 红外 可见光 紫外 电波 无线电波 光波 X 射线 微波

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

A1 五、实验数据 I(uA ) 0 10 20 30 40 50 60 70 80 90 θ° 理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许 范围内,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但 是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候, 由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。 所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 垂直极化波入射在两种媒质的分界面上,反射系数和折射系数分别为:

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

北邮电磁波与微波测量第五次精品文档7页

北京邮电大学 电磁波与微波测量第五次实验报告 学院:电子工程学院 班级: 姓名: 学号: 实验三微波驻波比的测量 由于微波的波长很短,传输线上的电压、电流既是时间的函数,又是位置的函数,使得电磁场的能量分布于整个微波电路而形成“分布参数”,导致微波的传输与普通无线电波完全不同。微波系统的测量参量是功率、波长和驻波参量,这也是和低频电路不同的。电压驻波系数的大小往往是衡量一个微波元件性能优劣的主要指标。驻波测量也是微波测量中最基本和最重要的内容之一,通过驻波测量不仅可以直接得知驻波系数值,而且还可以间接求得衰减器、相移量、谐振腔品质因数,介电常数。 一、实验目的 (1)了解波导测量系统,熟悉基本微波元件的作用。 (2)掌握驻波测量线的正确使用和用驻波测量线校准晶体检波器特性的方法。 (3)掌握大、中、小电压驻波系数的测量原理和方法。 二、实验原理 驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。在传输线中若存在驻波,将使能量不能有效地传给负载,因而增加损耗。在大功率情况下,由于驻波存在可能发生击穿现象。此外,驻波存在还会影响微波信号发生器输出功率和频率的稳定度。因此,驻波测量非常重要。 电压驻波比测量 驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。在测量时,通常测量电压驻波系数,即波导中电场最大值和最小值之比,即 ρ=Emax Em?n 测量驻波比的方法与仪器种类很多,有直接法,等指示度法,功率衰减法等。本实验着重熟悉用驻波测量线来测驻波系数的几种方法。 (1)直接法 直接测量沿线驻波的最大点与最小点场强,从而求得驻波系数的方法称为直接法。若驻波腹点和节点处电表读数分别为Umax,Umin则电压驻波系数ρ: ρ=Emax Em?n =√Umax Um?n 当驻波系数1.5<ρ<5时直接读出Im ax,Im?n即可。

微波实验报告

之前网上下的学长学姐的报告有很多不靠谱,但是调谐都要调到中心频率上,否则都不对, 还有老师验收的时候如果自己心情很不好,只要她发现一点错误就会坚定的认为不是自己 做的,所以一定要确保没有错误,原理一定要弄清楚.愿后来人好运~~~ 实验2 微带分支线匹配器 一.实验目的: 1.熟悉支节匹配的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 二.实验原理: 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达GHz以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 本次实验主要是研究了微带分支线匹配器中的单支节匹配器和双支节匹配器,我都采用了短路模型,这类匹配器主要是在主传输线上并联上适当的电纳,用附加的反射来抵消主传输线上原来的反射波。 单支节调谐时,其中有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d处向主线看去的导纳Y是Y0+JB形式。然后,此短截线的电纳选择为-JB,然后利用Smith圆图和Txline,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,比单支节匹配器增加了一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配,但需要注意的是,由于双支节匹配器不是对任意负载阻抗都能匹配,所以不能在匹配禁区内。 2.微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H 为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE 波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 3.微带线的模型

相关文档
最新文档