自密实高性能混凝土技术性能研究

自密实高性能混凝土技术性能研究
自密实高性能混凝土技术性能研究

·39·

随着建筑技术的不断改进,原有的“肥梁胖柱”现象已逐渐消失,取而代之的是结构灵巧、造型奇特的新型结构。由于新型结构混凝土强度等级的不断提高,内部配筋状况也发生了变化,较密集的配筋布置已成为现实。在这种情况下,如果再用普通混凝土已不能满足施工要求,而自密实高性能混凝土却能解决这些难题。它可以通过自流动而充实薄壁混凝土结构和钢筋密集的结构部位,可以不经振捣即可密实,这样既解决了混凝土的振捣困难,又消除了施工噪音,因此,这类混凝土极具现实意义,具有广阔的发展前景。

1 试验目标

对于自密实高性能混凝土,拌合物的工作性能是研究的重点。分别从流动性、抗离析性、间隙通过性、填充性四个方面考虑。要解决好流动性与抗离析性、间隙通过性与填充性之间的矛盾,混凝土高工作性与硬化后力学和耐久性的矛盾。

具体目标:

(1)研制一种高工作性能的易于泵送施工、不用振捣而自行密实的混凝土。

(2)混凝土的高工作性能能保持较长时间,以满足远距离运输后的施工需要。

(3)混凝土硬化后具有理想的力学性能和耐久性。

(4)采用较常规的原材料和生产工艺,并经济合理,便于推广应用。

2 材料选择

(1)水泥:鹿泉长城矿渣32.5,3d 强度19.1MPa,28d 强

度36.4MPa ;

(2)集料:正定中砂,细度模数2.6,含泥量1.2%;

鹿泉碎石5~10mm,10~20mm,含泥量<0.5%,针片状含量<7.6%;

(3)掺合料:西柏坡电厂粉煤灰,其技术指标见表1。

表1 粉煤灰技术指标

种类级别活性指数(%)胶砂流动度比

7d 28d 粉煤灰

Ⅰ级

89.0

109.0

110

自密实高性能混凝土技术性能研究

刘福战

(河北大地建设科技有限公司)

[摘要]本文采用正交试验的设计方法从水胶比、砂率、掺合料掺量、碎石比例等几个方面进行了研究,得出了自密实高性能混凝土配合比设计的参数。进而通过优化配合比,又得出了混凝土的工作参数。同时从抗渗性、抗冻性、碳化、收缩等四个方面对自密实高性能混凝土的耐久性进行了研究。[关键词]自密实混凝土;高性能;配合比;耐久性;抗渗性;抗冻性;碳化

(4)外加剂:采用大新外加剂厂生产的RCMG-5高效泵送剂,建议掺量2.0%~3.5%。为了确定合理掺量,通过改变掺量进行试配,试验结果见表2。

表2 外加剂技术指标

外加剂掺量(%)坍落度(mm)扩展度(mm)7d 强度

(MPa)28d 强度(MPa)56d 强度(MPa)初始90min 2.525559056033.643.247.23.027*********.844.548.03.5

270

650

590

30.9

41.3

46.8

从试验结果看出:改变外加剂掺量对混凝土抗压强度没有显著影响,但能有效改变混凝土拌合物的保塑性能,当掺量在3.0%时,混凝土坍落度、扩展度在90min 内基本保持不变,故外加剂掺量为3.0%效果最佳。

3 混凝土配合比设计

3.1 正交试验

选用L9(34)正交表。其因素与水平的安排见表3;L9(34)正交表见表4;试验结果见表5;L9 (34) 正交设计计算表见表6。

表3 正交设计

因素水平

123A :水灰比0.370.400.43B :砂率%424548C :矿渣粉掺量%253035D :碎石比例

3:7

4:6

5:5

通过L9(34)正交计算表可知各因素对混凝土拌合物性

能及力学性能的影响顺序为:

(1)坍落度为A >B >C >D (主次),最优配合比A1B2C2D1(或A2B2C2D3)。

(2)扩展度为A >C >D >B (主次),最优配合比A1C2D3B3。

(3)中边差为B>D>A>C(主次),最优配合比B1D1A1C1(或B2D1A1C1)。

(4)7d强度为A>B>C>D(主次),最优配合比A1B1C2D2。

(5)28d强度为A>B>D>C(主次),最优配合比A1B2D1C2。

(6)56d强度为A>C>B>D(主次),最优配合比A1C2B1D1。

由上述影响顺序及最优配合比可以作出综合评价:

(1)水灰比和砂率对自密实高性能混凝土的坍落度,28d 强度影响较显著,而超细矿渣粉对于后期强度有一定幅度的提高,而且其长期强度的发展程度仍较大。

(2)水灰比、矿渣粉掺量及碎石比例对混凝土拌合物的扩展度影响较显著,砂率的变化对其影响甚微。

(3)砂率和碎石比例的变化对中边差有显著影响。

(4水灰比最好控制在0.40以下,砂率在40%~50%,超细矿渣粉掺量在30%左右,碎石比例3:7较好。

3.2 优化配比

通过正交试验分析,得出自密实高性能混凝土的配合比方案。为了进一步研究其各项性能指标,在上述试验的基础上,又进行了特定配合比研究。主要考虑拌合物的坍落度(包括90min后)、扩展度(包括90min后)、扩展速度、匀质性和抗压强度等几个方面。其中扩展速度采用L-800型自密实混凝土流变性能测定仪测定,以流过400mm处所经时间t400(s)为准,匀质性采用混凝土抗离析仪测定,以圆筒法测定1h后拌合物粗骨料分布情况为准。经过大量试验,其测试结果见表7(自密实混凝土优化配比及实测结果)。

分析数据可知:当混凝土拌合物的工作性能控制在坍落度≥240mm,扩展度≥550mm,扩展速度≤20s,中边差≤25mm,用抗离析仪测定的粗骨料之差控制在±10%时,其流动性、抗离析性和间隙通过性能都已很好,且振捣前后抗压

表6 正交设计计算表

试验序号A B C D试验序号A B C D 1111111111 2122221222 3133331333 4212342123 5223152231 6231262312 7313273132 8321383213 9332193321

坍落度(mm)1815805800810

7d

180.679.573.874.6 2815815815800276.878.076.776.5 3790800805810368.668.575.574.9 R25151510R12.011.0 2.9 1.9

扩展度(mm)11875183018101815

28d

1113.797.599.3100.1 217851830185018352100.4104.099.697.5 31840184018401850382.294.897.498.7 R90104035R31.59.2 2.2 2.6

中边差(mm)175857575

56d

1119.7112.5106.8111.9 2908585952111.5107.2113.4107.0 31009510595396.1107.6107.1108.4 R25103020R23.6 5.3 6.6 4.9表4 正交试验

试验序号

因素水平

水泥砂子石子水矿渣粉外加剂A B C D

1111140571198320013516.2 2122237876293220016216.2 3133335181388020018916.2 42123350729100620015015.0 5223132578095520017515.0 6231237583390220012515.0 73132302744102720016314.0 8321334979797420011614.0 9332132585092120014014.0

表5 正交设计试验结果

试验序号A B C D

拌合物性能抗压强度(MPa)

坍落度

(mm)

扩展度

(mm)

中边差

(mm)

7d28d56d

111112706101527.538.141.2 212222756302528.639.540.0 313332706353524.536.138.5 421232756053027.333.339.5 522312755903026.335.236.8 623122655903023.231.935.2 731322606154024.726.131.8 832132656103023.129.330.4 933212656153020.826.833.9

·40·

表7 自密实混凝土优化配比及实测结果

W/C 砂率

(%)

掺量

(%)

比例

坍落度(mm)扩展度(mm)中边差

(mm)

扩展速度

(s)

抗压强度(MPa)匀质性0min90min0min90min免振28d振捣28d上中下

0.3341333:7270260625610181653.251.81 1.04 1.01 0.3344353:7275270630625162055.452.910.98 1.03 0.3546333:7275265635605201347.647.81 1.02 1.04 0.3746303:7265255600580141545.344.610.96 1.05 0.3848323:7270255615605211641.542.71 1.01 1.05

强度基本一致。这说明优化的配合比其自密实性能已达到最佳

状态,不需要再机械振捣。

4 耐久性研究

自密实高性能混凝土在配制过程中掺入了较多的活性掺合

料,同时流动性较大,硬化后对混凝土的耐久性是否有影响,

值得研究。现从混凝土抗渗性、抗冻性、碳化、收缩四个方面

加以考虑。

4.1 混凝土抗渗性

混凝土的抗渗性是耐久性的首道防线,抗渗性好,反映了

结构致密,混凝土的密实性是决定抗冻性、抗侵蚀性的主要因

素,可以说混凝土结构致密是优良耐久性的保证。

采用不振捣方法制作的抗渗试件,标养28d后进行抗渗

试验,水压从0.1MPa开始,隔8h增压0.1MPa,逐级加至2.0MPa,

加压结束,劈开试件测试渗水高度,其结果见表8。从表中可

以看出自密实高性能混凝土具有较好的抗渗性能。

表8 抗渗试件

试件编号 2.0MPa水压时渗水高度(mm)

126

218

332

439

525

631

4.2 混凝土抗冻性

采用不振捣方法制作的抗冻试件,标养28d后进行冻融

试验,饱水试件放在-20℃冰箱内冻4h,然后放入20℃水中

融化4h,作为一次冻融循环。连续做50次,其试验结果见表9。

表9 抗冻试件

循环次数

抗压强度(MPa)强度损失

(%)

重量(kg)重量损失

(%)

冻融后相当龄期冻融前冻融后

50

43.244.53 2.572 2.5500.9

43.545.34 2.394 2.368 1.1

41.544.26 2.640 2.6190.8

从表中可以看出,自密实高性能混凝土的强度损失和重量

损失均明显低于规定要求的25%和5%,说明它具有良好的抗冻性。

4.3 混凝土的碳化

由于掺入了较多的超细矿渣粉,因此需对混凝土的抗碳化能力加以研究。碳化试验试件成型采用不振捣成型方法,尺寸为100mm×100mm×300mm,碳化箱内二氧化碳浓度20±3%,湿度70±5%,温度20±5℃。试件标养28d后放入碳化箱进行碳化试验,其结果如表10。

表10 碳化深度

编号

碳化龄期(d)

371428 1(W/C=0.33)0 1.0 1.5 2.8

2(W/C=0.33)00.8 1.6 2.5

3(W/C=0.35)0 1.2 1.8 3.2

从试验结果看,自密实高性能混凝土具有较好的抗碳化性能。

4.4 混凝土的收缩

采用不振捣成型方法制作试件,其尺寸为100mm× 100mm×515mm,试件带模养护2d(掺有矿渣粉,有缓凝作用),拆模后立即粘好测头,放至标养室养护,试件在3d 龄期时从标养室取出移到恒温恒湿室(温度20±2℃,湿度60±5%),测定其初始长度,以后按下列规定时间间隔测量其变形,其变形读数见表11。

表11 自密实高性能混凝土的收缩性能

编号

收缩值(1×10-6m)

1d3d7d28d56d90d 1(W/C=0.33)20627296118129 2(W/C=0.33)17657091116124

3(W/C=0.35)1758668493102

从收缩试验结果看:自密实高性能混凝土由于矿渣粉和外加剂的双重作用,其收缩较小,且随着龄期的增长,收缩逐渐趋于稳定。

5 结论

(1)所制自密实高性能混凝土配合比需满足以下条件:①水灰比≤0.40;②砂率控制在40%~50%;③超细矿渣粉掺量30%左右;④碎石比例3:7。

(下转第51页)

·41·

关商品混凝土的专著却太少。盼望专家中有人能以“讲奉献”的精神,多编著一些有关商品混凝土方面的书,供他们在岗学习,并有领导、有计划的、分地区举办试验室主任培训班,这对我国商品混凝土产业健康发展,是一项有重要意义的工作。

以上是个人十余年来在有关商品混凝土行业中服务,所遇到的一些感受和困惑,十分粗浅,提出来供同行专家们批评指教,希望起到抛砖引玉的作用。

参考文献

吴中伟,廉慧珍.高性能混凝土[M]. 北京:中国铁道出[1]

版社,1999.

张承志.商品混凝土[M]. 北京:化学工业出版社,2010. [2]

王永逵.做好搅拌楼调控,是确保商品混凝土出厂前质[3]

量的最后一道工序[J].商品混凝土,2010,(7);33-35.

王永逵.认清商品混凝土特性,加强与施工单位的沟通,[4]

是确保工程质量的关键[J].商品混凝土,2010,(3):13-14.

刘良季.中国商品混凝土二十年[A].中围商品混凝土可持[5]

续发展论坛[C].2007,10.

[作者简介]王健(1959-),兰州交通大学工民建专业毕业,主要从事建筑工程和商砼技术工作,现为都江堰亚东商砼公司副总,总工。

[单位地址]四川省绵阳市涪城区石塘路20号3栋2单元5楼9号 (621000)

(2)自密实高性能混凝土工作性能指标必须满足:①坍落度≥240mm;②扩展度≥550mm;③扩展速度≤20s;④中边差≤25mm;⑤粗骨料之差控制在±10%以内。

(3)自密实高性能混凝土具备良好的力学性能和硬化后的耐久性能。

参考文献

戎君明,郭延辉,黄小平.高抛免振捣自密实混凝土[J].[1]

施工技术,1999.5

宋学锋等.粘塑剂对免振捣自密实混凝土性能的影响[J].[2]

混凝土,2002.11:39-41

李茂生,周庆刚.高性能自密实混凝土在工程中的应用[3]

[J].建筑技术,2001.32(1)

吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出[4]

版社,1999.9

重庆建筑工程学院等编著.混凝土学[M].北京:中国建[5]

筑工业出版社,1983

覃维祖.混凝土耐久性研究的现状及发展方向[J].建筑[6]

技术,2001,1

GBJ82-85.普通混凝土长期性能和耐久性能试验方法[S] [7]

[作者简介]刘福战(1976-),男,高级工程师,大学本科。[单位地址]石家庄天山大街266号方大科技园8#楼(050021)

由中国建筑工程总公司天津和黄地铁广场项目经理部承揽的位于天津市南京路与营口道交口的和记黄埔地铁广场工程,占地面积19600平方米,总建筑面积270000平方米。地下四层为核心筒结构,混凝土浇注方量3000m3,设计钢筋量大且密集,按常规混凝土施工难度很大,整体混凝土浇注、振捣困难,不易填充,很容易出现“脱空”现象。本文针对该工程结构特殊需要,经过试配研究,采用双掺粉煤灰、矿粉并加入聚羧酸高效减水剂的C80自密实混凝土配合比,既要保证混凝土的泵送、施工性能又要保证工程设计强度和耐久性要求。出站扩展度655mm,到场扩展度640mm,流动性、抗离析性、粘聚性良好,浇注后经及时养护,观测结构外观均未发现蜂窝、麻面、裂纹等现象,现场预留混凝土试件共30组,28d抗压强度最高值96 MPa,最低值88 MPa,平均值为93MPa,混凝土的工作性及强度均满足设计要求。核心筒实体结构效果见图5。

3 结论

(1)不掺硅灰的自密实混凝土在流动性、经时损失、填充性方面要优于掺硅灰的自密实混凝土,但掺硅灰的自密实混凝土在粘聚性、稳定性方面则更优。

(2)不掺硅灰的自密实混凝土在早期强度方面虽不及掺硅灰的自密实混凝土,但后期强度与掺硅灰的自密实混凝土基本相当。

(3)掺硅灰、单掺粉煤灰和双掺粉煤灰、矿粉的混凝土工作性和强度均满足C80自密实混凝土要求,而双掺粉煤灰和矿粉的自密实混凝土成本最低,所以其综合性价比最高。

(4)实际工程应用,证明了双掺粉煤灰和矿粉的自密实混凝土在降低工程造价、提高混凝土性能方面的现实意义。

参考文献

CECS203:2006.自密实混凝土应用技术规程[S].

[1]

JGJ/T 10-95.混凝土泵送施工技术规程[S].

[2]

JGJ55-2000.普通混凝土配合比设计规程[S].

[3]

[作者简介]邢文(1982-),男,本科,北京市第二建筑工程有限责任公司混凝土分公司工程师。

[单位地址]北京市丰台区小屯路53号(100141)

(上接第41页)

图5 核心筒实体结构照片

(上接第43页)

·51·

自密实混凝土的配合比特征与硬化后的性能优缺点-朋-批注

自密实混凝土的配合比特征与硬化后的性能优缺点 摘要:首先论述了自密实混凝土的配制原理,然后讲述了自密实混凝土的配合比设计原则与其特征,最后论述了自密实混凝土硬化后的性能优缺点。 关键词:自密实混凝土;配合比;硬化。 0 引言 20世纪80年代初,混凝土结构的耐久性问题在日本引起了广泛的关注。为了减少混凝土施工质量下降的问题,而衍生了自密实混凝土,这一概念首先是Okamura在1986年提出的。自密实混凝土(Self—Compacting Concrete,简称SCC)是高性能混凝(Higll Performance Concrete,简称HPC)的一种,是指具有不离析、不泌水,能够不经振捣或少振捣而自动流平,并能够通过钢筋间隙充满模板的混凝土,即无需振捣,仅依靠自重作用就能仿混凝土密实填充模板的各个角落【1】。其与相同强度等级的普通混凝土相比,具有较大的浆骨比、砂率较大、细掺料总量大的特点,有很高的施工性能[1]。但至今为止,国内在自密实混凝土的配制技术上,仍未形成一种统一的配合比方法,因为对其配合比特征是很有意义的。混凝土硬化后,在力学性能和耐久性方面与普通混凝土相比具有很大优势。 1 国内外应用研究现状 自密实混凝土自80年代后半期由日本东京大学的岗村甫提出来

而问世以来,它的应用越来越广泛,其研究也越来越受到重视。此后,北京建工集团二公司开始研制并试用。中南大学等单位于2005年5月26~28日在湖南长沙主办了我国第一次自密实混凝土技术方面 的国际研讨会(1st International Symposium Design,Performance and Use of Self-Consolidating Concrete,SCC,2005—China)。特别是近几年,国内免振捣自密实混凝土的研究有了很大起色,到目前为止,已经将自密实混凝土应用于各类工业与民用建筑、道路、桥梁、隧道及水下工程【3】。但是由于各地原材料和施工条件的差别,具体实施时不能照搬国内外同行的技术经验。为保证自密实混凝土具有良好的工作性,且完全符合自密实混凝土的工作性要求,可通过采用优化配合比的方式来改善其工作性能,以达到自密实性。所以,对自密实混凝土的配合比特征与硬化后的性能优研究是很有必要的。 2 自密实混凝土的制备原理 与普通混凝土相比,自密实混凝土的关键是在新拌阶段能够依靠自重作用充模、密实, 而不需额外的人工振捣, 也就是所谓的“自密实性 (self- compactability)”,它 包括流动性或填充性、间

自密实混凝土施工工法

自密实混凝土施工方法中国***建设第十工程总队

自密实混凝土施工方法 一、准备工作 1、检查模板支立的位置是否准确、牢固、立面有无倾斜,接头处有无错缝、错台、缝宽过大、脱模剂是否涂刷等,发现不合要求者应立即纠正。并将接头处的接缝、拉杆、传力杆洞眼、模板与基层间缝隙等用油毡堵(铺)严实,以防漏浆。 2、模板的加工制作,支设等应符合现行的军用规范的规定。 3、检查基层的平整与密实情况,高刨低不补,并对过于松散部位应采取措施予以密实。清理仓内杂物并洒水湿润。 4、检查、调试所配施工工具、机具、动力设备、线路,以及防风雨器材等的数质量情况,以保障作业需要。 二、混合料摊铺 1、混凝土板厚在400mm以内者,均可采取一次铺筑。 2、卸料后,通过混合料的自流、辅以人工推动及振捣棒拖振,即可实现初步平整。拖振宜从板边开始,间隔1m左右顺铺筑方向逐次进行,以排除微小气泡、促进密实平整,达到表面无明显露石和凹凸即可,不得过振,也不应漏振。初步平整可基本不留虚高,或略高于模板2mm左右。 3、设传力杆或拉杆时,在板边拖振的同时插入传力杆或拉杆,并基本就位。 4、初步平整后,即可用全幅式条夯振动器自行振动一遍(自行

速度约4m/min),使混凝土表面消除凹凸,达到匀实、平整。 5、在条夯作业过程中及作业后,应随时检查模板情况,发现变化应及时调整加固。传力杆、拉杆的校正复位工作,宜在下一块相邻板完成条夯作业后进行,以免相邻板条夯作业时对其产生影响。 6、条夯整平后,应用钢滚筒(俗称滚杆,下同)进一步压实、整平,提浆,即第一次滚杆作业,直至表面泛浆均匀。 三、作面 1、第一次滚杆作业后,当混凝土表面在受外力作用时不出现整体蠕动的情况下,方可开始作面。该段时间(简称待凝时间,下同)随气候情况的不同而不同,应通过试打得出。一般情况(作业时气温25oC左右,无风或风力2~3级),待凝需2h~3h ,可不覆盖塑料布;作业时气温高(>28oC)、特别是风力大(4 ~5级)的情况下,需覆盖塑料布以防“假凝”,待凝时间一般为4h~5h。 2、作面开始时,先用滚杆再滚压一遍,即第二次滚杆,以进一步整平、匀浆。 3、第二次滚杆作业后,即可抹面作业。宜采用不同长度(短抹长约30cm,长抹长约50cm)的木抹和塑料抹进行,不宜少于3遍,其间应用3m直尺(铝合金制)随时检验表面的平整情况,达到整个表面密实、均匀、平整和无抹纹。 4、抹面作业过程中,应特别注意板边的密实,如有不平整现象,严禁用纯浆(不含骨料)修补。抹面作业完成后,应及时用钢模紧贴模板边缘划出一道深大于1mm的刻痕,并清理模板顶面或相邻混凝土

自密实混凝土施工方案

大连中心·裕景(公建)ST2塔楼大支撑钢管混凝土施工方案 编制: 审核: 批准: 大支撑钢管混凝土施工方案

一、工程概况 大连中心?裕景ST2塔楼为巨型框架核心筒结构,核心筒为钢筋混凝土剪力墙结构,核心筒外框架竖向结构由5根钢-混巨型柱、10根普通型钢柱及与其斜向联系的矩形钢管大支撑组成。其中大支撑截面尺寸(H*B*t1*t2)最大为2300*700*100*35,最小为900*700*35*35。 钢结构深化设计在大支撑上开设灌浆圆孔,如下图共两种形式,其中A位于矩形大支撑上翼缘板靠近筒外钢柱处,直径230mm;B位于K形节点大支撑内侧腹板靠近组合巨柱处,直径250mm。 由于大支撑内有隔板结构形状复杂,且相邻孔之间间距一般跨越2-3层、砼振捣困难,拟采用具有高流动度、不离析、均匀性和稳定性好的自密实混凝土进行此大支撑钢管混凝土施工,混凝土强度等级C40。 二、编制依据 1、《矩形钢管混凝土结构技术规程》CECS 159:2004 2、《钢管混凝土结构设计与施工规程》CECS 28:90 3、《自密实混凝土应用技术规程》CECS203:2006等 4、东北院施工蓝图、中建钢构施工深化设计图 三、基本技术特性 自密实混凝土是具有高流动度、不离析、均匀性和稳定性,浇筑时依靠其自重流动,无需振捣而达到密实的混凝土。 应用于本工程的自密实砼基本技术性能指标及注意事项如下: 1)自密实性能等级三级,Tso(s)控制在3~20s之间,V漏斗通过时间在4~25s之间;

2)粗骨料最大粒径不大于20mm; 3)砂子采用中偏粗砂,含泥量≤1.5%,细度模度2.7~2.9; 4)外加剂采用大连市建科院聚羧酸DK-PC。 5)采用大连水泥厂水泥。 6)掺少量矿粉,水粉比控制在规范要求范围内。 7)到场的砼扩展度>600mm,在650mm左右为佳,具体测坍落度时,将砼坍开后,垂直方向量砼直径,两方向平均值即为扩展度,两方向平均值不允许超过2cm。 8)到场砼测坍落度时,高度差(中心与边缘)不允许大于2cm。 四、施工部署及施工顺序 由于大支撑钢管混凝土工程量较小,且现场浇筑需要在灌浆孔部位提供施工工作面,故将此部分混凝土浇筑安排于灌浆孔下部相邻楼板层结构施工完毕之后,利用已施工完成楼板面、及布设在楼板面上的泵管,进行大支撑钢管砼泵送施工。 1、基本施工顺序如下: 2、施工顺序原则: 1)大支撑砼具体浇筑时间随塔楼整体结构进度、穿插施工,不占用总工期时间。 2)大支撑砼施工前,相关钢结构构件安装、焊接完毕,焊缝探伤及相关验收合格。 五、施工措施及注意事项 1、施工前,应将泵管接好,保证气密性,不允许漏水(只允许少量掺水),然后用砂浆润滑泵管。 2、大支撑钢管混凝土浇筑之前,应将管内异物、积水清除干净。 3、自密实砼的运输:应保持混凝土拌合物的均匀性,不应产生离析、分层和前后不均匀现象。运输时间符合规定要求,在90min内卸料完毕,当最高气温低于25℃时,运送时间可延长30min。

自密实混凝土优点及推广意义--(1)

自密实混凝土的优点及推广意义 1 前言 自密实混凝土是20世纪70年代初由前西德发明并首先应用于工程的。这种混凝土在日本得到极其迅速的发展,到20世纪90年代中期,日本已生产自密实免振捣混凝土80万m3。从20世纪80年代末开始,我国高强混凝土的应用开始普及;到90年代中期,在研制高性能混凝土及高性能外加剂的基础上,越来越多的高强混凝土脱离了单纯高强的范畴,而转向高耐久性,大流动性,超高度泵送,自密实不振捣等高性能混凝土。自密实混凝土的主要特点是无须振捣而能自密实。在实际施工中自密实混凝土消除了浇筑混凝土时的振捣噪声,提高了施工速度和质量,实现了混凝土浇筑的省力化;为改善和解决过密配筋、薄壁、复杂形体、大体积、钢管混凝土施工,高、深、快速施工,水下施工,以及具有特殊要求、振捣困难的工程施工条件带来了极大的方便。 2 自密实混凝土配合比设计 自密实混凝土配制的技术路径,既要考虑施工时(新拌状态下)的高流动性,同时又要照顾到混凝土硬化以后的耐久性,即密实性。换句话说,就是要平衡好新拌状态下混凝土的高变形能力与高抗材料离析性之间的关系,尤其在配有钢筋的狭小区域,混凝土的流动性要求和防止粗骨料被阻塞的要求更高。日本的主要做法是,先做水泥浆和砂浆试验,主要目的是检查超塑化剂、水泥、细骨料和火山灰材料的性能和密实能力,然后再做SCC试验。该方法的优点在于,可以避免在混凝土上重复同一种质量控制,这种质量控制既费时又费力。但该种方法亦有其缺点:一是在拌制SCC前,需要进行水泥浆和砂浆的质量控制试验,但许多施工单位和商品

混凝土供应厂缺乏必要的试验设备;二是这种配合比设计方法和试验程序对于实际工程而言,,显得太过复杂。 瑞典水泥和混凝土研究会、中国大陆及台湾的学者均提出了HPC的设计方法。台湾提出的方法是填密拌合物设计算法,是从最大密度原理和超砂浆理论推导出来的,但无从知道该方法和混凝土通过钢筋间隙与抗离析能力方面之间的关系。大陆的研究表明,如果混凝土中的水泥浆过少,则不仅影响混凝土通过钢筋间隙的能力,而且影响抗压强度。 配制SCC,原则是用水泥浆(胶凝材料)填充骨料骨架的间隙。计算步骤是依次计算:粗、细骨料用量;水泥用量;按强度推算水泥需要的拌合用水量;粉煤灰及矿渣灰掺量;SCC中需要的拌合用水量(水泥、粉煤灰、矿渣灰用水量之和);减少剂用量;根据骨料的含水率调整SCC 中的拌合水用量。计算出配合比后,进行试配和性能测试试验。 3 自密实混凝土性能评定 根据SCC的特点,在试配和生产中应作到:①良好的流动性,即在自重作用下能够自流平、自密实;②具有良好的材料匀质性和稳定性,在流动状态下不泌水、不起泡、无粗骨料离析现象;③硬化后体积稳定性好,不产生收缩裂缝,尽量避免内部缺陷。具体而言,评定SCC质量的要素有:较大变形能力,抗离析能力,钢筋之间的通过能力。此外,根据自密实混凝土的耐久性要求,还应评价混凝土硬化期的抗渗性,由于评定内容和手段与常规混凝土大致相同,故此处不再赘述。下面仅介绍新拌SCC的评定。 Okamura等开始配制SCC时,以为配制出这种混凝土会很容易,原因是水下不分散混凝土已在实际工程中应用。但由于水下不分散混凝土掺用大掺量增稠剂,使得离析问题得到严格控制,同时也阻止了水泥颗粒扩散到周围水中。尤其值得注意的是,抗水洗水下混凝土不能应用于空气中浇注成型的结构中,原因有两个:首先,由于这种混凝土具有比较高的粘聚性,所

浅谈自密实混凝土施工技术

浅谈自密实混凝土施工技术 摘要:介绍了自密实混凝土的定义、特点、施工过程中的控制要点及所存在的问题,对自密实混凝土的合理施工起到一定的参考作用。 1 引言 混凝土作为最大宗的建筑材料,正面临着新的挑战,如工作性、生产效率、安全性要求和耐久性等方面的问题。当前,混凝土在施工过程中主要靠振捣的方式达到密实的效果以满足强度和耐久性的要求,由于施工环境或条件的限制,很容易造成振捣不足或者过振,从而影响了混凝土的性能,进而影响到建筑物最终的可靠性。众所周知,混凝土的工作性及施工振捣程度对工程的质量起到决定性的作用,如何提高混凝土工作性和施工质量就变得尤为重要。自密实混凝土应运而生,在二十世纪八十年代后期,由日本的学者首先提出,并进行了大量的实验、研究,因其良好的流变性、粘聚性、匀质性和稳定性解决了混凝土施工中存在的许多问题。 2 自密实混凝土的定义及特点 自密实混凝土(Self - Consolidating Concrete 简称SCC)是指在自身重力的作用下,能够流动、密实,即使存在较密的钢筋网也能够完全填充模板,并能同时获得良好的均质性,而且不需要附加振动的混凝土。自密实混凝土属高流动性混凝土,也称作自流平混凝土、自填充混凝土、免振捣混凝土等,属于高性能混凝土的范畴。自密实混凝土与普通混凝土相比具有以下特点: (1) 具有卓越的流动性和自填充性能,即使在没有振捣的情况下,也能够在自身重力作用下通过钢筋密集、结构截面比较复杂的工程部位,填充密实,且不离析、不泌水,从而能够增加结构设计的自由度。避免了在施工过程中漏振、过振等因素以及配筋密集、结构形式复杂等不利因素的影响,具有较高均质度,提高了混凝土工程的可靠性,降低工程综合成本。 (2) 无需振捣,消除了因振捣而带来的噪音污染,改善了施工环境,可实现24小时连续作业,有利于结构的提前完工;降低劳动强度、节省劳动力和电力能源、避免了振捣对模板产生的磨损,从而具有一定的经济效益。 (3) 自密实混凝土表面不会出现气泡或蜂窝麻面,从而减少和避免了混凝土表面的缺陷以及修补工作,在不需要进行表面修补处理的情况下,也能够较好呈现模板表面的纹理或造型。 (4) 能大量利用矿渣、粉煤灰等工业废料作为掺合料,使得资源得到更有效的利用。 3 自密实混凝土施工工艺

C40自密实混凝土应用

1自密实混凝土工作特性 自密实混凝土的一个显著特性是具有更高的流动性,在不振捣的情况下可以自流平而充满模板,并且能够保持不离析、不泌水,成型后质量均匀,不会产生普通混凝土由于振捣不充分而造成的蜂窝、麻面和内部空洞的质量缺陷。20世纪80年代,日本学者首先提出自密实混凝土的概念,并在今后的时间得到及其迅速的发展,我国也有部分工程使用。它是通过外加剂、胶凝材料和粗细骨料的选择和配合比的设计,使混凝土拌合物屈服剪切应力减小且又具有足够的塑性粘度,粗细骨料能够悬浮于水泥浆体中不离析、不泌水,在不用或基本不用振捣的情况下,能够充分填充模板和钢筋空隙,形成密室、均匀的混凝土结构。 2 自密实混凝土配合比设计 按照《普通混凝土配合比设计规程》(JGJ55-2000)和中国土木工程学会标准CCES 02-2004《自密实混凝土设计与施工指南》进行,目的使寻找混凝土的流动性、稳定性以及通过钢筋间隙的能力的最佳配合比,以期达到混凝土的高流动性和高稳定性之间的平衡。 2.1 设计要求 混凝土强度等级C40,塌落度240-260mm,扩展大于600mm,水灰比不大于0.50;粗骨料最大粒径不大于20mm;水泥宜采用P.O42.5 2.2 试验原材料 水泥:北京兴发水泥有限公司生产P.O42.5,28d实测抗压强度51.2Mpa。

细骨料:滦平潮白河中砂,细度模数2.6,Ⅱ区砂,h 含泥1.7%,表观密度2.61g/cm 3。 粗骨料:密云尾矿废石,粒径5-20mm,表面密度2.65g/cm 3,压碎指标10.8%,针片状含量6.7%,含泥量0.5%。 外加剂:JF-9混凝土泵送剂,掺量2.0-2.2%,混凝土终凝时间20小时,减水率20-25%。 粉煤灰:天津军电粉煤灰,实测技术性能指标见表1 矿渣粉:唐山建龙S95级矿粉,实测技术性能指标见表2 2.3 试验方法 混凝土拌和按照《混凝土试验规程》“混凝土拌合物室内拌和 方法”进行。混凝土拌合物的性能测试采用塌落度(扩散度)试验、压力泌水试验和自流填充箱试验,分别对混凝土的流动能力、扩展能力、抗离析能力、通过钢筋间隙的能力以及混凝土自密实填充能力进行测试。自流填充箱结构示意图如图1所示,内置Φ16净距25mm 的钢筋隔栏, 打 开阀门混凝土依 靠自重通过钢筋 间隙填充整个模

自密实混凝土对材料的要求

自密实混凝土对材料的要求 1胶凝材料 1.1水泥应符合现行国家标准《通用硅酸盐水泥》GB175的规定;当采用其他品种水泥时,其性能指标应符合相应标准的规定。 1.2粉煤灰、粒化高炉矿渣粉、硅灰等矿物掺合料,其性能指标应符合国家现行相关标准的要求。当采用其它掺合料时,应通过充分试验进行验证。 2骨料 2.1粗骨料宜采用连续级配或2个及以上单粒径级配搭配使用,最大公称粒径不宜大于20mm;对于结构紧密的竖向构件、复杂形状的结构以及有特殊要求的工程,粗骨料的最大公称粒径不宜大于16mm。粗骨料的针片状颗粒含量、含泥量及泥块含量,应符合表2.1的要求,其他性能及试验方法应符合现行行业标准《普通商品混凝土用砂、石质量及检验方法标准》JGJ52中的相关规定。 2.2轻粗骨料宜采用连续级配,性能指标应符合表2.2的要求,其它性能及试验方法应符合现行国家标准《轻集料及其试验方法第1部分:轻集料》GB/TI7431.1和行业标准《轻骨料商品混凝土技术规程》JGJ51中的相关规定。 2.3细骨料宜选用级配Ⅱ区的中砂,天然砂的含泥量、泥块含量应符合表2.3-1的要求;人工砂的石粉含量应符合表2.3-2的要求,当人工砂中含泥量很低(MB≤1.0),在配制C25及以下商品混凝土时,经试验验证能确保商品混凝土质量后,其石粉含量可放宽到15%。试验应按现行行业标准《普通商品混凝土用砂、石质量及检验方法标准》JGJ52中的相关规定进行。 3外加剂 3.1外加剂宜选用高性能减水剂或高效减水剂。外加剂性能应符合现行国家标准《商品混凝土外加剂》GB8076和《商品混凝土外加剂应用技术规范》GB50119中的相关规定。 3.2掺用改善拌合物性能的其他外加剂时,应通过充分试验进行验证,其性能应满足现行相关标准的要求。

自密实混凝土的研究现状及展望

自密实混凝土的研究现状及展望 摘要:本文简要说明了自密实混凝土的定义,概述了自密实混凝土的发展历程以及当前国内外的研究现状,着重介绍了当前较为成熟的自密实混凝土配制技术和主要性能,并对其未来的发展给出了建议。 关键词:自密实混凝土;高性能;配制技术;性能 1引言 近年来混凝土工程不断向规模化、复杂化、高层化方向发展,钢筋混凝土体内配筋越来越复杂稠密,浇筑难度很大,振捣困难,导致工程质量难以保证;对于已有建筑、桥梁的加固工程等,更是难以用普通混凝土进行正常施工;同时城市建筑施工因混凝土振捣引起的噪音污染问题也亟待解决。在此工程背景下,自密实混凝土以其独特的优点脱颖而出。 自密实混凝土源于高性能混凝土而高于高性能混凝土,是高性能混凝土的一个重要分支和发展方向。自密实混凝土是于上世纪80年代首先在日本发明和应用的,而后推广至欧美等发达国家,进而传入我国。这一概念最早由日本学者Okamum于1986年提出,该混凝土能够在自重作用下,均匀密实的填充至试模空间,而且不发生离析,因此在成型过程中不需要振捣,减小噪音,减少环境污染,给施工带来方便,给周围居民带来安宁和谐的环境。 自密实混凝土是基于混凝土的施工性能来分类和命名的,这是一种流动性大、不用振捣即可自行密实的混凝土,其某些性能类似于大流动性混凝土和泵送混凝土,但又不完全相同。与普通混凝土相比,自密实混凝土具有以下性能特点:(1)在新拌阶段,不需人工额外振捣密实,依靠自重充模、密实;(2)早龄期阶段,避免了原始缺陷的产生;(3)硬化后,具有足够的抗外部环境侵蚀的能力。 自密实混凝土一方面要求在不增加水泥用量和用水量的前提下具有大流动性混凝土的施工性能,便于浇筑成型时免于振捣,另一方面又要求得到泵送混凝土的质量, 保证浇筑时不离析,硬化后不开裂,而且耐久性要好,所以它是一种

建筑混凝土新技术3:自密实混凝土技术

2混凝土技术 2.3自密实混凝土技术 1.主要技术内容 自密实混凝土(Self-Compacting Concrete,简称SCC),指混凝土拌合物不需要振捣仅依靠自重即能充满模板、包裹钢筋并能够保持不离析和均匀性,达到充分密实和获得最佳的性能的混凝土,属于高性能混凝土的一种。自密实混凝土技术主要包括自密实混凝土流动性、填充性、保塑性控制技术;自密实混凝土配合比设计;自密实混凝土早期收缩控制技术。 (1)自密实混凝土流动性、填充性、保塑性控制技术 自密实混凝土拌合物应具有良好流动性、填充性和保水性。通过骨料的级配控制以及高效减水剂来实现混凝土的高流动性、高填充性。其测试方法主要有U型槽法、L型槽法、倒坍落度筒法等。自密实混凝土工作性的控制技术是一个关键。 (2)配合比设计 自密实混凝土配合比设计与普通混凝土不同,有全计算法、固定砂石法等。配合比设计时,应注意以下几点: 1)单位体积用水量宜为155~180kg。 2)水胶比根据粉体的种类和掺量有所不同,按体积比宜取0.8~1.15。 3)根据单位体积用水量和水胶比计算得到单位体积粉体量。单位体积粉体量宜为0.16~0.23。 4)自密实混凝土单位体积浆体量宜为0.32~0.40。 (3)自密实混凝土早期收缩 由于自密实混凝土水胶比较低、胶凝材料用量较高,使得混凝土早期的收缩较大,尤其是早期的自收缩。主要包括自收缩的收缩机理、计算公式及检测技术等方面。 2.技术指标 (1)原材料的技术要求 1)胶凝材料 水泥选用较稳定的普通硅酸盐水泥;掺合料是自密实混凝土不可缺少的组成部分之一,一般常用的有粉煤灰、磨细矿渣、硅粉、矿粉等。胶凝材料总量不少于500kg/m3。 2)细骨料 砂的含泥量和杂质,会使水泥浆与骨料的粘结力下降,需要增加用水量和增加水泥用量,所以砂必须符合规范技术。砂率在45%以上,最高可到50%。 3)粗骨料 粗骨料的最大粒径一般以小于20mm为宜,尽可能选用圆形且不含或少含针、片状颗粒的骨料。 4)外加剂 自密实混凝土具备的高流动性、抗离析性、间隙通过性和填充性这四个方面都需要以外加剂的手段来实现。因此对外加剂的主要要求为:与水泥的相容性好;减水率大;缓凝、保

自密实高性能混凝土技术性能研究

·39· 随着建筑技术的不断改进,原有的“肥梁胖柱”现象已逐渐消失,取而代之的是结构灵巧、造型奇特的新型结构。由于新型结构混凝土强度等级的不断提高,内部配筋状况也发生了变化,较密集的配筋布置已成为现实。在这种情况下,如果再用普通混凝土已不能满足施工要求,而自密实高性能混凝土却能解决这些难题。它可以通过自流动而充实薄壁混凝土结构和钢筋密集的结构部位,可以不经振捣即可密实,这样既解决了混凝土的振捣困难,又消除了施工噪音,因此,这类混凝土极具现实意义,具有广阔的发展前景。 1 试验目标 对于自密实高性能混凝土,拌合物的工作性能是研究的重点。分别从流动性、抗离析性、间隙通过性、填充性四个方面考虑。要解决好流动性与抗离析性、间隙通过性与填充性之间的矛盾,混凝土高工作性与硬化后力学和耐久性的矛盾。 具体目标: (1)研制一种高工作性能的易于泵送施工、不用振捣而自行密实的混凝土。 (2)混凝土的高工作性能能保持较长时间,以满足远距离运输后的施工需要。 (3)混凝土硬化后具有理想的力学性能和耐久性。 (4)采用较常规的原材料和生产工艺,并经济合理,便于推广应用。 2 材料选择 (1)水泥:鹿泉长城矿渣32.5,3d 强度19.1MPa,28d 强 度36.4MPa ; (2)集料:正定中砂,细度模数2.6,含泥量1.2%; 鹿泉碎石5~10mm,10~20mm,含泥量<0.5%,针片状含量<7.6%; (3)掺合料:西柏坡电厂粉煤灰,其技术指标见表1。 表1 粉煤灰技术指标 种类级别活性指数(%)胶砂流动度比 7d 28d 粉煤灰 Ⅰ级 89.0 109.0 110 自密实高性能混凝土技术性能研究 刘福战 (河北大地建设科技有限公司) [摘要]本文采用正交试验的设计方法从水胶比、砂率、掺合料掺量、碎石比例等几个方面进行了研究,得出了自密实高性能混凝土配合比设计的参数。进而通过优化配合比,又得出了混凝土的工作参数。同时从抗渗性、抗冻性、碳化、收缩等四个方面对自密实高性能混凝土的耐久性进行了研究。[关键词]自密实混凝土;高性能;配合比;耐久性;抗渗性;抗冻性;碳化 (4)外加剂:采用大新外加剂厂生产的RCMG-5高效泵送剂,建议掺量2.0%~3.5%。为了确定合理掺量,通过改变掺量进行试配,试验结果见表2。 表2 外加剂技术指标 外加剂掺量(%)坍落度(mm)扩展度(mm)7d 强度 (MPa)28d 强度(MPa)56d 强度(MPa)初始90min 2.525559056033.643.247.23.027*********.844.548.03.5 270 650 590 30.9 41.3 46.8 从试验结果看出:改变外加剂掺量对混凝土抗压强度没有显著影响,但能有效改变混凝土拌合物的保塑性能,当掺量在3.0%时,混凝土坍落度、扩展度在90min 内基本保持不变,故外加剂掺量为3.0%效果最佳。 3 混凝土配合比设计 3.1 正交试验 选用L9(34)正交表。其因素与水平的安排见表3;L9(34)正交表见表4;试验结果见表5;L9 (34) 正交设计计算表见表6。 表3 正交设计 因素水平 123A :水灰比0.370.400.43B :砂率%424548C :矿渣粉掺量%253035D :碎石比例 3:7 4:6 5:5 通过L9(34)正交计算表可知各因素对混凝土拌合物性 能及力学性能的影响顺序为: (1)坍落度为A >B >C >D (主次),最优配合比A1B2C2D1(或A2B2C2D3)。 (2)扩展度为A >C >D >B (主次),最优配合比A1C2D3B3。

自密实混凝土施工技术交底

自密实混凝土挡土墙施工技术交底1自密实混凝土工艺原理 自密实片石混凝土施工工艺原理,当混凝土模板安装就绪后,采用机械或人工在模板内堆成0.8~1.0m高度的堆石体,然后浇筑自密实混凝土,自密实混凝土依靠自重流动,均匀地完全填充到堆石体的空隙,自密实混凝土与片石凝结硬化形成片石混凝土。 2施工工艺流程 施工准备→测量放线→基槽开挖→地基承载力检测→基础立模加固→片石码放→自密实混凝土拌合→浇筑基础混凝土→墙身立模加固→片石码放→安装泄水孔→浇筑墙身混凝土→拆除模板→养护 3施工方案、方法 3.1施工准备 施工前,做好场地平整,为混凝土、片石及周转材料的运输、堆放准备好场地。清除挡墙用地范围内的树桩、杂草、垃圾等所有障碍物;在基槽周围挖设排水沟,排除地表水。 3.2测量放样测量放线,定出桩位中心线及开挖边界线,由施工队埋设护桩。 3.3基坑开挖 采用人工配合挖掘机进行基槽开挖,开挖长度根据现场地质情况进行分段开挖,每段10或20米,深基坑或陡坡地段采用跳槽开挖,每段长度10米,相邻两侧挡墙做完后在开挖中间段落防止基坑坍塌;基坑深度大于1.5米时采用放坡开挖,坡比视现场地质情况按1:0.75~1:1.5放坡开挖或增设

基坑支挡防护,挖基土方堆放在基坑边2m以外,防止基坑边坡因受压垮塌,沿基坑周边设0.3m*0.3m截水沟,防止降雨雨水流入基坑浸泡基底,基坑底四周设0.2*0.2m排水沟,并在基坑最低处角落或4个角处设集水井,将积水引入在集水井后采用潜水泵集中排出基坑,基底严格按设计开挖成台阶。机械开挖至基底设计标高以上20cm时,回复测量放样桩位,确定开挖正确不偏位的情况下改用人工进行基底清理,避免机械扰动基底破坏地基承载力,确保基底符合设计及相关规范要求,如出现超挖现象应严格采用集配好的灰岩夯实回填,严禁虚填。 3.4模板安装 基础施工前,试验室进行基底承载力试验,若承载力达到设计要求,经监理工程师验收后,可继续基础施工,若试验承载力达不到设计承载力要求,应及时报监理工程师和设计单位,确定处理方案后,按方案要求进行地基处理。基底承载力满足设计要求后,方可进行基础模板安装,模板。安装应符合下列要求; 1)模板采用大块钢模板拼装,禁止使用有缺角、破损的模板。 2)保证混凝土结构和构件各部分设计形状尺寸和相互间位置正确; 3)具有足够的强度、刚度和稳定性,能承受新浇筑混凝土的重力侧压力及施工中可能产生的各项负荷。 4)模板的接缝不得漏浆;在浇筑混凝土前,模板应浇水湿润,但模板内不应有积水。 5)模板与混凝土的接触面应清理干净并涂刷脱膜剂,但不得影响模板结构性能。模板使用后应按规定修整保存。

自密实混凝土技术

自密实混凝土技术 一、分项工程概况 本文主要介绍了在北京首都国际机场T3B航站楼工程中,采用高强度自密实清水饰面混凝土施工的方法、特点和难点。因为工程项目的性质为公共建筑,在设计中采用了大跨度、高强度混凝土结构,混凝土强度等级往往达到C50、C60的高强度;同时因为该工程的重要性,就要保证混凝土外观质量,所以设计要求采用清水饰面混凝土。在结合了上述两个问题后,我们在工程实践中就必须既要保证满足结构高强度混凝土的这个要求,又要保证结构为清水饰面混凝土,在这两个前提条件下,再采用自密实混凝土浇筑的技术措施。这就产生了高强度自密实清水饰面混凝土在工程实际中的应用,从而顺利解决了这一问题。 二、施工方法及创新点 自密实混凝土的特点是:能够自流平填密模板空间;不需要振捣,可以降低由于振捣而导致的混凝土的离析现象;采用自密实混凝土可以保证结构中混凝土的密实性;可以减少劳动力,从而节约施工成本;不需要振捣,没有扰民问题。 本工程主要利用了自密实混凝土的匀质性和填密性,依靠其自身重力作用,将模板内钢筋之间的微小空间自流平充满填密实。 工艺流程: 对进入现场的自密实混凝土各项技术指标进行进场验收(塌落度、和易性、流动性)――加固模板――浇筑混凝土自密实周边混凝土――浇筑自密实混凝土――进行振捣 1.商砼控制。 1)本工程所采用的自密实混凝土由中航空港混凝土搅拌站和北京建工搅拌站提供,混凝土强度为C40、C50、 C60,到现场的混凝土塌落度控制在250mm~270mm之间,骨料粒径小于1.5 cm~2.0cm。为了使高强度自密实混凝土与清水混凝土之间的颜色差异控制的可接受范围内,在保证自密实混凝土强度的前提下,经过与搅拌站协商以及试配工作,确定了强度符合要求、流动性、稳定性和通过钢筋间隙能力最佳的自密实混凝土配合比用量。 2)下面是度混凝土在不同强度条件下采用清水混凝土和自密实混凝土,在配合比上的对照表:

浅议高性能自密实混凝土在工程中的应用

浅议高性能自密实混凝土在工程中的应用 发表时间:2019-05-30T10:27:32.997Z 来源:《防护工程》2019年第4期作者:陈川 [导读] 并提出了相关的应用建议,有利于推动我国建筑行业的绿色发展步伐。 广西建工集团第五建筑工程有限责任公司广西柳州 545001 摘要:近年来,经济社会的发展使得建筑行业的发展步伐加快,尤其是建筑施工新技术与新材料的使用,大大提高了工程的质量,促进了建筑行业的可持续发展。在建筑材料的使用上,高性能自密实混凝土在建筑工程中得到了普遍的应用,与传统混凝土相比,其具有较高的性能,主要表现在混凝土的强度、降低噪音等方面,这种材料的使用大大提高了工程的稳定性和安全性。本文从自密实混凝土的概况出发,分析了其对原材料的质量要求、配合比设计等内容,并提出了相关的应用建议,有利于推动我国建筑行业的绿色发展步伐。 关键词:高性能;自密实混凝土;工程;应用 经济社会的发展推动了各行各业技术的革新,对建筑工程而言,其发展主要体现在新技术与新材料的使用上。随着近年来可持续发展理念的深入推进,建筑行业也在逐步推动可持续发展、绿色发展,新技术与新材料的使用要以提高工程建设质量、减少材料浪费为前提,尽量将施工对人类生活造成的影响降到最低。而高性能自密实混凝土具有较高的性能指标,且噪音污染较小,能够产生良好的施工效果,因此,在施工中得到了广泛且普遍的应用,未来还具有推广使用可能性,促进建筑行业的稳步健康发展。 1自密实混凝土的概况 1.1自密实混凝土的定义 自密实混凝土是指能够在自身重力作用下的高流动性与高密实性,保证模板空间的完整填充,该种混凝土的流动性、均匀性与稳定性等性能都较好,浇筑过程中无需借助外力振捣,能够实现良好的施工效果。 1.2自密实混凝土的发展 自密实混凝土具有多年的研究历史,最初的研究开始于上世纪八十年代,在该研究下,逐步开始应用于工程实践中。但是受到研究领域、技术发展的局限性,使得其对于外加剂、掺合料等性能的研究不足,使得这种自密实混凝土的应用存在一定的约束,在当时并没有得到推广与应用。但是在那之后,随着相关研究人员研究的深入,高性能自密实混凝土进一步进行深入研究,并且取得了丰硕的研究成果,在此背景下,逐步发展形成了一种高性能自密实混凝土,这种材料的使用无需振捣,可以实现良好的施工效果。 自密实混凝土技术具有多年的发展历史,在我国,该技术的应用也长达二十年,但是其发展也依旧处于不成熟的阶段,虽然随着建筑工程的发展,自密实混凝土得到了广泛的应用,但是还需要有进一步研究与推广的现实意义。国内很多学者、专家等不断在进行自密实混凝土研究领域的扩展,以求扩大其应用空间。自密实混凝土的技术性要求较高,需要在施工中注意原材料的质量、配合比设计等。 2自密实混凝土对原材料的质量要求 自密实混凝土对原材料的要求主要包括了对水泥、粗细骨料、外加剂、活性矿物掺合料的质量要求。 2.1对水泥的要求 水泥是自密实混凝土中必不可少的重要原料,但是水泥的选用应该结合国家的相关标准来进行,一般在自密实混凝土中,多使用硅酸盐水泥或普通硅酸盐水泥等,水泥原材料的选用需要考虑标准稠度用水量、超塑化剂的相容性等因素,由于自密实混凝土有相关的强度要求,因此需要考察水泥与外加剂的适应性指标,一旦其适应性不达标,将会严重影响自密实混凝土的性能。一般情况下,低含量C3A、标准稠度用水量较低的水泥更符合工程的标准性要求。 2.2粗骨料与细骨料的要求 对骨料而言,一般需要考察其颗粒形状、弹性模量、最大粒径等性能指标,这些性能决定着混凝土的强度、稳定性与耐久性。根据以往的施工实践,将混凝土最大粒径控制在20mm以内,混凝土的性能最好。因此,骨料最好选用圆形或者不含、少含针、片状颗粒的骨料来作为混凝土的原材料。由于在混凝土的总体积中,骨料占比极大,达到了60%~80%的范围内,使得对于骨料的选择、质量的控制极其重要,普通混凝土中骨料对混凝土性能的影响远远低于自密实混凝土。 2.3对外加剂的要求 自密实混凝土中外加剂的使用主要是为了提高自密实混凝土的分离稳定性、填充性、大流动性、间隙通过性等性能。因此,为了保证自密实混凝土的性能指标,需要对外加剂进行严格的质量控制,主要是要保证外加剂的高减水率、与水泥的高适应性、低拌合物坍落度的损失。因此,在自密实混凝土施工中,应该对外加剂的比例等进行合理的控制,保证其性能符合工程的规范性要求。 2.4对活性矿物掺合料的要求 自密实混凝土中还需要添加相关的活性矿物掺合料,这些掺合料的添加是保证微集料效应、火山灰效应、形态效应的关键因素,这些效应是保证自密实混凝土性能充分实现的重要因素,因此,活性矿物掺合料必须满足工程的标准。首先,活性矿物掺合料的级配体系应该与工程实际相适应,其次,活性矿物掺合料中还需要含有较多的环形颗粒。由于这些环形颗粒掺合料存在减水效应,会大大降低活性矿物掺合料的需水量,保证自密实混凝土性能的实现。另外,由于活性矿物掺合料中含有大量的碳,会对外加剂具有吸附作用,大大降低外加剂的塑性功效,提高水胶比。 3密实混凝土生产施工要求 3.1称量要求 高性能自密实混凝土在施工中应该严格按照工程的规范性要求来进行称量配比,应该在施工中将不同的原材料按照特定的比例来进行混合,保证将各种原材料称量控制在合理的误差范围内。 3.2搅拌要求 高性能自密实混凝土在施工过程中,要保证搅拌的效果,一般情况下,人工搅拌不能保证搅拌的效果,往往需要借助于专业的设备来进行,对高性能自密实混凝土而言,多使用双卧轴强制式搅拌机,这种搅拌机设备能够克服高性能自密实混凝土塑性粘度大和水胶比低的

自密实混凝土的研究和应用 李庆海

自密实混凝土的研究和应用李庆海 发表时间:2019-10-15T14:53:25.757Z 来源:《建筑细部》2019年第8期作者:李庆海[导读] 混凝土的耐久性问题在20世纪80年代就引起了日本的广泛关注,自密实混凝土的概念的提出是由于当时日本建筑企业的熟练技术工人的缺乏。 身份证号码:37282919771116xxxx 蒙阴县鸿达建安有限公司摘要:文章通过对自密实混凝土的配制方法、检测方法等方面的综述,介绍自密实混凝土的研究和应用,展望自密实混凝土在未来市场的发展趋势。 关键词:自密实混凝土;研究;应用混凝土的耐久性问题在20世纪80年代就引起了日本的广泛关注,自密实混凝土的概念的提出是由于当时日本建筑企业的熟练技术工人的缺乏,混凝土无法得到充分振捣,混凝土结构的高耐久性降低。自密实混凝土的研究发展解决了早期技术工人的缺乏,通过重力密实混凝土的方法,得到了迅速发展,被称为“混凝土革命性的发展”。 1 自密实混凝土的优点 自密实混凝土可以得到广泛推广与应用的前提是能够保证混凝土具有良好的密实性,使混凝土更加牢固,质量得到了保障。其次,自密实混凝土不再需要早期振捣方式,对工人技术的要求降低,减少工人数量的同时能够提高生产效率,节约了建设成本,提高效率。在自密实混凝土没有生产前,建筑建造所需要的混凝土都需要技术工人的长期振捣,导致技术工人易患“手臂振动综合症”,对周边也会产生噪音影响,自密实混凝土的应用使工作环境得到了改善,提高了工作的安全性。人工振捣的混凝土表明容易出现气泡或者“蜂窝”面,影响质量和美观,需要进一步修补维护,而自密实混凝土能够改善混凝土的表面质量,模板表面的纹理和造型能够得到完整复制体现,不再需要表面修补,并且有效避免了振捣时对模板的破坏。没有振捣环节,自密实混凝土可以浇筑成形状复杂的结构,减轻了对搅拌机的磨损。这些方面都加强了工程质量,降低成本,减少人力物力,资源节省,科学环保并且符合可持续发展的观念。 2 自密实混凝土的研究 随着科技的进步,时代的发展,在新时期下,对自密实混凝土有了新的要求,因此,自密实混凝土需要适应时代的发展,不断发展,通过对其原材料的改进,组成与配合比设计等使自密实混凝土具有新的特点。例如,在自密实混凝土中添加微硅粉能够改善混凝土的耐久性、强度等硬化性能和改善流变性、稳定性、触变性等塑性状态性能,使自密实混凝土的性能得到全面提高。因此,自密实混凝土的研究任务任重而道远。 2.1 增强自密实混凝土的性能在配置自密实混凝土时的关键是控制好“高流动性”与“高稳定性”之间的平衡。为了保证自密实混凝土的稳定性,早期配置时依靠提高混凝土的塑性粘度来实现混凝土不出现泌水和骨料离析,或者在自密实混凝土中掺加化学增黏剂来得以实现。自密实混凝土在掺加石粉后,包括水泥和石粉的粉状材料含量高达600kg/m3~700kg/m3降低了混凝土的硬化性能;在自密实混凝土中增加化学增黏剂,会增加混凝土的塑性性能,使其性能变得非常敏感。除此之外,当混凝土的粘度增大,用泵输送会变得非常困难。由于加大自密实混凝土的粘度,工作效率降低,因此,近几年来,随着科学的发展,研究的深入,经验的丰富,自密实混凝土逐渐向低粘度、低粉材料含量、低敏感性方向转变。通过大量的实验与研究,自密实混凝土的粉状材料含量应该与普通混凝土大体相等,约在450kg/m3~550kg/m3之间,以及自密实混凝土的流变参数、塑性粘度等控制在一定范围内,只有这样,不仅能够保证自密实混凝土的塑性优良,而且能够保证其硬化性能。而且,自密实混凝土在实际的生产和进行使用时,比传统的普通混凝土更容易进行质量检测与控制管理。 2.2 自密实混凝土配合比的合理性根据传统的生产经验,增加微硅粉后,混凝土或者砂浆的用水量也会增加,造成水资源的浪费,然而,这一生产经验并不全面。优质粉煤灰具有减少水的使用,同样,包裹在粗糙水泥颗粒和骨料表面的微硅粉的形状为圆形,同样具有“滚珠”润滑,也能减少对水的利用,保护水资源。并且,微硅粉与粉煤灰相比,表面积更大,更能够减少水的使用。由于微硅粉对混凝土流变性能产生影响,改善优化了混凝土的流变性能,因此能够提高自密实混凝土的稳定性。自密实混凝土的结构条件、环境条件等都受配合比设计的影响。因此,自密实混凝土的配合比方法显得尤为重要,逐渐形成了三大系列配合比设计方法包括粉体系、增黏剂系及并用系,并研究了自密实混凝土配合比计算方法。从流动性、抗分离性、间隙通过性和填充性4个方面考虑自密实混凝土配合比,才能够有效科学的解决混凝土的流动性和抗分离性的矛盾。 2.3 自密实混凝土生产的控制由于在生产过程中的一些波动因素容易发生变化,因此,自密实混凝土的生产需要严格控制质量。例如骨料级配、骨料含水量、减水剂掺量等一旦发生变化,都会对自密实混凝土的流动性、稳定性、硬化性能、塑化性能等产生重要影响,导致自密实混凝土的质量得不到保证。因此,在生产过程中,要严格监督核查,一旦发现问题,立即解决,才能确保自密实混凝土的质量。严格的材料控制才能大幅度降低成本,使自密实混凝土更加经济环保。 3 自密实混凝土的应用 自密实混凝土自从研发以来,就得到了广泛的关注。建筑自密实混凝土、高强自密实混凝土、补偿收缩自密实混凝土、再生骨料自密实混凝土等自密实混凝土种类都研发成功,并得到了推广。自密实高性能混凝土能够有效降低成本,例如美国西雅图双联广场使用了超高强度的自密实高性能混凝土,建造成本大幅度降低,并且节约资源,科学环保,成为自密实高性能混凝土在应用到重要结构工程中的成功案例。我公司在2013年做蒙阴御都好撑工地的钢管混凝土巨柱时,由于工地的钢筋间距过小而选用C60泵送自密实混凝土。当时采用海螺PⅡ42.5R硅酸盐水泥、砂细度模数2.8、20%浓度高效减水剂。经过数十次试配,确定最佳配合比。次试配,确定最佳配合比。

CRTS Ⅲ型板式无砟轨道自密实混凝土

CRTS Ⅲ型板式无砟轨道自密实混凝土 自密实混凝土的施工 7.1 一般规定 7.1.1 应根据设计要求、灌注施工工艺和施工环境等因素,会同设计、监理各方,共同制定自密实混凝土施工技术方案、施工过程的质量控制与保证措施。 7.1.2 自密实混凝土的施工包括自密实混凝土的搅拌、运输、灌注、养护和拆模等。根据交通运输条件,采取不同的自密实混凝土灌注方案。 7.1.3 正式施工前,应进行自密实混凝土的试灌注,并进行自密实混凝土的现场揭板质量检验,验证并完善混凝土的灌注施工工艺。 7.1.4施工和监理单位应确定并培训专门从事自密实混凝土关键工序施工的操作人员和试验检验人员。 7.1.5 应建立完善的质量保证体系和健全的施工质量检验制度,加强对施工过程每道工序的检验,发现与规定不符的问题应及时纠正,并按规定作好记录。 7.1.6 应明确施工质量检验方法。质量检验方法和手段应符合本技术要求的规定以及国家和铁道部的相关标准要求,检验结果应真实可靠。 7.1.7 应根据设计要求、工程性质以及施工管理要求,在施工现场建立具有相应资质的实验室。 7.1.8 自密实混凝土达到75%的设计强度后方可承载。 7.2 原材料储存与管理

7.2.1 混凝土原材料进厂(场)后,应对原材料的品种、规格、数量以及质量证明书等进行验收核查,并按有关标准的规定取样和复验。经检验合格的原材料方可进厂(场)。 7.2.2 混凝土原材料进厂(场)后,应及时建立“原材料管理台帐”,台帐内容包括进货日期、材料名称、品种、规格、数量、生产单位、供货单位、“质量证明书”编号、“复试检验报告”编号及检验结果等。“原材料管理台帐”应填写正确、真实、项目齐全,并经监理工程师签认。 7.2.3混凝土用水泥、矿物掺合料等应采用散料仓分别存储。袋装粉状材料在运输和存放期间应用专用库房存放,不得露天堆放,且应特别注意防潮。 7.2.4不同混凝土原材料应有固定的堆放地点和明确的标识,标明材料名称、品种、生产厂家、生产日期和进厂(场)日期。原材料堆放时应有堆放分界标识,以免误用。骨料堆场应事先进行硬化处理,并设置必要的排水设施。 7.3 混凝土拌合 7.3.1 自密实混凝土应采用拌合站集中拌制,拌合站应配有自动计量系统和强制式搅拌机,混凝土原材料称量最大允许偏差应符合铁建设[2005]160号文规定(按重量计):胶凝材料(水泥、矿物掺和料等)±1%;外加剂±1%;骨料±2%;拌合用水±1%。 7.3.2 搅拌混凝土前,应严格测定粗细骨料的含水率,准确测定粗细骨料含水率变化,及时调整施工配合比。一般情况下,含水率每班抽测2 次。 7.3.3搅拌时,宜先向搅拌机投入粗骨料、细骨料、水泥和矿物掺和料和其他材料,搅拌1分钟,再加入所需用水量和外加剂,并继续搅拌2分钟。 7.3.4冬期施工时,直接与水泥接触的水的加热温度不宜高于80℃,自密实混凝土搅拌时间宜较常温施工延长50%左右。 7.3.5 夏(热)期施工时,水泥进入搅拌机时的温度不宜大于50 ℃。 7.3.6 正式生产前必须对自密实混凝土拌合物进行开盘鉴定,检测其工作性能。 7.4 模板安装

相关文档
最新文档