ti触摸屏控制芯片使用技巧

ti触摸屏控制芯片使用技巧
ti触摸屏控制芯片使用技巧

TOUCH SCREEN CONTROLLER TIPS

By Skip Osgood, CK Ong, and Rick Downs

Burr-Brown makes a number of specialized analog-to-digi-tal converters for touch screen applications. The ADS7843,ADS7845, and the new ADS7846 converters all are de-signed for specific touch screen applications. Applications using these devices can benefit greatly from the tips pre-sented in this application bulletin. Most of the examples discuss the ADS7843, but the techniques shown are appli-cable to all of the devices.

We begin by looking at the theory of operation of a resistive touch screen, and using these specialized A/D converters with such a screen. Techniques are presented for improving accuracy and minimizing errors; the operation of the pen interrupt line (PENIRQ) is explored, ESD protection meth-ods for the converters, and issues surrounding interfacing these converters to popular microprocessors are discussed.RESISTIVE TOUCH SCREENS

A resistive touch screen works by applying a voltage across a resistor network and measuring the change in resistance at a given point on the matrix where a screen is touched by an input stylus, pen, or finger. The change in the resistance ratio marks the location on the touch screen.

The two most popular resistive architectures use 4-wire or 5-wire configurations (as shown in Figure 1). The circuits determine location in two coordinate pair dimensions, al-though a third dimension can be added for measuring pres-sure in 4-wire configurations.

THE 4-WIRE TOUCH SCREEN COORDINATE PAIR MEASUREMENT

A 4-wire touch screen is constructed as shown in Figure 2.It consists of two transparent resistive layers.

The 4-wire touch screen panel works by applying a voltage across the vertical or horizontal resistive network. The A/D converts the voltage measured at the point the panel is touched. A measurement of the Y position of the pointing device is made by connecting the X+ input to a data converter chip, turning on the Y+ and Y– drivers, and digitizing the voltage seen at the X+ input. The voltage

FIGURE 1. 4-Wire and 5-Wire Touch Screen Circuits.

Four-Wire Five-Wire

FIGURE 2. 4-Wire Touch Screen Construction.

measured is determined by the voltage divider developed at the point of touch. For this measurement, the horizontal panel resistance in the X+ lead doesn’t affect the conversion due to the high input impedance of the A/D converter. Voltage is then applied to the other axis, and the A/D converts the voltage representing the X position on the screen through the Y+ input. This provides the X and Y coordinates to the associated processor.

THE 5-WIRE TOUCH SCREEN COORDINATE

PAIR MEASUREMENT

A 5-wire touch screen is constructed as shown in Figure 3. The resistive panel consists of one transparent resistive layer and a top metal contact area separated by insulating spacers. The 5-wire touch screen panel works by applying a voltage at the corners of the bottom resistive layer and measuring the vertical or horizontal resistive network with the wiper, or 5th wire. The A/D converts the voltage measured at the wiper point the panel is touched. A measurement of the Y position of the pointing device is made by connecting the upper left and upper right corners of the resistive layer to V+ and the lower left and lower right corners to ground. This biases the panel for a vertical deflection input to the data converter chip, and is measured by the A/D converter through the wiper touch point to the panel. The voltage measured is determined by the voltage divider developed at the point of touch. For the horizontal measurement, the upper left corner and lower left corner are connected to ground and the upper right and lower right corners are connected to V+ through the drivers and the wiper input is converted representing the horizontal deflection of the panel.DIFFERENTIAL vs SINGLE-ENDED MODE

The accuracy and reliability of conversions depend upon the ability of the converter to compensate for continuously varying operating conditions. These changing conditions have an effect on the voltages representing the X and Y coordinates. For example, if the A/D converter is configured for an absolute voltage reading (single-ended mode), changes in driver voltage drops will cause a misinterpreted input reading. However, if the A/D converter is configured in a ratiometric, or differential, mode, these errors can be virtu-ally eliminated.

TOUCH SCREEN SETTLING TIME

When the touch panel is pressed or touched, there are two mechanisms that will affect the voltage level at the contact point of the touch panel. These two mechanisms will cause the voltage across the touch panel to “ring” (oscillate), and then slowly settle (decay) down to a stable DC value. The two mechanisms are:

1)Mechanical bouncing caused by vibration of the top layer

sheet of the touch panel when the panel is pressed.

2)Electrical ringing due to parasitic capacitance between

the top and bottom layer sheets of the touch panel and at the input of ADS7843 that causes the voltage to “ring”

(oscillate).

Single-Ended Mode

In single-ended mode, when a touch on the touch panel is detected, the processor that controls the ADS7843 will send a control byte to instruct the ADS7843 to perform a conver-sion. The ADS7843 then begins supplying voltage through the internal FET switches to the panel at the beginning of the acquisition period causing the voltage at the pressed point to rise. This rising voltage will “ring” as described above for a period of time before it finally settles to a stable voltage. After the acquisition period, all internal FET switches will turn off and the A/D converter will go into a conversion period. If the next control byte does not come during the current conversion period, the ADS7843 will go into power down or wait for the next instruction. With large capacitance across the panel, typically for filtering noise, caution should be exercised to insure that the corresponding input voltage for the X-position or Y-position coordinate pair has settled. In the single-ended mode, the input voltage must be settled during the last three clock cycles of the Data In word, or errors will occur.

Differential Mode

The operation of differential mode is similar to single-ended mode except that the internal FET switches will continue to be ON from the start of the acquisition period to the end of the conversion period. The voltage across the panel will also become the reference voltage to the A/D converter, provid-ing a ratiometric operation. This means that if the voltage across the panel varies because of power supply changes, changes in the driver impedance with supply changes or temperature, or variations in the touch panel resistance with temperature these changes will be compensated for by the ratiometric operation of the A/D Converter.

FIGURE 3. 5-Wire Touch Screen Construction.

However, if the selected channel of the next control byte to the ADS7843 is the same as the previous control byte and it comes during the current conversion period, the switches will not turn OFF after completing the current conversion. This will allow the input voltage to have a longer settling time and the settled voltage can be captured by the next control byte.Difference Between Differential Mode and

Single-Ended Mode

In both single-ended and differential modes, the ADS7843 acquires (samples) the input analog voltage from the touch panel for only three clock cycles (shown as t ACQ in Figure 4). Hence, the input voltage has to settle within t ACQ in order for the ADS7843 to capture the correct voltage.

FIGURE 4. Timing Diagram of Differential and Single-ended Mode Operation for ADS7843.

Turning the drivers on causes the touch panel’s voltage to rise rapidly, then settle to the final value, as shown in Figure 4. In order to acquire the correct value for conversion, the acquisi-tion must be complete when the touch panel has completely settled. There are two ways of accomplishing this.

One method is shown in Figure 4 (a), using the ADS7843 in single-ended mode, and using a relatively slow clock. A slow clock extends the acquisition time, since it extends the three clock periods for acquisition. The drivers turn on at the beginning of the first of these three clock periods, and the panel must then settle completely during the following two clock cycles, so that at the end of the third clock cycle, the acquired voltage is accurate.

The second method, shown in Figure 4 (b), uses the differen-tial mode and a much faster clock rate. Control Byte B turns the drivers on, and as before, the touch panel’s voltage rises rapidly, and begins to settle. In this case, a conversion is done, and then a second conversion is begun, by send Control Byte C. If Control Bytes B and C are the same, the internal X/Y switch of the ADS7843 will not turn off after completing a conversion for Control Byte B. Thus, the touch panel voltage will be settled by the time the conversion from Control Byte C begins, and this conversion will be accurate. This method requires that the conversion result from Control Byte B be discarded, as it will not be accurate since its acquisition period occurred at the time that the touch panel voltage was still ringing.

Another advantage to using the second method is the potential for power savings. Figure 4 shows that the conversion period for Control Byte C (using the fast clock) ends before the conversion period for Control Byte A (using the slow clock). After the end of conversion for Control Byte C, the ADS7843 can go into power down mode and wait for the next sampling period. For the slow clock case, with Control Byte A, the next sample period may have to come immediately after the current conversion, leaving no time for power down.

Using a fast clock in single-ended mode would not be of any help, because as shown in Figure 4 (c), the drivers turn off between conversions. This results in the touch panel’s voltage rising at the beginning of each conversion—the touch panel will never have a chance to settle in this case. ADVANTAGES OF DIFFERENTIAL MODE OPERATION

?Able to handle touch panel with long settling time without extending acquisition time of the A/D converter. Figure 4 shows that if control byte B and C are the same, the internal X/Y switch of the ADS7843 will not turn off after completing a conversion for control byte B. This will provide enough time for the touch panel voltage to settle to a stable voltage.

The converted data for control byte B will not be correct as its acquisition period occurred at the time that the touch panel voltage was still ringing. However, the converted data for control byte C will be correct because at the time of acquisition the touch panel voltage had already settled to a stable voltage.?By using a faster clock, the ADS7843 will have some spare time to go into power down mode and hence conserve battery energy.

Figure 4 shows that the conversion period for control byte C (fast clock) ends before the conversion period for control byte A (slow clock). After the end of conversion for control byte C, the ADS7843 can go into power down mode and wait for the next sampling period. However, for control byte A, the next sample period may have to come immediately after the current conversion, and hence no time for power down.

NOISY ENVIRONMENTS

Great care is needed in touch screen applications to prevent a noisy environment from detracting from the high perfor-mance of the measurement system. A touch screen on the input of a high impedance A/D converter is just like adding an antenna to the input of the system. The touch screen can pick up noise signals from the back-light source for the LCD display or from external EMI/RFI sources. The simplest way to minimize these noise sources is by adding capacitors from the touch screen drivers to ground, forming a low-pass filter.

A typical value to start with is 0.01μF capacitors from each input/output to ground. Figure 5 shows the range of choices for filter capacitors, depending upon the touch panel plate resistance and desired number of coordinate-pair readings per second.

FIGURE 5. Filter Capacitor Selection Depends Upon Plate Resistance and the Number of Coordinate-Pair Readings per Second Desired. The worst thing you can do is to put a series resistor in the lines from the driver to form a low-pass filter on the input.

A series resistor will limit and lower the resolution of the converter because of the added voltage drop across the resistor. This drop could be significant depending upon the impedance of the touch screen used.

One issue to be aware of when adding capacitors for filtering is the effect they have on settling time of the touch-screen when the drivers are turned on. Depending on the A/D data rate and the mode of operation, the touch screen could never

settle to accurate levels, especially if operated in the single-ended mode. In the differential mode the touch-screen is connected during both acquisition and measurement mode and unless commanded to the power-down mode will con-tinue to be connected through the drivers. Although it also relies on 3 clock cycles to acquire the input to the A/D, the touch-screen will eventually settle; keeping the power ap-plied to the drivers over multiple measurements allows for a longer settling time. Depending on the time constant set by the touch-screen impedance and the filter capacitor neces-sary to reduce the noise to an acceptable level, several conversions may be required.

Several options are open for obtaining accurate results. The first alternative is to stretch the acquisition period, clocks 6, 7, and 8, by slowing the clock down during this time to achieve the necessary time delay for settling. By determin-ing the time constant and allowing 9 time constants for 12-bit settling time, this will assure the touch-screen has settled. This can be done only during clock 6, 7, and 8, or can be done through the entire process. The minimum clock frequency to insure there is no droop in the sample-hold during the mearsurement cycle is 10kHz. The second alter-native is to provide digital comparison of the measured voltage over several conversions and accept the reading when 2 or more consecutive readings are within acceptable limits, such as 2 or 3 counts.

In some applications, the noise levels can be very large and further filtering will be required to obtain stable readings. Utilizing an L/C pie filter on each of the four input/output lines can be used to achieve this level of filtering.

THE PEN INTERRUPT

The function of the pen interrupt pin is frequently misunder-stood. This section serves to give more detailed information on the function of PENIRQ, and touches on the aspect of offset error that is introduced by the internal diode at the PENIRQ pin. Preventing false triggering of the PENIRQ is also explored .

OPERATION OF PENIRQ

The pen Interrupt feature of ADS7843 is implemented with a simple analog circuit; an open anode built-in diode.

By simply pulling-up the PENIRQ pin of ADS7843 to V CC, a basic interrupt function can be implemented. Figure 6 shows the simplified schematic with the ADS7843 set to power down mode and pen interrupt enabled (PD1, PD0 = 00).

While the touch panel is untouched, the internal diode of the ADS7843 is not biased, and no current (or negligible leak-age current) will flow. The voltage level at point A will be approximately V CC.

When the touch panel is pressed, the internal diode of ADS7843 is forward biased and current flows to complete this current loop to ground (refer to current path of I F in Figure 6). Now, the voltage at point A is pulled LOW to about one forward voltage drop of the diode. The LOW going voltage level a point A will signal the processor that

FIGURE 6. Simplified Schematic of ADS7843 for PD0, PD1 = 00. FIGURE 7. Simplified Schematic of ADS7843 for A2A1A0 = 001.

the panel is pressed. The processor will then execute its interrupt service routine to instruct the ADS7843 to perform a conversion.

The simple pull-up method shown in Figures 6 and 7 will introduce error to the A/D conversion. This error is often called offset error as it is caused by a DC leakage current through the internal diode (refer to the I F current path in Figure 7). The current raises the voltage potential at the input of the A/D converter and creates a conversion error. This error is only introduced at Y-axis conversion because in X-axis conversion the internal diode is reversed biased. Figure 7 shows the simplified schematic with the ADS7843 configured for Y-axis conversion (A2A1A0 = 001). There are two current paths (labeled as I F and I TOUCH in Figure 7) through the touch panel when the panel is pressed. The I TOUCH is the necessary current that develops voltage potential across the pressed point, whereas I F is the un-wanted current through the diode that causes an offset error in the conversion.

that it will activate the ADS7843.

This allows sharing of the serial bus and prevents noise from being coupled at the DIN input to be interpreted as a control byte.version result as DATA X and the Y-axis conversion result as DATA Y.

FIGURE 9. Input Protection for ADS7843.

Flowchart 1

Figure 10 shows an example of using the software de-bouncing method to overcome touch panel signal ringing for both an interrupt signal and conversion.

In this solution, DATA1 is used to store current conversion results, DATA2 is used to store previous conversion results, and DATA X and DATA Y are used to store valid X-axis and Y-axis conversion results, respectively. DATA1 and DATA2 are used together to realize S/W de-bouncing that confirms the conversion result is valid when the current and previous conversion results are the same. This provides a flexible approach for the software to handle touch panels of different settling characteristics. It is, however, prone to misinterpretation of valid conversions when the ringing frequency of the input voltage is very close to the sampling rate.Flowchart 2

Figure 11 is another example that uses the software de-bouncing solution to overcome signal ringing problems for the interrupt signal, and takes the last (n th) conversion result as the valid conversion.

This solution is much simpler than the previous one, but is only suitable for touch panels that have similar settling characteristics. It takes the last conversion result as a valid conversion result instead of using S/W de-bouncing method. The value of “n” is dependent on the settling time of the input voltage to the ADS7843. The user has to test out a number of touch panels before deciding on the value of “n”. NOTE:If you need to put the ADS7843 into power-down mode with PENIRQ enabled, you will need to execute an additional conversion cycle with PD1 and PD0 set to ‘00’. However, if the 15-Clock conversion cycle mode is used, you can set PD1 and PD0 as ‘00’ for both X and Y-axis conversion.

FIGURE 10.FIGURE 11.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright ? 2000, Texas Instruments Incorporated

触摸屏控制芯片ADS7843中文资料(附c语言程序)

触摸屏控制芯片ADS7843中文资料 ADS7843是一个内置12位模数转换、低导通电阻模拟开关的串行接口芯片。供电电压 2.7~5 V,参考电压VREF为 1 V~+VCC,转换电压的输入范围为0~ VREF,最高转换速率为125 kHz。 ADS7843引脚图及引脚功能说明了: ADS7843的引脚配置如图3所示。表1为引脚功能说明,图4为典型应用。 aDS7843引脚说明

ADS7843典型应用电路 2.2 ADS7843的内部结构及参考电压模式选择 ADS7843之所以能实现对触摸屏的控制,是因为其内部结构很容易实现电极电压的切换,并能进行快速A/D转换。图5所示为其内部结构,A2~A0和SER/为控制寄存器中的控制位,用来进行开关切换和参考电压的选择。 ADS7843支持两种参考电压输入模式:一种是参考电压固定为VREF,另一种采取差动模式,参考电压来自驱动电极。这两种模式分别如图6(a)、(b)所示。采用图6(b)的差动模式可以消除开关导通压降带来的影响。表2和表3为两种参考电压输入模式所对应的内部开关状况。

2.3 ADS7843的控制字及数据传输格式 ADS7843的控制字如表4所列,其中S为数据传输起始标志位,该位必为"1"。A2~A0进行通道选择(见表2和3)。 MODE用来选择A/D转换的精度,"1"选择8位,"0"选择12位。 SER/选择参考电压的输入模式(见表2和3)。PD1、PD0选择省电模式: "00"省电模式允许,在两次A/D转换之间掉电,且中断允许; "01"同"00",只是不允许中断; "10"保留; "11"禁止省电模式。

易捷通触摸屏收款机使用说明书

前言 非常感谢您选用易捷通触摸屏系列产品,本手册适用于易捷通生产的部份触摸屏产品。在安装和使用产品之前,请您详细阅读本手册,以便您对它的性能有深入的了解。请保存好此手册,将来如果您遇到使用问题时以便参考。 本公司为改进产品,将尽可能采用新技术、新元器件。因此本公司有权更改而不另行通知。本手册所描述的特性、功能和操作也许与本公司在各地所销售机器的性能并不完全一致,有些情况下,图片只是设备原型,在使用本手册前,应向本公司或经销商询问当前适用的资料。 本手册只适用于在中国境内使用的易捷通部分触摸屏。本手册包括截止到该手册印刷时的最新信息。本公司全权负责该手册的修订与说明,并保留该手册印刷后更改产品而不另行通知的权利。本手册中部分示意图,仅供参考,若图片与实物不符,请以实物为准。 本设备必须由售后服务人员或经销商进行安装。对于未经授权对本设备的更改、不按规定替换连接设备及电缆所造成的一切后果,本公司不负任何责任。 本手册最终解释权归深圳市易捷通科技有限公司所有 2013年3月

目录 一、安全使用注意事项---------------------------------------------------3 二、初始安装---------------------------------------------------------------4 三、触摸屏外型--------------------------------------------------------5-7 四、产品说明 (1)、液晶品牌和型号以及技术参数的说明----------------- 7 (2)、触摸屏型号以及技术参数的说明------------------------8 (3)、主板接口图一--------------------------------------------9-10 (4)、主板接口图二-------------------------------------- --------11 五、双屏系统设置 (1)、BIOS双屏显示设置-----------------------------------12-14 (2)、 WindowsXP系统双屏显示设置---------------------14-18 六、软件操作指南 (1)、触摸屏驱动安装--------------------------------------19-24 (2)、触摸设置及应用---------------------------------------25-27 七、常见问题-------------------------------------------------------------28 八、保修条款--------------------------------------------------- ---------29

触摸屏控控制

触摸屏控控制 1 触摸屏原理 S3C2410接4线电阻式触摸屏的电路原理如图1所示。整个触摸屏由模向电阻比和纵向电阻线组成,由nYPON、YMON、nXPON、XMON四个控制信号控制4个MOS 管(S1、S2、S3、S4)的通断。S3C2410有8个模拟输入通道。其中,通道7作为触摸屏接口的X坐标输入(图1的AIN[7]),通道5作为触摸屏接口的Y坐标输入(图1的AIN[5])。电路如图2所示。在接入S3C2410触摸屏接口前,它们都通过一个阻容式低通滤器滤除坐标信号噪声。这里的滤波十分重要,如果传递给S3C2410模拟输入接口的信号中干扰过大,不利于后续的软件处理。在采样过程中,软件只用给特殊寄存器置位,S3C2410的触摸屏控制器就会自动控制触摸屏接口打开或关闭各MOS管,按顺序完成X坐标点采集和Y坐标点采集。 2 S3C2410触摸屏控制器 S3C2410触摸屏控制器有2种处理模式: ①X/Y位置分别转换模式。触摸屏控制器包括两个控制阶段,X坐标转换阶段和Y坐标转换阶段。 ②X/Y位置自动转换模式。触摸屏控制器将自动转换X和Y坐标。 本文使用X/Y位置自动转换模式。 3 S3C2410触摸屏编程 由于触摸屏程序中参数的选取优化需要多次试验,而加入操作系统试验参数,每次编译下载耗费时间过多,不易于试验的进行,因而我们直接编写裸机触摸屏程序。三星公司开放了S3C2410测试程序2410test(可在三星网站下载),提供了触摸屏接口自动转换模式的程序范例,见本刊网站。本文在此范例的基础上编写了触摸屏画图板程序——在显示屏上画出触摸笔的流走痕迹。 针对坐标点采样时产生的噪声,本文采用噪声滤波算法,编写了相应的噪声滤波程序,滤除干扰采样点。整个触摸屏画图板程序的处理流程如图3所示。 3.1 程序初始化 初始化触摸屏控制器为自动转换模式。其中寄存器ADCDLY的值需要根据具体的试验选取,可运行本文提供的程序看画线的效果来选取具体的参数。触摸屏中断处理程序Adc_or_TsAuto是判断触摸屏是否被按下了。触摸屏被按下,给全局变量Flag_Touch赋值为Touch_Down,否则赋值为Touch_Up。 初始化脉宽调制计时器(PWM TIMER),选择计时器4为时钟,定义10ms中断1次,提供触摸屏采样时间基准,即10ms触摸屏采样1次。计数器中断处理程序Timer4Intr中判断Flag_Touch被赋值为Touch_Down,则给全局变量gTouchSta rtSample置位,以控制触摸屏采样。 之后清除触摸屏中断和计时器中断屏蔽位,接受中断响应,同时计时器开始计时。 3.2 触摸屏采样程序

SGL K 两通道触摸按键控制芯片

目录 1.概述 (2) 2.特性 (2) 3.封装及引脚说明 (3) 4.封装尺寸图 (3) 5.应用电路图 (5) 6.电气参数 (5) 7.BOM表 (6) 8.修改记录......................................................................错误!未定义书签。

1. 概述 SGL8022K是一款两触摸通道带两个逻辑控制输出的电容式触摸芯片。具有如下功能特点和优势:?可通过触摸实现各种逻辑功能控制。操作简单、方便实用。 ?可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能,安全性高。 ?应用电压范围宽,可在2.4~4.5V之间任意选择。 ?应用电路简单,外围器件少,加工方便,成本低。 ?抗电源干扰及手机干扰特性好。EFT可以达到±2KV以上;近距离、多角度手机干扰情况下,触摸响应灵敏度及可靠性不受影响。 2. 特性 LO1与LO2在上电后的初始输出状态由上电前OSC的输入状态决定。OSC管脚接VDD(高电平)上电,上电后LO1与LO2输出高电平;OSC管脚接GND(低电平)上电,上电后 LO1与LO2输出低电平。 TI1触摸输入对应LO1逻辑输出,TI2触摸输入对应LO2逻辑输出。 按住TI1或TI2,对应LO1或LO2的输出状态翻转;松开后回复初始状态。

3. 封装及引脚说明 DIP8 SOP8 管脚序号 管脚名称 输入/输出 功能描述 1 OSC 输入选项输入脚 2 VC 输入采样电容接入脚 3 VDD 电源电源正 4 GND 电源电源负 5 TI1 输入触摸输入 6 TI2 输入触摸输入 7 LO1 输出控制输出 8 LO2 输出控制输出

ADP 触摸屏说明书

HITECH系列触摸屏ADP6软件使用说明 ADP6软件采用“所见即所得”、“对象导向”理念,实现“拖曳式”编辑。 一、建立新的工程文件 点击菜单中文件→新建或点击快捷工具栏中的打开新文件图标,弹出工作参数对话框,选择人机界面种类和PLC种类(视使用的人机和PLC种类选择,本训练使用PWS6600 Color标准型和Simatic S7200 PPI),其他内容默认。新文件建立之后“确定”即可进入画面编辑。 图1 设定工作参数 二、画面编辑 当前画面为画面1,如需要设计多画面,在菜单中点击画面→新建画面,弹出产生新画面对话框,增加画面2,可以填写画面名称,确定后即为当前画面,其他画面依此方法操作。通过点击画面→画面管理员,显示画面大纲,双击某画面或选中后使用右键弹出菜单→开启画面就可设为当前画面,也可使用快捷按钮在上下画面间切换。 单击查看→放大画面,选择一定比例使画面大小合适。 在HITECH系列触摸屏中,可使用的画面元件有下列几类: ①可触摸元件指在画面上定义的按钮(开关)、切换画面的按键,这些元件一般兼有可触摸功能、数据输入功能和显示功能。

②状态显示元件指在画面上定义的状态灯(指示器)、动态字符信息显示等,触摸这些元件时系统没有反应,仅仅被用作信号的运行状态显示。 ③动态资料及人机记录缓冲区显示元件指在画面上定义的图表(棒图、折线图、圆形图、仪表盘、条形统计图、圆形统计图、折线统计图)或人机界面使用PLC内存作记录缓冲区状态显示元件(历史趋势图、表)。 ④静态显示元件指在画面上定义的静态文字、静态图形(直线、圆、矩形、文字等)背景元件,不受PLC程序控制。 除静态显示元件外,画面元件和PLC控制程序相关,画面元件地址为PLC 内部存储器(位)、变量存储器(字、双字)地址,并出现在PLC程序中,可触摸元件为输入元件,其他为输出元件。 (1)按钮 功能 设ON按钮:按一次对应接点设为ON,手放开或再按仍为ON。 设OFF按钮:按一次对应接点设为OFF,手放开或再按仍为OFF。 交替型按钮:按一次按钮该接点设为ON,手放开仍为ON;再按一次OFF。 保持型按钮:按住此按钮该接点ON,手放开OFF。 复状态按钮:如此按钮有3个状态,按一次按钮送 S0 信号给PLC,再按一次按钮送 S1 信号给PLC,再按一次按钮送 S2信号给PLC,此按钮 可正循环动作(S0→S1→S2→S0)或反循环动作(S0→S2→S1→S0)。 状态数最多可达256个。 设值按钮:触摸此按钮,人机马上就送出指定的常数值给PLC相对应之缓存器。加/减值按钮:触摸此按钮,人机马上先从PLC读取缓存器的内容值并加/减所设数值,再将运算结果写至PLC相对应之缓存器。 换画面按钮:按一次该按钮,人机直接切换到指定画面。属性中—“指定生效位” →当指定的位条件成立才能换页。“认知警报”→表示人机已经收 到目前所发生的警报讯息。“通知”→换画面的同时,触发一接点。回前一画面:按一次该按钮,人机就切换回屏幕先前一次显示的画面。 数据转文字文件:可将记录缓冲区,配方数据,警报历史文件,警报频次文件等数据转成文字文件(*.PRN)存档,亦可由EXCEL,WORD,记事本等 文书软件读出。(SoftPanel 才提供) 功能按钮:在功能键中包含下列17种选项,从对比度上升到执行应用程序等。 对比度上升按该按钮,人机屏幕对比增加。(SoftPanel 不提供) 对比度下降按该按钮,人机屏幕对比减少。(SoftPanel 不提供) 保存对比度按该按钮,人机储存对比。(SoftPanel 不提供) 密码表按一次该按钮,人机就显示系统密码表的窗口。LEVEL=1才能操作。 重新输入密码按一次该按钮,人机就显示重新输入密码的窗口。 设为最低用户等级按一次该按钮,人机系统就切换为密码最低等级 LEVEL=3。 打印画面按一次该按钮,人机就会打印实际应用时此画面的指定打 印区域(HARDCOPY方式)。 回系统目录按一次该按钮,人机就切换回到系统目录画面。LEVEL=1 才能操作。 关闭背灯按一次该按钮,人机就关闭屏幕背灯。(SoftPanel 不提

触摸屏的操作方法步骤

触摸屏显示器,以及外置的手写板,甚至有些笔记本电脑上充当鼠标的触控板也可以当作触摸屏使用。并且如果设备支持,用户还可以同时使用多根手指执行操作,这也就是现在非常热门的多点触摸功能。 工具/原料 计算机 触摸屏 方法/步骤 打开“开始”菜单,在“计算机”上单击鼠标右键,在弹出的快捷菜单中选择“属性”,打开系统属性窗口。在“系统”类别下,有一个名为“笔和触摸”的属性,只要这里显示为“可用”,那么就表示这台计算机是支持触摸操作的,如果显示为“单点触摸”,表示这台计算机支持单点触摸,也就是可以使用一根手指进行操作;如果显示为“多点触摸”,则表示这台计算机支持多点触摸,可同时使用两根或更多根手指进行操作。 单击左右键操作实现后,还有一个比较棘手的问题,那就是鼠标的指向操作在使用致标时,将鼠标指针指向屏幕上的文件,系统会自动用屏幕提示的方式显示有关该文件的相关信息。但在使用触摸方式操作时,这种指向操作就不太容易实现了。如果设备使用了电磁感应式触摸屏,那么把触控笔悬停在屏幕上方lcm左右的距离,即可实现“指向”操作;不过现在很多设备,尤其是多点触摸设备,大部分使用了压感式屏幕,要求必须将手指紧贴屏幕表面才能生效,这种情况下如何进行“指向”,而不是“左键单击” ? 打开“控制面板”,依次进入“硬件和声音”一“笔和触摸”,打开“笔和触摸”对话框切换到“碰”选项卡,在“触摸指针”选项下,选中“与屏幕上的项交互时显示触摸指针”。 单击“高级选项”按钮,打开高级选项对话框,在这里可按需要对屏幕上显示的虚拟鼠标进行设置,例如左手或右手习惯、虚拟鼠标的透明度和大小,以及光标的移动速度等,设置完毕单击“确定”按钮,关闭所有打开的对话框 在经过上述设置后,在使用手指或触控笔点击屏幕后,碰触点周围就会出现一个虚拟的鼠标图案,随后可以用手指或触控笔拖动这个鼠标,以移动指针,或者点击该鼠标的左右键,实现鼠标单击操作 本文源自大优网https://www.360docs.net/doc/1d13209850.html,

三菱触摸屏(人机界面)常见问题解析(一)

三菱触摸屏(人机界面)常见问题解析(一) 三菱触摸屏F940G0T-BWD-C有没代替型号?更换需要什么变动吗? 三菱触摸屏F940G0T-BWD-C现在已经停产了,可以用GT1050-QBBD这款代替的,都是5.7寸,2色的。两者软件不同,F940使用的是DU软件,GT1050使用的JT-DESIG N(设计)软件,需要用JT软件把DU软件导出来在转换就可以啦! GT10系列触摸屏相关 GT1030三菱触摸屏如何使用USB进行数据传输? 使用USB转232电缆 + QC30R2 连接,注意要在软件中选择合适的COM口 三菱触摸屏突然断电了,之后会怎么动作? 瞬时掉电<5ms时,继续动作。长时间停电、电压低的时候,触摸屏动作停止;恢复上电之后将会自动重启。 三菱触摸屏液晶屏有亮点、黑点,而且闪烁,是不是触摸屏不好? 三菱触摸屏有亮点(一直点亮的点)和黑点(不点亮的点)发生是液晶屏的特性。液晶屏中有非常多的显示元件,因此不能保证100%不出现亮点和黑点。此外,根据显示色不同,可能有闪烁出现。出现亮点、黑点或者闪烁,并不是产品不好或者故障,而是其特性。 如何在三菱触摸屏系统菜单当中进行通讯监视? 可以通过同时触摸屏幕左右上角进入系统菜单,然后触摸‘通讯设置’,接着触摸‘通讯监视’,其中黑底白字部分表示不执行发送或者接收。 三菱触摸屏的触摸定位不准确,如何校准? 进入触摸屏系统菜单设置界面,选择‘校准’菜单,精确点击[+]号直到返回菜单设置界面即可 三菱触摸屏实用菜单功能的启动方式。 1.无工程数据时,上电之后,触摸OK键即可以显示实用菜单。 2.显示编写的画面时,默认出厂设置是触摸左上角,即可显示实用菜单。 3.在画面中设置扩展功能开关,选择实用菜单,即可显示实用菜单。 使用三菱触摸屏时如何让窗口自动弹出? 为窗口切换软元件赋值,数值为指定弹出窗口的编号即可。 GT10系列三菱触摸屏可以仿真吗 使用GT Simulator3新软件可以仿真,软件版本需要在1.22Y以上支持。 报警记录显示当中,可不可以使用不同的软元件报警? 不可以,因为在三菱触摸屏GT10系列报警记录软元件公共设置中,软元件设定只能选择连续方式,不能选择随机方式,因此只能选择连续的软元件实现报警记录显示功能。 键代码开关当中的梯形图显示为什么按下无效? GT10系列的三菱触摸屏没有梯形图监视的功能。 当位软元件为ON或者OFF时,可分别切换不同的画面吗? 当三菱触摸屏位软元件为ON或者OFF时,可以分别切换不同的画面。画面的切换是通过给画面切换软元件赋值,画面切换软元件为字软元件。通过状态监视功能中的设置条件位软元件的状态,并且在动作中给画面切换软元件赋值为固定值即可。 输入数值怎么和文本显示的文字对应? 回答:将需要显示的文本登录到注释或者注释组当中。然后使用注释显示(字),显示与字软元件的值相对应的注释的功能。

触摸屏plc一体机使用手册

第二代触摸屏plc一体机操作步骤 第二代触摸屏plc一体机的用户说明书发展越来越迅速,市场空间越来越大。教育行业需求一日比一日多,商业连锁店也大量上此产品,企业会议再也不用投影,而是转型到触摸一体机,政务部门都在争先恐后的上触摸一体机互动广告机。 那么第二代触摸屏plc一体机为什么这样受众人追捧? 而这个行业的领袖商、 触派电子,又为什么也是很多人选购触摸一体机的对象。 那么今天我们从第二代触摸一体机构建的触摸屏说起。 第二代触摸屏plc一体机核心组成部分是触摸屏。 那么在说触摸一体机组成的触摸屏之前,我重点在解说下四种触摸屏。 触摸屏分四种性质的,是根据它们的物理原理而得的。 红外触摸屏技术特点不做过多的解释。主要谈它的应用。 红外触摸屏不受环境影响。不怕污渍,不怕水,不怕长时间点击,不

怕风。而且4四种触摸屏种,只要红外触摸屏才能做大尺寸的。什么叫大尺寸,这里我定义为32寸以上的。只有红外触摸屏才能做32寸以上的,现在市面上红外触摸屏能做到200寸甚至以上。 而且它还有一个特点,然后物体都可以触摸,他是靠红外灯光发色红外线技术产生触摸的。只要是物体在上面触摸,就是将亮变暗。只要里面灯管不坏,就一直能精准触摸。寿命至少在6000万次点击。 品牌 行业领袖 用红外触摸屏行业最顶级的技术厂家。(触派)可以精准定位触摸,不受环境影响。可以做到4点,6点,8点,32点等等以上。 这里还普及下多点。特别提醒多点是在win7 系统,软件商自行开发的软件下,才能看出多点效果。如果在系统下面其实只是替代一个鼠标作用。最多在画图软件下,才能看出多少点。如果说8点,就8个手指同时画。看线画的流畅不流畅,有没有跳动。如果画线流畅,不跳动,那么这个触摸屏就2014年中考冲刺综合复习指导北京地区试题广东地区试题江苏地区试题很好。 电容触摸屏直接被大尺寸触摸一体机淘汰掉?为什么行业领导品牌 触派电子不采用电容屏?

永宏PLC及显控触摸屏安装及简易上载下载操作方法

安装SATOOL6.0触摸屏软件: 1、双击 2、选择中文 3、下一步: 4、选择“我同意”并点击下一步: 5、选择安装目录,默认即可:

6、一直点击下一步直至安装完成,桌面出现。 7、如果安装完毕后驱动仍然不能使用,请手动安装: 1 插入设备之后会有提示未完成安装驱动,忽略; 2 打开设备管理器,选择带有黄色叹号的HMI设备并右键选择更新驱动; 3 在对话框选择“从列表或指定位置安装(高级)”; 4 浏览—选取usb驱动所在的位置—“C:\Program Files\SATOOL\USB”,或“C:\Program Files (x86)\SATOOL\USB” 5 点击下一步-完成;即能完成手动安装驱动的步骤; SATOOL6.0触摸屏上载: 1、打开软件后,选择下载(D)--->上载,如下图: 2、选择上载后,弹出如下窗口,选择文件路径用于保存文件,及工程名称作为文件名:

3、点击上传文件按钮SATOOL6.0触摸屏下载: 1、选择下载(D)--->编译+下载 2、选择下载:

安装WinProladder编程软件: 1、双击,选择下一步: 2、选择安装目录,默认即可,选择下一步: 4、点击下一步直至安装完成。WinProladder编程软件上载: 1、桌面出现,双击打开。

2、注意:必须空白文档,不要新建或者打开文件情况下选择PLC---->联机,弹出如下窗口,选择否: 3、点击自动检知按钮,然后确定: 4、弹出如下窗口,参数默认即可:

5、点击确定后,如果通讯成功的话弹出如下窗口: WinProladder编程软件下载: 1、打开修改好的程序文件,按照上载步骤操作到第5步,弹出如下窗口: 2、这时,弹出窗口,提示程序与PLC不一致,选择是,即可完成下载: 3、选择PLC--->执行,弹出窗口选择是,运行PLC:

三菱触摸屏使用CF卡的方法

三菱触摸屏使用CF 卡的方法 三菱触摸屏下载或上传画面有两种方法:一个是使用串口电缆,一个是使用CF 卡。如果对于画面比较少的情况,使用串口电缆可以说比较方便,但对于画面比较多的情况下,再使用串口电缆就比较麻烦了,一个是时间需要长,另外一个是有可能经常会遇到下载最后几画面时下载不成功的情况,这时你就不得不重新下载了。就拿我遇到的情况,下载70 多个画面使用串口电缆大概需要45 分钟左右,实在是让人难以忍受,而且因为串口易受干扰的缘故,经常遇到到最后几个画面时下载不成功的情况发生。这时,你就需要考虑使用CF 卡下载或上传画面程序了。 下面简要介绍三菱触摸屏使用CF 卡下载或上传画面的步骤。 一、下载画面(到CF 卡) 1、触摸屏操作 (1)插入CF 卡到触摸屏CF 插槽 800)this.width=800 ” data-cke-saved-src= “ data/attachment/portal/201308/10/120037b h5zwezwachmhu44.jpg ”>

(2)CF卡开关打到ON,指示灯亮 800)this.width=800 ” data-cke-saved-src= “data/attachment/portal/201308/10/120037a 1xpg1o2s8f10fm0.jpg ”> ( 3 )同时按触摸屏左上角,左下角和右上角,再松开手时,出现下面的系统设定画面: 800)this.width=800 ” data-cke-saved-src= “ data/attachment/portal/201308/10/120037u dttyzyswx3dyw6c.jpg ”> (4)点击“ DATA&OSCOP”Y 按钮,出现数据拷贝画面: 800)this.width= 800” data-cke-saved-src= “ data/attachment/portal/201308/10/120037n 1r2vxoe1vpxerap.jpg ”>

ti触摸屏控制芯片使用技巧

TOUCH SCREEN CONTROLLER TIPS By Skip Osgood, CK Ong, and Rick Downs Burr-Brown makes a number of specialized analog-to-digi-tal converters for touch screen applications. The ADS7843,ADS7845, and the new ADS7846 converters all are de-signed for specific touch screen applications. Applications using these devices can benefit greatly from the tips pre-sented in this application bulletin. Most of the examples discuss the ADS7843, but the techniques shown are appli-cable to all of the devices. We begin by looking at the theory of operation of a resistive touch screen, and using these specialized A/D converters with such a screen. Techniques are presented for improving accuracy and minimizing errors; the operation of the pen interrupt line (PENIRQ) is explored, ESD protection meth-ods for the converters, and issues surrounding interfacing these converters to popular microprocessors are discussed.RESISTIVE TOUCH SCREENS A resistive touch screen works by applying a voltage across a resistor network and measuring the change in resistance at a given point on the matrix where a screen is touched by an input stylus, pen, or finger. The change in the resistance ratio marks the location on the touch screen. The two most popular resistive architectures use 4-wire or 5-wire configurations (as shown in Figure 1). The circuits determine location in two coordinate pair dimensions, al-though a third dimension can be added for measuring pres-sure in 4-wire configurations. THE 4-WIRE TOUCH SCREEN COORDINATE PAIR MEASUREMENT A 4-wire touch screen is constructed as shown in Figure 2.It consists of two transparent resistive layers. The 4-wire touch screen panel works by applying a voltage across the vertical or horizontal resistive network. The A/D converts the voltage measured at the point the panel is touched. A measurement of the Y position of the pointing device is made by connecting the X+ input to a data converter chip, turning on the Y+ and Y– drivers, and digitizing the voltage seen at the X+ input. The voltage FIGURE 1. 4-Wire and 5-Wire Touch Screen Circuits. Four-Wire Five-Wire FIGURE 2. 4-Wire Touch Screen Construction.

触摸屏控制器使用说明书

一. 触摸屏控制器型号:FX-TK04U;FX-TK04R;FX-TK05U;FX-TK05R 信息发布内容: 1)深圳方显科技触摸屏控制器可用于任何四线、五线电阻屏,11位AD转换,分辨率可到2048*2048。RS232/USB接口可选。简单的通讯指令即可实现触摸功能。支持操作系统:MS-DOS,WINDOWS3.X/9X/ME/NT/2000/XP/CE,LINUX单片机专用触摸屏控制器,车载专用触摸屏控制器,直接提供菜单式操作,大大节约嵌入式MCU资源;MCU专用接口,使您的产品无须改动直接接入触摸屏控制。 2) 深圳方显科技4线触摸屏控制器产品概述FX-TK04R/FX-TK04U 触摸屏分辨率:2048x2048 4点定位 25点定位 支援鼠标右键 支援画线测试 驱动程序包括:Windows 98, 2000, NT4, Me, XP, XP Tablet Edition, CE 2.12, CE 3.0, https://www.360docs.net/doc/1d13209850.html,, Linux, DOS & iMac 多语系的操作窗口 支援多个监视器 具备视觉旋转度 触摸屏通讯接口:RS232 或USB 计算机通讯接口:Pin Header 电气参数 电源要求: +5VDC ( Maximum 100mA, typical 70mA, 50mV peak to peak maximum ripple) 工作温度: 0 to 50℃ 贮存温度: -40 to 80℃ 湿度: 95% at 60℃ 通讯协定:RS232 Model: 9600 bauds, None parity, 8 data bits, 1 stop bit USB Model: USB 1.1 Low speed 采样速度:RS232 Model: Max. 160 points/sec USB Model: Max. 160 points/sec 最大按压延迟时间: Max. 35 ms 出线顺序: X+, Y+, X-, Y- 电阻范围: 200 ~ 900 ohm ( pin to pin on the same layer 3) 单片机专用触摸屏控制器FX-TK04RMCU 深圳方显科技是国内著名显示及触控产品的专业厂商。依靠其强大的研发能力,开发出多款LCD控制器和触摸屏控制器。LCD控制器使得单片机、DSP、各种嵌入式CPU轻松实现LCD (TFT)显示。触摸屏控制器有连笔型和点触型两种。连笔型触摸屏控制器支持4线、5线各尺寸电阻触摸屏。点触型触摸屏控制器可连接各类MCU、单片机、DSP、ARM等嵌入式系统,为不同的客户确定最佳应用。使用点触型触摸屏控制器,开发工程师不再需要详细了解触摸屏工作原理,做复杂的编程,只需简单读取触摸XY位置信息,快速完成研发工作。也可根据不同MCU的特点及不同的功能,为客户定制程序使得各种MCU均能轻松接上触摸屏,实现各具特色的人机接口。

三菱触摸屏GOT2000与三菱Q系列以太网通讯

三菱触摸屏GOT2000与三菱Q系列以太网通讯 陈龙 1.Q02UCUP加QJ71E71-100与两个GT2310-VTBA通讯 在GX Works2中新建工程,选择Q02U CPU,在参数中的网络参数的以太网等等,选择模块1,具体设置如下图: 因为我把QJ71E71-100放在I/O0上面,所以起始I/O号为0000,网络号要和GOT统一,站号不能重复。 然后点击运行设置,如下图:

因为我是调试,所以我选择始终open等待,IP地址前3位和GOT一样,后一位不同就ok。 然后就点设置结束,不点就不会保存,再选择打开设置,具体设置如下图: 协议选UDP是因为GOT里面固定的,无顺序是试出来的,本站端口号,貌似可以顺便选,只好不和已经启用的重合就行,在GOT中,有个信号是传送到5001的,这里我们用5001就会报错。通讯对象端口号,就是GOT端口号,在GOT里面设置,我选的是默认的5001。IP前三同,后一位不同,在GOT里面设置。这里设置完,PLC的设置就结束了。特别注意,QJ71E71-100是占32个I/O口,分配的时候要注意。 接下来的GOT的设置。 打开GT Designer3,新建,选择机型,可以随便选,等下可以改,然后在公共设置里面有具体设置,如图:

这是机种设置,然后是连接机器设置:

机种就选第一个,然后往下拖,有个以太网设置,机器选择QJ的那个。这里顺便把IP地址,站号,网络号,端口号的一设置就ok了。GOT设置结束。 2.Q03UDECUP与两个GT2310-VTBA通讯 这个CPU有内置以太网模块,在Work2的PLC参数中设置

触摸屏说明书

触摸屏使用方法: 触摸区控制是与按钮控件结合在一起的,根据用户在配套软件中的按钮控件设置,当用户点击在该按钮触摸区处时,可指定连接下一页面、发送控件ID 号或者发送坐标值。用户点击在非按钮触摸区时,人机界面终端将不进行任何操作。 发送控件ID号时,前2个字节为“FC FC”为数据帧头,表示发送的数据为触摸屏数据,后面2个字节为控件ID号,低字节在前,高字节在后。 发送坐标值时,前2个字节为“FE FE”为数据帧头,表示发送的数据为触摸屏数据;后面4个字节为触摸屏x、y坐标数据,x坐标在前,y坐标在后,同样低字节在前,高字节在后。 若多层显示时,触摸区控制操作页面默认的是最近一次进行调用操作的页面,此时如果想激活其它的页面,则使用1B 33指令进行操作页面更改。 触摸屏所点之处都有鼠标显示,如果不想显示,可用命令1B 30 00 FF FF EE FF 关掉显示。 触摸屏模式选择命令 格式∶十六进制码∶ 1B 20 MODE FF FF EE FF 解释:1B:为命令帧头,20:为命令。MODE:为模式选择值,一个BYTE。 FF FF EE FF为帧结束。 MODE:0x00:表示单点触发,即按下触摸屏到抬起时只发送一次触摸屏通码 数值,抬起时无断码发送。 0x01:表示单点触发,即按下触摸屏到抬起时只发送一次触摸屏通码 数值,抬起时有断码发送。

如果在上位机按钮控件属性设置中设置为返回控件ID号,断码 为:FC F0 ID;ID为一个WORD,低字节在前高字节在后。 如果在上位机按钮控件属性设置中设置为返回当前点击的坐标 值,断码为:FE F0 X Y ;X,Y均为一个WORD,低字节在前高 字节在后。 0x02:表示连续触发,即按下触摸屏后一直不停地发送触摸屏数值,直到抬起,抬起时无断码发送。发送的每组触摸屏数据之间的 时间间隔可以用命令来控制,命令详见“发送触摸屏数据时间 间隔设置命令”。 0x03:表示连续触发,即按下触摸屏后一直不停地发送触摸屏数值,直到抬起,抬起时有断码发送。 如果在上位机按钮控件属性设置中设置为返回控件ID号,断码 为:FC F0 ID;ID为一个WORD,低字节在前高字节在后。 如果在上位机按钮控件属性设置中设置为返回当前点击的坐标 值,断码为:FE F0 X Y ;X,Y均为一个WORD,低字节在前高 字节在后。 发送的每组触摸屏数据之间的时间间隔可以用命令来控制, 命令详见“发送触摸屏数据时间间隔设置命令”。 例:选择触摸屏模式为单点触发不发送断码值(初始化为这种模式):1B 20 00 FF FF EE FF

三菱触摸屏使用CF卡的方法

三菱触摸屏使用CF卡的方法 三菱触摸屏下载或上传画面有两种方法:一个是使用串口电缆,一个是使用CF卡。如果对于画面比较少的情况,使用串口电缆可以说比较方便,但对于画面比较多的情况下,再使用串口电缆就比较麻烦了,一个是时间需要长,另外一个是有可能经常会遇到下载最后几画面时下载不成功的情况,这时你就不得不重新下载了。就拿我遇到的情况,下载70多个画面使用串口电缆大概需要45分钟左右,实在是让人难以忍受,而且因为串口易受干扰的缘故,经常遇到到最后几个画面时下载不成功的情况发生。这时,你就需要考虑使用CF卡下载或上传画面程序了。 下面简要介绍三菱触摸屏使用CF卡下载或上传画面的步骤。 一、下载画面(到CF卡) 1、触摸屏操作 (1)插入CF卡到触摸屏CF插槽 800)this.width=800” data-cke-saved-src=“data/attachment/portal/201308/10/120037b h5zwezwachmhu44.jpg”>

(2)CF卡开关打到ON,指示灯亮 800)this.width=800” data-cke-saved-src=“data/attachment/portal/201308/10/120037a 1xpg1o2s8f10fm0.jpg”> (3)同时按触摸屏左上角,左下角和右上角,再松开手时,出现下面的系统设定画面: 800)this.width=800” data-cke-saved-src=“data/attachment/portal/201308/10/120037u dttyzyswx3dyw6c.jpg”> (4)点击“DATA&OSCOPY”按钮,出现数据拷贝画面:800)this.width=800” data-cke-saved-src=“data/attachment/portal/201308/10/120037n 1r2vxoe1vpxerap.jpg”> (5)按SEL箭头按钮,选择“INNER MEMORY→MEMORY CARD”,再按COPY按钮,出现一个确认画面,按OK按钮确认。 800)this.width=800”

Samkoon远程控制(AK-R触摸屏)功能操作说明

Samkoon远程控制(AK-R触摸屏)功能操作说明 一、概述 远程控制主要用于HMI与PLC的1:1串口连接,支持RS232/422/485,然后将单一设备引入工厂系统,实现物联网及 广域网的控制。其原理是将HMI串口连接到远程控制器的COM1,PLC串口连接到远程控制器的COM2口,原理图如下: 二、远程PC(或手机APP)监控功能 1、打开“RemoteHMI”软件,双击“COM配置”,配置远程控制 器(或HMI选择远程客户端)参数,配置远程控制器连接的 PLC及参数,配置IP参数(客户端在HMI参数设置里配置), 指定远程控制器的IP,添加到指定的WIFI(如更换WIFI, 需要在此指定配置后下载)

2、新建画面,可添加连接设备或PLC的相关变量进行监控和控 制操作,如下图: 3、然后,找到RemoteHMI安装后的位置,点击打开“”文件, 这样PC才能通过服务器远程监控数据,如下图:

4、打开浏览器,输入:,如没有用户,请先注册用户再行登录, 如下图: 5、登录后,添加远程控制器(AK-HMI则是背后的SN序列号) 的SN,一般远程控制器正上部会贴有“RG+12位数字”,输 入后,在远程控制器上插入U盘,点击获取验证码,正常情 况下,会听到“滴”的一声,说明获取验证码成功,拔出U 盘,插入电脑,打开U盘里“”文件,提取验证码,输入到 浏览器,确定添加设备成功,如下图:

浏览器添加设备 提取U盘的验证码 6、下载对应的HMI组态工程项目到HMI,PLC程序到PLC,一 切配置成功,我们就可以通过PC打开“pcAppsys”或者手 机APP打开“HMI Client”远程监控PLC的数据了,如下图:

易捷通触摸屏收款机使用说明书

前言 特不感谢您选用易捷通触摸屏系列产品,本手册适用于易捷通生产的部份触摸屏产品。在安装和使用产品之前,请您详细阅读本手册,以便您对它的性能有深入的了解。请保存好此手册,今后假如您遇到使用问题时以便参考。 本公司为改进产品,将尽可能采纳新技术、新元器件。因此本公司有权更改而不另行通知。本手册所描述的特性、功能和操作也许与本公司在各地所销售机器的性能并不完全一致,有些情况下,图片只是设备原型,在使用本手册前,应向本公司或经销商询问当前适用的资料。 本手册只适用于在中国境内使用的易捷通部分触摸屏。本手册包括截止到该手册印刷时的最新信息。本公司全权负责该手册的修订与讲明,并保留该手册印刷后更改产品而不另行通知的权利。本手册中部分示意图,仅供参考,若图片与实物不符,请以实物为准。

本设备必须由售后服务人员或经销商进行安装。关于未经授权对本设备的更改、不按规定替换连接设备及电缆所造成的一切后果,本公司不负任何责任。 本手册最终解释权归深圳市易捷通科技有限公司所有 201 3年3月 目录

一、安全使用注意事项 ---------------------------------------------------3 二、初始安装 ---------------------------------------------------------------4 三、触摸屏外型 --------------------------------------------------------5-7 四、产品讲明 (1)、液晶品牌和型号以及技术参数的讲明----------------- 7 (2)、触摸屏型号以及技术参数的讲明------------------------8 (3)、主板接口图一--------------------------------------------9-10 (4)、主板接口图二--------------------------------------

三通道电容式触摸键芯片XC2863规格书

三通道电容式触摸键控制芯片 XC2863

目录 1概述 (3) 1.1 特性 (3) 1.2 系统框图 (4) 2管脚定义 (5) 3功能描述 (6) 4电气特性 (7) 5关键特性 (8) 5.1 环境自适应能力 (8) 5.1.1环境漂移跟随 (8) 5.1.2环境突变校准 (8) 6应用指南 (9) 7PCB设计 (10) 7.1 触摸键设计 (10) 7.1.1触摸键 (10) 7.1.2触摸键的常用结构 (10) 7.1.3触摸键设计 (11) 7.2 PCB布线 (11) 8封装 (12)

1概述 XC2863是矽励微电子推出的一款支持宽工作电压范围的三输入三输出电容式触摸键控制芯片。 XC2863内部集成高分辨率触摸检测模块和专用信号处理电路,以保证芯片对环境变化具有灵敏的自动识别和跟踪功能,且内置特殊算法以实现防水、抗干扰等需求。该芯片可满足用户在复杂应用中对稳定性、灵敏度、功耗、响应速度、防水、带水操作、抗震动、抗电磁干扰等方面的高体验要求。 XC2863为方便用户在应用中可对触摸键的灵敏度进行自主控制,特设置了灵敏度控制位。用户只需在PCB设计中对这个管脚的逻辑电平值进行设置,就能自由选择在具体应用中芯片体现出的检测灵敏度。 XC2863还内置了上电复位及电源保护电路,在典型应用中可无需任何外部器件,也无需软件、程序或参数烧录。芯片应用的开发过程非常简单,最大限度的降低了方案成本。 XC2863可广泛适用于遥控器、灯具调光、各类开关以及小家电和家用电器控制界面等应用中。 1.1特性 工作电压:2.5V~5.5V 三个高灵敏度的触摸检测通道 无需进行参数烧录 响应速度快 抗电磁干扰能力强 防水及带水操作功能 独特的环境跟踪和自适应能力 低功耗(典型工作电流< 25uA) 内置上电复位(POR)和电源保护电路 C MOS电平输出

相关文档
最新文档