abaqus帮助文档中轮胎的例子

abaqus帮助文档中轮胎的例子
abaqus帮助文档中轮胎的例子

外胎是由胎体、缓冲层(或称带束层)、胎面、胎侧和胎圈组成

1、Bead:胎唇部;

2、sidewall:胎侧;

3、tread:胎面;4belt:缓冲层;5、carcass:胎体帘布层。

3.1.8 Treadwear simulation using adaptive meshing

in ABAQUS/Standard

3.1.8使用自适应网格在Abaqus/Standard中进行轮胎磨损仿真分析

软件:Abaqus/Standard

这个例子在Abaqus/Standard中使用自适应网格技术对稳态滚动的轮胎进行建模。这次分析使用类似“Steady-state rolling analysis of a tire”Section 3.1.2来建立稳态滚动轮胎的接地印迹和状态。接着,进行稳态传输分析来计算和推测持续分析步,在稳态过程中产生一个近似瞬态磨损解。

问题描述和建模

轮胎描述和有限元建模和“Import of asteady-state rolling tire,”Section 3.1.6一样,但是有一些不一样,在这里需要指出。由于这次分析的中心是轮胎磨损,所以胎面建模需要更加精细。另外台面使用线性弹性材料模型来避免超弹性材料在网格自适应过程中不收敛。

图1所示的是轴对称175SR14轮胎的一半模型。橡胶层用CGAX4和 CGAX3单元建模。加强层使用带有rebar层的SFMGAX1单元模拟。橡胶层和加强层之间潜入单元约束。橡胶层的弹性模量为6Mpa,泊松比为0.49。剩下的轮胎部分用超弹性材料模型模拟。多应变能使用系数C10=10^6,C01=0和D1=2*10^8。用来模拟骨架纤维的刚性层和径向成0°,弹性模量为9.87Gpa。压缩系数设置成受拉系数的百分之一。名义应力应变数据用马洛超弹性模型定义材料本构关系。Belt fibers材料的拉伸弹性模量为172.2Gpa。压缩系数设置成拉伸系数的的百分之一。Belt的纤维走向在轴向±20°内。

旋转前面的轴对称一半模型可得到局部三位模型,如图2所示。我们关注轮胎印迹区域的网格。将局部模型镜像后可得到完整的三维模型。

自适应网格在轮胎磨损计算中的局限性

在这个例子中使用自适应网格必须严格遵守以下条件:

1、圆柱网格不支持自适应网格并且在本例子也没有使用

2、由于梯度状态变量的变形错误严重,自适应网格使用超弹性材料时表现很差。因此胎面用弹性材料定义

3、在自适应网格的范围内不能用包含刚性层的嵌入网格。

4、自适应网格通过网格几何特征来决定自适应网格在自由面光滑的方向,网格几何的特征通常不容易和描述的磨损方向一致。因此,下面将讨论到,通常你需要做额外的工作来明确地描述磨损的方向。

加载

分析分为5个阶段,用轴对称模型开始,以使用symmetric model generation生成的完整三维模型结束。前4阶段和―Steady-state rolling analysis ofa tire,‖ Section 3.1.2和类似。

1、对称充气:轮胎内部施加200kpa的压力,中间平面使用对称条件。

2、一半三维接地印迹分析:轴对称模型沿着对称轴旋转。

3、完整的三维模型接地印迹分析:一半三维模型镜像生成完整的三维模型

4、稳态滚动:在稳定速度32km/h车速进行完整模型分析,这是轮胎的滚动速度为25rad/s。这些条件符合制动工况,本次分析考虑惯性和迟滞作用。

5、胎面磨损分析:胎面磨损分析在最后一步进行,本次分析轮胎速度保持为一定值,考虑轮胎表面的磨损,使用损耗的摩擦能来计算磨损。惯性和迟滞同样是本次分析中的考虑因素。本次分析在车速32km/h的情况下,持续进行3.6*10^6秒,轮胎前进32000公里。

最后的分析为磨损分析,来预测磨损或者面消融,根据稳态侧倾轮胎得到评估。我们关注由磨损评估结果得到的轮胎外形的改变;因此我们需要介绍在稳态过程中允许瞬态效果的建模假设。

基本的假设是用当前实时持续的滚动角速度来解释稳态前进分析步。我们认为在任何时候轮胎滚动时轮胎的磨损造成的轮胎外形变化仅仅有很小的效果。因此在整个分析步的每一步稳态的结果都是合适的。有了这些假设,我们就能同时考虑两个不同时间范围的效果:短的轮胎转动时间范围和长的轮胎寿命时间范围。

磨损模型

为了举例说明磨损的过程,假设磨损率是局部接触压力和滑移率的线性函数,进行一个简单的磨损例子。尽管我们能计算这些工程量,由于在稳态移动状态下使用欧拉公式,他们必须应用于胎面流线来模拟轮胎周长磨损。

磨损率计算

磨损模型如下:

q是体积损失量或者磨损量;k是无量纲磨损系数;H是材料硬度;P是接触压力;A是接触面积;Y是接触滑移率。在这里我们可以认为用PAy描述摩擦耗损率。对于轮胎橡胶,我们假设磨损系数k=10^-3,材料硬度H=2GPa。

下面开发的目标是材料的磨损表达式能应用于磨损分析的节点上。首先,考虑用一条带状物围绕着轮胎,带状物的中心用包含胎面花纹的有序节点来定义。这条中心线是以和每个节点联系的辅助面的任意一边作为边界。这样的带状物包含轮胎与路面接触的所有面。我们认为发生在带状物上的磨损是均匀的;因此我们用下式表达整个带状物的磨损率,

其中t是时间,x是当前配置位置。因为我们使用欧拉稳态传输处理,现在表达式可以表示为只依赖于时间的方程,

其中S是沿着流线的位置,T(s)是带状物在S位置的宽度。我们也可以见表达式q写成局部材料衰减率的函数,

在整个带状物的离散化方程的处理的结果相等,得到

其中h是节点的消融速度,A是节点的接触区域。这个方程表明沿着带状物h是不均匀的,推导出的结论是带状物进入和离开接地印迹的宽度是不一样的。然而,因为我们为了维持一个合理的轮胎磨损后的结构,我们假定节点消融的速度是均匀的。设个假定使得如下表达式成立:

再次假定沿着带状物宽度方向的变化可以忽略,既Ti=T,同时认为节点接触区域,则表达式可以简化为没有接地面积的方程:

磨损过程实现

用曲面消融速度的磨损量方程,现在我们可以在稳态移动分析中应用磨损分析了。用户子程序UMESHMOTION用来指定轮胎外表面节点的磨损速度向量。UMESHMOTION用来定义自适应网格约束速度和用来连接自适应网格,每个收敛的增量步之后使用网格光滑技术。通过子程序指定胎面节点的消融速度,自适应网格技术用来调整橡胶层内部的节点来保持好的网格网格形状。

为了积累沿着每个胎面花纹的磨损量,必须在子程序中记录沿着花纹的节点编号。使用一个公共模块变量记录,公共模块记录属于集合NADAPT(图4)的节点和那些在整个模型横截面(0°)的参照点。普通模块变量同时也包括将模型旋转和镜像后节点的编号方式,和参考截面一起,完整地描述了轮胎表面的节点编号。如下的变量需要在外部公共模块中定义:

1、 nStreamlines:轮胎磨损分析中整个参考截面的节点数。

2、 nGenElem:在模型中沿着带状物体网格划分的数目。

3、 nRevOffset:通过*SYMMETRIC MODELGENERATION, REVOLVE指定节点偏移。

4、 nReflOffset:通过*SYMMETRIC MODELGENERATION, REFLECT指定节点偏移。(如果模型不用镜像,这个参数设置为0)。

5、 jslnodes:在参考截面下所有可能发生磨损的节点的节点信息数组。这个数组的大小为(2,nStreamlines)。每个流线的第一个分量是―根节点‖的节点编号(节点a在下面讨论),根节点是指在参考截面上细化流线部分的节点。第二个分量是指提供磨损方向的节点(节点b在下面讨论)。第二个分量仅仅在胎面的拐角处需要,将他设置成等于在参考截面的节点编号来定义磨损的方向。对于不在胎面拐角处的节点,第二个分量设置等于0。那些远离胎面拐角的节点将沿着局部坐标系的3方向进行磨损。

磨损表达式的变量通过函数GETVRN和GETVRMAVGATNODE从分析数据库中获得。P从变量CSTRESS中获得;y从变量CDISP中获得;由带状物的节点坐标决定,从变量COORD中获得。

磨损运动的方向

磨损速率h是网格约束矢量变量ULOCAL的分量。这个变量通过在局部坐标系ALOCAL中定义的默认网格光滑运动传递到用户子程序中,这个局部坐标系测量出当前节点在曲面的法向。3的方向根据在节点附近网格表面法向的平均值定义为外法向的方向。在绝大部分情况下,这个法向方向对于描述和这个方向相反的消融和节点衰减的磨损结果是足够的。然而,在胎面拐角的区域,这个平均的法向方向不能准确的描述磨损的方向。这种情况下的法向应该像Figure3.1.8–5所示,它计算如下:假设a是胎面拐角的节点。就有可能辨认出在胎面边上的节点b。在这种情况下,磨损的方向就是矢量ab。因为知道节点a和节点b的坐标,磨损方向就能通过整体坐标系计算得到,也就能转化为局部坐标系(ALOCAL)的方向。

结果和讨论

轮胎模型仿真分析持续进行3.6×106s或者1000小时,等价于在32km/h下行驶32000公里。下图表示的是轮胎磨损效果的轮廓结果。下面第二个图片表示的是新轮胎和磨损后轮胎接地印迹分布的情况。

3.1.2 Steady-staterolling analysis of a tire

3.1.2 轮胎稳态转动分析

产品:Abaqus/Standard

本例子在abaqus中使用*STEADYSTATE TRANSPORT来建立转动轮胎和刚性平面之间的稳定动态接触模型。稳态运动分析使用局部参考坐标系,在这个局部参考坐标系中使用欧拉方法来描述刚性体的旋转运动,用拉格朗方法描述变形。这个运动学描述将稳态的移动接触问题转化为一个纯粹的依赖于空间的仿真。因此,仅仅需要在接触的区域建立精确的网格——稳态运动通过网格传输材料。在*STEADY STATETRANSPORT分析中考虑的因素有:摩擦、惯性和累积效果。

本次分析的目的是获得在地面速度10.0km/h(2.7778m/s)时,相对于平面刚性面不用的侧偏角时轮胎175SR14自由转动的平衡解决方案。侧偏角是指轮胎前进方向和轮胎中心平面的夹角。在侧偏角为0°时,轮胎直线行驶。为了对比测试,我们也进行轮胎在直径在1.5m的刚性圆柱上旋转的分析。圆柱以3.7 rad/s的速度旋转,也就是圆柱表面的瞬时速度为10km/h(2.7778m/s)。另外一个工况是在轮胎自由转动的情况下检测由轮胎外倾角引起地外倾推力。本工况允许我们计算外倾推力刚度。

施加到轮胎中心轴的扭矩为0时的平衡状态被称为自由转动状态。轮胎中心轴的扭矩不为0是的平衡状态被称为驱动或者制动状态。制动状态:轮胎的角速度足够小以至于轮胎和路面之间的所有或者部分的接触点发生滑动,同时作用在轮胎上的总扭矩与轮胎自由转动的角速度方向相反。同样,驱动状态:轮胎的角速度足够大以至于轮胎和路面之间的所有或者部分接触点放生滑动,同时作用在轮胎上的总扭矩于轮胎自由状态的转动角速度方向一致。

对于同样的地面速度V0,轮胎的在自由转动、驱动和制动时的角速度是不同的。通常在自由转动状态下轮胎自由转动的角速度和地面速度组合不能预先知道。因为稳态传送分析能力既需要知道角速度W,也需要知道地面速度V0,自由转动状态必须通过间接地方式来建立。这种间接建立的方式将在下面举例说明。一种交互的方式使用子程序umotion控制轮胎角速度同时使用子程序URDFIL来监视求解的过程。URDFIL子程序根据在每个增量步结束时在轮胎边缘扭矩的数值来评估自由状态。这种方式将在下面的例子中讲述。

这种轮胎稳态转动有限元分析和实验结果,在1977年已经被Koishi等人发布了。

问题描述和模型定义

―Symmetric results transfer for astatic tire analysis,‖ Section3.1.1已经给出了一种描述轮胎的有限元方法。为了考虑动态分析中轮胎斜对成的影响,稳态转动分析需要建立完整的三维模型。当轮胎转动速度低于10km/h时忽略惯性的作用。

如前所述,在abaqus中*STEADY STATETRANSPORT的能使用混合欧拉和拉格朗的方法,在局部坐标系中检测材料流过静止网格的情况。材料点流过网格的路径被称为流线型,它必须在稳态传送分析之前被计算出来。正如在―Symmetric results transfer for astatic tire analysis,‖ Section3.1.1,中讨论的,在本例中稳态传送分析的流线型使用*SYMMETRIC MODEL GENERATION,REVOLVE选项来计算。也就是将二维轮胎截面沿着对称轴旋转得到三维网格,流线型也就跟着网格旋转生成。

本例中使用超弹性材料模拟的橡胶包括一个二维的粘弹性组件,通过*VISCOELASTIC,TIME=PRONY选项来激活。使用一个简单的一阶Prony级数。在abaqus中不可压缩材料

的一阶prony级数用简单的数松弛模量和松弛时间来定义。本例中松弛模量G=0.3和松弛

时间T=0.1。除非使用长期参数,*STEADY STATE TRANSPORT分析步包含粘弹性也就是

材料历史效果。在abaqus中建立时域粘弹性可查看更加详细的介绍―Timedomain viscoelasticity,‖ Section19.7.1 of the Abaqus Analysis User's Manual。

加载

正如在―Symmetric results transfer for astatic tire analysis,‖ Section3.1.1中讨论的,接地印迹分析使用摩擦系数为零(也就是没有摩擦力传送到接触面上)。即使轮胎在很低的速度下转动,转动的轮胎的摩擦压力和静止的摩擦压力差别是非常大的;因此在第一步的稳态传输分析和最后一步的静态分析之间可能会出现不连续。此外,在稳态传输分析的开始摩擦系数为0到结束时达到一个特定的值,用变化的摩擦系数来确保摩擦力随着更加小的载荷增量减小。在获得稳态转动分析方案中,在abaqus中设置更加小的载荷增量来达到收敛是很重要的。

一旦轮胎静态的接地印迹分析计算好,稳态转动接触问题就能使用*STEADY STATE TRANSPORT选项。本例中的第一个仿真分析是为了获得在不同角速度下全制动和全驱动直线行驶的稳态转动工况。我们同样计算自由转动直线行驶工况。在自由转动工况下将计算不同的侧偏角。在上述的两个工况中将在*STEADY STATETRANSPORT分析步中使用LONG TERM参数来忽略材料的历史效果。第三个分析将稳态转动分析的第一个直线行驶分析的部分内容;也就是忽略通过第一步中LONG TERM的参数来包括材料的历史效果。上述的三个分析都是保持车速在10km/h下进行仿真。第四个分析的目的是获得轮胎和直径为1.5m的刚性圆柱接触工况,圆柱以3.7rad/s转动。

在第一个仿真分析中(rollingtire_brake_trac.inp),全制动工况通过用*STEADY STATE TRANSPORT分析步来设置开始的摩擦系数到用使用*CHANGE FRICTION选项设置最后的

摩擦系数为1来实现,这样地面前进的速度和角速度合并将导致全制动。*TRANSPORT VELOCITY和*MOTION选项都是为了这个目的。下面将得到全制动下一致的评估的角速度。一个自由转动的轮胎一圈行驶的距离更多取决于它的中心高度,而更少依赖于它的自由半径。本例中轮胎自由半径是316.2mm,轮胎的垂向变形接近20mm,所以轮胎中心高度为

296.2mm使用轮胎自由半径和轮心高度可以估算出自由转动的角速度在8.78—9.38rad/s 之间。更小的角速度引起制动,同时更大的角速度将引起驱动。我们使用角速度等于8rad/s 来确保在第一次稳态传送分析步是全制动工况。(所有的接触点都发生滑动,所以接触面总的摩擦力等于uN)。

在用全模型进行第二次稳态传送分析中,当地面速度保持为一个恒定的数时,角速度逐渐增加到10rad/s。因为加载在结构上的瞬时载荷增量步状态都是稳定状态,所以这样能获得制动和驱动的一系列工况。本次分析为我们提供自由转动速度的初步估算。第二个仿真分析(rollingtire_trac_res.inp)围绕第一次自由转动条件执行精细的搜查分析。

在第三个仿真分析(rollingtire_slipangles.inp)中,计算不同侧偏角的自由转动工况。侧偏角是指轮胎前进方向和轮胎中心平面的夹角。在第一步的直线行驶分析中,第一次的仿真分析的自由转动工况带入到静平衡。接着进行*STEADY STATE TRANSPORT分析步,开始时侧偏角为0°,逐渐增大到最后的3°,这样就得到一系列不同的侧偏角工况。通过在

*MOTION,TRANSLATION选项中指定一个运动速度的矢量Vx=V0cos(ct)和Vy=V0sin(ct)来实现侧偏角的定义,本例中在第一风稳态传输分析ct=3°。

第四个仿真分析(rollingtire_materialhistory.inp)包含考虑材料历史影响的一系列制动和驱动的稳定工况。

第五个仿真分析(rollingtire_camber.inp)中,在自由转动条件下分析在轮胎接地点分析外倾角对侧向推力的影响。

在本例的最后一个仿真分析(rollingtire_drum.inp)中考虑轮胎和一个刚性圆柱接触。加载的顺序和第一个仿真分析的加载顺序一样。然而,这次分析的轮胎的移动速度为0,使用

*TRANSPORT VELOCITY选项设置刚性圆柱体的的参考点的旋转速度。因为一个指定的载荷添加到刚性圆柱的参考点上来建立于轮胎之间的接触,所以分析之前是不知道圆柱体的中心轴的。如果使用*TRANSPORT VELOCITY选项来定义角速度,abaqus将自动更新旋转轴当前的位置。刚性面的转动速度也能通过*MOTION, ROTATION选项来进行定义。在这中情况下,旋转轴必须在稳态配置中通过数据行来定义位置和方向,因此这些必须在分析前知道。旋转轴的位置和方向在分析步开始时就建立,并且在分析过程中保持不变。当圆柱的半径比轴向的位移大很多时,就像本例中的一样,在原始配置中定义轴对结果的精度不造成影响是合理的定义。

结果与讨论

Figure3.1.2-1和Figure3.1.2-2显示轮胎不同角速度是平行于地面的反作用力(被称作滚动阻力)和扭矩。两个图片进行了轮胎和刚性平面和刚性圆柱接触的对比。图片显示表明直线自由转动T=0,发生在转动角速度接近9rad/s。全制动发生在角速度小于8rad/s位置,全驱动动发生在角速度大于9.75rad/s位置。在这些角速度位置所有的接触点都发生滑移,滚动阻力达到极限值uN。

Figure3.1.2-3和figure3.1.2-4表示轮胎在刚性平面上转动情况下自由转动工况和全驱动工况下沿着轮胎面中心线的剪切应力。沿着轮胎中心线的距离用相对于通过轮胎轴线平行于地面的平面形成的夹角表示。短划线是能通过表面传输的极限剪切应力UP,p是接触压力。图示说明全驱动过程中所有的接触点都发生了滑移。在自由转动过程中,所有的接触点都没有发生滑移。

通过使用rollingtire_brake_trac.inp产生的结果,产生了一个更接近的自由转动角速度,精确搜索得到的角速度为9rad/s。rollingtire_trac_res.inp文件从前面的直线行驶转动分析的第三个分析步的第八个增量步进行重启分析(与角速度为8.938rad/s一致),得到更加精确的搜索解为9.04rad/s。figure3.1.2-5表示用精确搜索计算的轮胎轴的扭矩,一个更加的精确的轮胎自由转动工况的角速度值接近9.022rad/s。在不同侧偏角工况计算时需要用到这个结果。

Figure3.1.2-6表面在不同侧偏角下测量得到的轮胎侧向力。图片进行了稳态传输分析和使用纯粹拉格朗分析结果的对比。拉格朗求解方案通过使用absqus/explicit执行显式动力学分析(在―Import of a steady-state rollingtire,‖ Section 3.1.6中讨论)。运用这种分析技术,一个特定的运动速度被施加于在刚性平面上转动的轮胎上。因为需要获得多于一圈的稳态配置,整个圆周的网格需要划分的更好;因此,在本例中拉格朗方法比稳态方法代价更加昂贵。图示表明两种方法计算的结果表现很好的一致性。

Figure3.1.2-7用自由转动工况有无材料历史效果进行对比。在上图的实线代表滚动阻力;虚线代表扭矩轮胎轴扭矩。图片表明包含材料历史效果时自由转动发生在更加低角速度下。有关于材料历史的影响,更加详细的介绍请看―Steady-statespinning of a disk in contact with a foundation,‖Section 1.5.2 of the Abaqus Benchmarks Manual。

Figure3.1.2-8表示外倾推力关于外倾角的曲线。在外倾角和侧偏角为0时的侧向力被称为ply-steer,在轮胎中由于分离belt的相对距离引起的不对称产生侧向力。离散化接地印迹的原因是曲线有非光滑的性质,整体的外倾刚度为44N/degree是合理地接近预期的水平。

Figure3.1.2-9表示使用子程序UMOTION装载轮胎边缘的扭矩和转动速度,基于用户子程序

URDFIL预测自由转动的速度。当轮胎边缘的扭矩在误差范围内接近于0时,稳定住转动角速度后分析步完成。开始的时候,当自由转动的速度估计大于当前转动速度的指定的误差时,转动角速度的增量步设置得很小。Msg文件包含预测的自由转动速度和增量步等信息。因此自由转动的角速度为9.026rad/s。

ABAQUS帮助范例中文索引

帮助文档ABAQUS Example Problems Menual 1.静态应力/位移分析 1.1.静态与准静态应力分析 1.1.1.螺栓结合型管法兰连接的轴对称分析 1.1. 2.薄壁机械肘在平面弯曲与内部压力下的弹塑性失效 1.1.3.线弹性管线在平面弯曲下的参数研究 1.1.4.橡胶海绵在圆形凸模下的变形分析 1.1.5.混泥土板的失效 1.1.6.有接缝的石坡稳定性研究 1.1.7.锯齿状梁在循环载荷下的响应 1.1.8.静水力学流体单元:空气弹簧模型 1.1.9.管连接中的壳-固体子模型与壳-固体耦合的建立 1.1.10.无应力单元的再激活 1.1.11.黏弹性轴衬的动载响应 1.1.1 2.厚板的凹入响应 1.1.13.叠层复合板的损害和失效 1.1.14.汽车密封套分析 1.1.15.通风道接缝密封的压力渗透分析 1.1.16.震动缓冲器的橡胶/海绵成分的自接触分析 1.1.17.橡胶垫圈的橡胶/海绵成分的自接触分析 1.1.18.堆叠金属片装配中的子模型分析 1.1.19.螺纹连接的轴对称分析 1.1.20.周期热-机械载荷下的汽缸盖的直接循环分析 1.1.21.材料(沙产品)在油井中的侵蚀分析 1.1.2 2.压力容器盖的子模型应力分析 1.1.23.模拟游艇船体中复合涂覆层的应用 1.2.屈曲与失效分析 1.2.1.圆拱的完全弯曲分析 1.2.2. 层压复合壳中带圆孔圆柱形面的屈曲分析 1.2.3.点焊圆柱的屈曲分析 1.2.4. K型结构的弹塑性分析 1.2.5. 不稳定问题:压缩载荷下的加强板分析 1.2.6.缺陷敏感柱型壳的屈曲分析 1.3. 成形分析 1.3.1. 圆柱形坯料墩粗:利用网格对网格方案配置与自适应网格 的准静态分析 1.3. 2. 矩形方盒的超塑性成型 1.3.3. 球形凸模的薄板拉伸 1.3.4. 圆柱杯的深拉伸 1.3.5. 考虑摩擦热产生的圆柱形棒材的挤压成形分析 1.3.6. 厚板轧制成形分析 1.3.7. 圆柱杯的轴对称成形分析 1.3.8. 杯/槽成形分析 1.3.9. 正弦曲线形凹模锻造

abaqus帮助文档中轮胎的例子

外胎是由胎体、缓冲层(或称带束层)、胎面、胎侧和胎圈组成 1、Bead:胎唇部; 2、sidewall:胎侧; 3、tread:胎面;4belt:缓冲层;5、carcass:胎体帘布层。 3.1.8 Treadwear simulation using adaptive meshing in ABAQUS/Standard 3.1.8使用自适应网格在Abaqus/Standard中进行轮胎磨损仿真分析 软件:Abaqus/Standard 这个例子在Abaqus/Standard中使用自适应网格技术对稳态滚动的轮胎进行建模。这次分析使用类似“Steady-state rolling analysis of a tire”Section 3.1.2来建立稳态滚动轮胎的接地印迹和状态。接着,进行稳态传输分析来计算和推测持续分析步,在稳态过程中产生一个近似瞬态磨损解。 问题描述和建模 轮胎描述和有限元建模和“Import of asteady-state rolling tire,”Section 3.1.6一样,但是有一些不一样,在这里需要指出。由于这次分析的中心是轮胎磨损,所以胎面建模需要更加精细。另外台面使用线性弹性材料模型来避免超弹性材料在网格自适应过程中不收敛。 图1所示的是轴对称175SR14轮胎的一半模型。橡胶层用CGAX4和 CGAX3单元建模。加强层使用带有rebar层的SFMGAX1单元模拟。橡胶层和加强层之间潜入单元约束。橡胶层的弹性模量为6Mpa,泊松比为0.49。剩下的轮胎部分用超弹性材料模型模拟。多应变能使用系数C10=10^6,C01=0和D1=2*10^8。用来模拟骨架纤维的刚性层和径向成0°,弹性模量为9.87Gpa。压缩系数设置成受拉系数的百分之一。名义应力应变数据用马洛超弹性模型定义材料本构关系。Belt fibers材料的拉伸弹性模量为172.2Gpa。压缩系数设置成拉伸系数的的百分之一。Belt的纤维走向在轴向±20°内。 旋转前面的轴对称一半模型可得到局部三位模型,如图2所示。我们关注轮胎印迹区域的网格。将局部模型镜像后可得到完整的三维模型。 自适应网格在轮胎磨损计算中的局限性 在这个例子中使用自适应网格必须严格遵守以下条件: 1、圆柱网格不支持自适应网格并且在本例子也没有使用 2、由于梯度状态变量的变形错误严重,自适应网格使用超弹性材料时表现很差。因此胎面用弹性材料定义 3、在自适应网格的范围内不能用包含刚性层的嵌入网格。 4、自适应网格通过网格几何特征来决定自适应网格在自由面光滑的方向,网格几何的特征通常不容易和描述的磨损方向一致。因此,下面将讨论到,通常你需要做额外的工作来明确地描述磨损的方向。 加载

ABAQUS2016版安装步骤.pdf

64位Abaqus2016 Win7安装教程 (一颗星星亲测安装)(关闭防火墙)(关闭杀毒软件)Abaqus2016安装共分为三部分,即License、Solver、CAE,这三部分依次安装。安装文件夹下的内容如下图所示。1位License,2为Solver安装部分,3位CAE安装部分。安装前需要将IE浏览器升级至IE10或IE11,我升级至IE10。 1.License安装 1.在_SolidSQUAD_文件夹下,将所有的文件复制到您要安装的文件夹下,如我的安装文件夹为C:\Simulation Software\ABAQUS 2016\License。 2.复制完成后,打开ABAQUS.lin文件,以记事本格式,如下图,将this_host改为您的计算机名,切记其余的不要改动。

3.右键点击server_install.bat,以管理员身份打开。(只需打开以下即可)。 4.右键点击Imtools.exe,出现下图。 5. 点击Config Serverce,出现下图,选在第1步中复制后的文件,此处和Abaqus 以前的版本一致。 6.点击Start/Stop/Reread,再点击Start Server。

7.至此License安装完成。环境变量不需设置。 2. Solver安装 1. 首先安装3DEXPERIENCE_AbaqusSolver,打开此文件夹,以管理员身份运行Steup.exe。 2.点击下一步。 3.选择安装目录,并下一步。

4.点击下一步。 5.点击安装。 6.安装过程中

7.显示安装完成。 8. 安装CAA_3DEXPERIENCE_AbaqusSolver,打开此文件夹,以管理员身份运行Steup.exe。 9.

ABAQUS关键字(keywords)

ABAQUS帮助里关键字(keywords)翻译 (2013-03-06 10:42:48) 转载▼ 分类:abaqus 转自人人网 总规则 1、关键字必须以*号开头,且关键字前无空格 2、**为注释行,它可以出现在中的任何地方 3、当关键字后带有时,关键词后必须采用逗号隔开 4、参数间都采用逗号隔开 5、关键词可以采用简写的方式,只要程序能识别就可以了 6、不需使用隔行符,如果参数比较多,一行放不下,可以另起一行,只要在上一行的末尾加逗号便可以 ----------------------------------------------------------------------------------------------------------------------------------------- *AMPLITUDE:幅值 这个选项允许任意的载荷、和其它指定的数值在一个分析步中随时间的变化(或者在ABAQUS/Standard分析中随着的变化)。 必需的参数: NAME:幅值曲线的名字 可选参数: DEFINITION:设置definition=Tabular(默认)给出表格形式的幅值-时间(或幅值-频率)定义。设置DEFINITION=EQUALLY SPACED/PERIODIC/MODULATED/DECAY/SMOOTH STEP/SOLUTION DEPENDENT或BUBBLE来定义其他形式的幅值曲线。 INPUT:设置该参数等于替换输入文件名字。 TIME:设置TIME=STEP TIME(默认)则表示分析步时间或频率。TIME=TOTAL TIME表示总时间。 VALUE:设置VALUE=RELATIVE(默认),定义相对幅值。VALUE=ABSOLUTE表示绝对幅值,此时,行中载荷选项内的值将被省略,而且当温度是指定给已定义了温度TEMPERATURE=GRADIENTS(默认)梁上或壳上的,不能使用ABSOLUTE。 对于DEFINITION=TABULAR的可选参数: SMOOTH:设置该参数等于 DEFINITION=TABULAR的数据行 第一行 1、时间或频率 2、第一点的幅值(绝对或相对) 3、时间或频率 4、第二点的幅值(绝对或相对) 等等 基本形式: *Amplitude,name=Amp-1 0.,0.,0.2,1.5,0.4,2.,1.,1.

ABAQUS帮助文档

初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则:Maxs Damage 最大名义应力准则:Quads Damage 二次名义应变准则:Quade Damage 二次名义应力准则 最大主应力和最大主应变没有特定的联系,不同材料适用不同准则就像强度理论有最大应力理论和最大应变理论一样~ ABAQUS帮助文档10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method 看看里面有没有你想要的 Defining damage evolution based on energy dissipated during the damage process 根据损伤过程中消耗的能量定义损伤演变 You can specify the fracture energy per unit area,, to be dissipated during the damage process directly. 您可以指定每单位面积的断裂能量,在损坏过程中直接消散。Instantaneous failure will occur if is specified as 0. 瞬间失效将发生 However, this choice is not recommended and should be used with care because it causes a sudden drop in the stress at the material point that can lead to dynamic instabilities.

abaqus子结构帮助文档

OVERVIEW OF SUBSTRUCTURES IN Abaqus/CAE 39.Substructures This section explains how to integrate substructures into your analysis in Abaqus/CAE.The following topics are covered: ?“Overview of substructures in Abaqus/CAE,”Section39.1 ?“Generating a substructure,”Section39.2 ?“Specifying the retained nodal degrees of freedom and load cases for a substructure,”Section39.3?“Importing a substructure into Abaqus/CAE,”Section39.4 ?“Using substructure part instances in an assembly,”Section39.5 ?“Recovering?eld output for substructures,”Section39.7 ?“Visualizing substructure output,”Section39.8 39.1Overview of substructures in Abaqus/CAE Substructures are collections of elements that have been grouped together,so the internal degrees of freedom have been eliminated for the https://www.360docs.net/doc/1c8809439.html,ing a substructure make model de?nition easier and analysis faster when you analyze a model that contains identical pieces that appear multiple times(such as the teeth of a gear),because you can use a substructure repeatedly in a model.Substructures are connected to the rest of the model by the retained degrees of freedom at the retained nodes.Factors that determine how many and which nodes and degrees of freedom should be retained are discussed in “De?ning substructures,”Section10.1.2of the Abaqus Analysis User’s Manual.Substructure de?nition in your model follows two sets of steps: ?“Creating substructures in your model database,”Section39.1.1 ?“Including substructures in your analysis,”Section39.1.2 39.1.1Creating substructures in your model database You can create substructures in Abaqus/CAE by following these general steps: 1.Create or open the model database in which you want to specify substructures in Abaqus/CAE. 2.In the Step module,create a Substructure generation step.Abaqus/CAE converts the entire model into a single substructure.For more information,see“Generating a substructure,” Section39.2. 3.In the Load module,create Retained nodal dofs boundary conditions to determine which degrees of freedom will be retained as external degrees of freedom on the substructure.You can also de?ne a load case in the substructure generation step if you want to apply a load to the substructure at

abaqus帮助文档之地震相应计算分析

2.1.15 Seismic analysis of a concrete gravity dam Products: Abaqus/Standard Abaqus/Explicit In this example we consider an analysis of the Koyna dam, which was subjected to an earthquake of magnitude 6.5 on the Richter scale on December 11, 1967. The example illustrates a typical application of the concrete damaged plasticity material model for the assessment of the structural stability and damage of concrete structures subjected to arbitrary loading. This problem is chosen because it has been extensively analyzed by a number of investigators, including Chopra and Chakrabarti (1973), Bhattacharjee and Léger (1993), Ghrib and Tinawi (1995), Cervera et al. (1996), and Lee and Fenves (1998). Problem description The geometry of a typical non-overflow monolith of the Koyna dam is illustrated in Figure 2.1.15–1. The monolith is 103 m high and 71 m wide at its base. The upstream wall of the monolith is assumed to be straight and vertical, which is slightly different from the real configuration. The depth of the reservoir at the time of the earthquake is = 91.75 m. Following the work of other investigators, we consider a two-dimensional analysis of the non-overflow monolith assuming plane stress conditions. The finite element mesh used for the analysis is shown in Figure 2.1.15–2. It consists of 760 first-order, reduced-integration, plane stress elements (CPS4R). Nodal definitions are referred to a global rectangular coordinate system centered at the lower left corner of the dam, with the vertical y-axis pointing in the upward direction and the horizontal x-axis pointing in the downstream direction. The transverse and vertical components of the ground accelerations recorded during the Koyna earthquake are shown in Figure 2.1.15–3 (units of g = 9.81 m sec–2). Prior to the earthquake excitation, the dam is subjected to gravity loading due to its self-weight and to the hydrostatic pressure of the reservoir on the upstream wall. For the purpose of this example we neglect the dam–foundation interactions by assuming that the foundation is rigid. The dam–reservoir dynamic interactions resulting from the transverse component of ground motion can be modeled in a simple form using the Westergaard added mass technique. According to Westergaard (1933), the hydrodynamic pressures that the water exerts on the dam during an earthquake are the same as if a certain body of water moves back and forth with the dam while the remainder of the reservoir is left inactive. The added mass per unit area of the upstream wall is given in approximate form by the expression , with , where = 1000 kg/m3 is the density of water. In the Abaqus/Standard analysis the added mass approach is implemented using a simple 2-node user element that has been coded in user subroutine UEL. In the Abaqus/Explicit analysis the dynamic interactions between the dam and the reservoir are ignored. The hydrodynamic pressures resulting from the vertical component of ground motion are assumed to be small and are neglected in all the simulations. Material properties

ABAQUS帮助-用户分析手册目录---在帮助文件中查找相关信息

ABAQUS Analysis User’s Manual 目录 第1章介绍 1.1 介绍 1.1.1 介绍:概要 1.2 ABAQUS构造和约定 1.2.1 Input构造规则 1.2.2 约定 1.3 定义一个ABAQUS模型 1.3.1 在ABAQUS中定义一个模型 1.4 参数模型 1.4.1 参数输入 第2章空间模型 2.1 定义节点 2.1.1 节点定义 2.1.2 外形参数变量 2.1.3 节点厚度 2.1.4 节点的法线定义 2.1.5 坐标系统的转换 2.2 定义单元 2.2.1 单元定义 2.2.2 单元建立 2.2.3 定义加筋 2.2.4 定义钢筋作为一个单元属性 2.2.5 方向 2.3 定义表面 2.3.1 表面:概述 2.3.2 定义基于单元的表面 2.3.3 定义基于节点的表面 2.3.4 定义解析刚体表面 2.3.5 对表面进行操作 2.4 定义刚体 2.4.1 刚体定义

2.5 定义积分输出项 2.5.1 积分输出项的定义 2.6 定义不做结构材料的质量 2.6.1 不做结构材料的质量定义 2.7 定义分布 2.7.1 分布的定义 2.8 定义显示体 2.8.1 显示体的定义 2.9 定义一个装配 2.9.1 定义一个装配 2.10 定义矩阵 2.10.1 定义矩阵 第3章执行程序 3.1 执行程序:概述 3.1.1 执行ABAQUS程序:概述 3.2 执行程序 3.2.1 用于获得信息的执行程序 3.2.2 用于ABAQUS/Standard和ABAQUS/Explicit的执行程序 3.2.3 用于ABAQUS/CAE的执行程序 3.2.4 用于ABAQUS/Viewer的执行程序 3.2.5 用于Python的执行程序 3.2.6 用于参数研究的执行程序 3.2.7 用于ABAQUS HTML文件的执行程序 3.2.8 用于许可证有效性的执行程序 3.2.9 用于结果文件(.fil)的ASCII转化的执行程序 3.2.10 用于连接结果文件(.fil)的执行程序 3.2.11 用于查询关键词/问题数据库的执行程序 3.2.12 用于获取例子input文件的执行程序 3.2.13 用于用户自定义执行和子程序的执行程序 3.2.14 用于input文件和输出数据库升级效用的执行程序 3.2.15 用于生成输出数据报告的执行程序 3.2.16 用于重启动分析连接输出数据库(.odb)的执行程序 3.2.17 用于结合子结构输出的执行程序 3.2.18 用于网络输出数据库文件连接器的执行程序 3.2.20 用于将NASTRAN大批数据文件转化为ABAQUS中input文件的执行程序 3.2.21 用于将PAM-CRASH输入文件转化为部分ABAQUS中input文件的执行程序 3.2.22 用于将ABAQUS输出数据库文件转为NASTRAN Output2结果文件的执行程序 3.2.23 用于和ZAERO交换ABAQUS数据的执行程序 3.2.24 加密和解密ABAQUS输入数据的执行程序 3.2.25 用于job执行控制的执行程序 3.3 环境文件设置

abaqus6.13学习手册

abaqus6.13-4+vs2012+IntelFortran2013 SP1 (abaqus6.13-4中Fortran编译器的配置) 目前Abaqus的最新版本已经是 6.13-4,Intel Fortran编译器的最新版本也已经到了IntelParallel Studio XE 2013 SP1 Fortran Compiler, visual studio的版本也有2012了。 想要在Abaqus里用子程序,必须安装Intel Visual Fortran,而安装Intel Visual Fortran前需要安装Microsoft Visual Studio,做好相关设置后通过Abaqus Verification测试子程序以及其他Abaqus功能是否能正常使用。 一、ABAQUS 与Intel Fortran及Visual Studio的兼容性介绍: 大家知道ABAUQS如果需要用User Subroutine必须有Intel Fortran,而Intel Fortran又必须在Visual Studio的环境下运行。三者之间存在的两两兼容问题,必须引起注意。 目前用的比较多的配搭: Abaqus 6.9+VS2005+Intel Fortran 9.1/10.0/10.1 Abaqus 6.10/6.11/6.12+VS2008+Intel Fortran 10.1 Abaqus 6.13-4+VS2012+Intel Fortran XE2013 SP1(我所使用的)

二、ABAQUS 、Intel Fortran、Visual Studio的安装顺序及安装方法: (1)、安装顺序: step1、安装visual studio(VS)(必须在Intel Fortran XE2013安装之前): 一般而言安装VS没有任何难度,需要注意的一点是对于64位系统需要安装64位支持,而在有些版本中该模块是默认安装中没有选中的。为了避免漏装可以在安装时选择完全安装(complete)。此外,为了避免因为非英文版VS产生的各种不可预料的整合问题,建议使用英文版VS。 step 2、安装intel visual fortran (IVF)。 为了实现IVF和VS的整合(integration to visual studio),step 2需要在step 1之后进行。一般情况下,IVF会在安装时自动检测支持的VS版本并进行整合;对于64位系统同样需要安装64位系统支持,推荐完全安装(For Advanced User)。在VS的help中查看”about Microsoft Visual Studio”,整合成功的话可以在已安装组件列表中找到”Intel(R) Fortran Compiler Integration ” step 3、安装ABAQUS。 step3 相对前两步相对独立,甚至可以先于1、2进行。 (2)、安装方法及下载地址: 1、Abaqus6.13-4: 百度网盘:https://www.360docs.net/doc/1c8809439.html,/s/1hq7PjlM 这是个种子,里面包含window,linux,版本,和帮助文件。

Abaqus帮助文档整理汇总(20200501064837)

Abaqus 使用日记 Abaqus标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。 建模方法: 一个模型(model)通常由一个或几个部件(part)组成,“部件”又由一个或几个特征体(feature)组成,每一个部分至少有一个基 本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴,数据平面,装配体的装配约束、装配体的实例等等。 1.首先建立“部件” (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图 区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主 要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同 名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本 特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。

(3)编辑部件可以用部件管理器进行部件复制,重命名,删除等, 部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。××××特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除××××× 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域 就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在 创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对 称轴。 (2)刚体是不能够施加质量、惯性轴等特性的,建立刚体后必须给 刚体指定一个参考点(reference point)。在加载模块里对参考点施加约束和定义其运动,对参考点施加的荷载或运动就相当于施加给了

abaqus帮助文档_friction

Specifying frictional behavior for mechanical contact property options You can specify a friction model that defines the force resisting the relative tangential motion of the surfaces in a mechanical contact analysis. For more information, see ?Frictional behavior,?Section 35.1.5 of the Abaqus Analysis User's Manual. To specify frictional behavior: 1. From the main menu bar, select Interaction Property Create. 2. In the Create Interaction Property dialog box that appears, do the following: ?Name the interaction property. For more information about naming objects, see ?Using basic dialog box components,?Section 3.2.1. ?Select the Contact type of interaction property. 3. Click Continue to close the Create Interaction Property dialog box. 4. From the menu bar in the contact property editor, select Mechanical Tangential Behavior. 5. In the editor that appears, click the arrow to the right of the Friction formulation field, and select how you want to define friction between the contact surfaces: ?Select Frictionless if you want Abaqus to assume that surfaces in contact slide freely without friction. ?Select Penalty to use a stiffness (penalty) method that permits some relative motion of the surfaces (an “elastic slip”) when they should be sticking. While the surfaces are sticking (i.e., ), the magnitude of sliding is limited to this elastic slip. Abaqus will continually adjust the magnitude of the penalty constraint to enforce this condition. For more information, see ?Stiffness method for imposing frictional constraints in Abaqus/Standard” in “Frictional behavior,?Section 35.1.5 of the Abaqus Analysis User's Manual, and ?Stiffness method for imposing frictional constraints in Abaqus/Explicit” in “Frictional behavior,?Section 35.1.5 of the Abaqus Analysis User's Manual. ?Select Static-Kinetic Exponential Decay to specify static and kinetic friction coefficients directly. In this model it is assumed that the friction coefficient decays exponentially from the static value to the kinetic value. Alternatively, you can enter test data to fit the exponential model. (This Friction formulation option also allows you to specify elastic slip.) For more information, see ?Specifying static and kinetic friction coefficients” in “Frictional behavior,?Section 35.1.5 of the Abaqus Analysis User's Manual.

学会使用ABAQUS文档

ABAQUS文档,其实是一个很方便的工具,学会使用它,往往能有事半功倍的效果。我看到一个帖子,关于*SOLID SECTION下面的那个数据行的问题。 考虑到可能还有其他一些网友,对ABAQUS帮助文档不是很熟悉,所以就另写个帖子在此。ABAQUS的在线帮助文档不但能搜索,还有链接转跳功能,看到什么地方,点一下,就链接过去了,所以很方便。 / j: r8 ^# S. P: x1 w以上述问题为例,你不知道*SOLID SECTION下面的那个数据行是怎么回事,你就先在关键字中找“*SOLID SECTION”,关于它的数据行有: Data line to definehomogeneous solid elements, infinite elements, acoustic elements, or truss elements: First (and only) line: 1. Enter any attribute values required. The default for the firstattribute is 1.0. See the description in Pa rt VI, “Elements,” of the ABAQUSAnalysis User’s Manual of the element type being used for a definition of thedata required. Data lines to define acomposite solid:$ O5 F! \5 H$ | First line: 1. Layer thickness. The layer thickness will be adjusted such that the sumof the layer thicknesses corresponds to the element length in the stackdirection. 2. Number of integration points to be used through the layer. This number mustbe an odd number. The default is one integration point. 3. Name of the material forming this layer. 4. Name of the orientation to be used with this layer or the orientationangle, , (in degrees), where measured positive counterclockwise relative to thelocal direction,which must be defined on the *ORIENTA TION definition. Repeat this dataline as often as necessary to define the properties for each layer of thecomposite solid.

abaqus帮助文档_step

Configuring a dynamic, explicit procedure An explicit, dynamic analysis is computationally efficient for the analysis of large models with relatively short dynamic response times and for the analysis of extremely discontinuous events or processes. This type of analysis allows for the definition of very general contact conditions and uses a consistent, large-deformation theory. For more information, see ?Explicit dynamic analysis,?Section 6.3.3 of the Abaqus Analysis User's Manual. To create or edit a dynamic, explicit procedure: 1. Display the Edit Step dialog box following the procedure outlined in ?Creating a step,?Section 14.9.2 (Procedure type:General; Dynamic, Explicit), or ?Editing a step,?Section 14.9.3. 2. On the Basic, Incrementation, Mass scaling, and Other tabbed pages, configure settings such as the time period for the step, the maximum time increment, the increment size, mass scaling definitions, and bulk viscosity parameters as described in the following procedures. To configure settings on the Basic tabbed page: 1. In the Edit Step dialog box, display the Basic tabbed page. 2. In the Description field, enter a short description of the analysis step. Abaqus stores the text that you enter in the output database, and the text is displayed in the state block by the Visualization module. 3. In the Time period field, enter the time period of the step. 4. Select an Nlgeom option: ?Toggle Nlgeom Off to perform a geometrically linear analysis during the current step. ?Toggle Nlgeom On to indicate that Abaqus/Explicit should account for geometric nonlinearity during the step. Once you have toggled Nlgeom on, it will be active during all subsequent steps in the analysis. 5. Toggle on Include adiabatic heating effects if you are performing an adiabatic stress analysis. This option is relevant only for metal plasticity. For more information, see ?Adiabatic analysis,?Section 6.5.5 of the Abaqus Analysis User's Manual.

相关主题
相关文档
最新文档