对纳米材料的认识

对纳米材料的认识
对纳米材料的认识

浅谈对纳米材料的认识

“纳米”这个词语我们并不陌生,生活中常见的有“纳米洗衣机”、“纳米羊绒衫”等等。纳米材料几乎无处不在,在这里简单谈谈我对纳米材料的认识。

纳米级结构材料简称为纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深人至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。

纳米材料具有许多的特殊性质。由于纳米级尺寸与光波波长、德布罗意波长以及超导态的相干长度等物理特征尺寸相当或更小,使得晶体周期性的边界条件被破坏纳米微粒的表面层附近的原子密度减小;电子的平均自由程很短,而局域性和相干性增强。尺寸下降还使纳米体系包含的原子数大大下降,宏观固定的准连续能带转变为离散的能级。这些导致纳米材料宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等。

纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征三个研究领域。

经过几十年对纳米技术的研究探索。现在科学家已经能够在实验室操纵单个原子.纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪四大领域高速发展。

目前,不少国家纷纷制定相关计划,投入巨资抢占纳米技术的战略高地。每一种新科技的出现,似乎都包涵着无限可能,尤其是纳米机器人具有不可限量的应用前景。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。

然而,当人们陶醉在纳米材料的许多新奇功能和它将给我们生活带来的美好前景时,医学界出于特殊的职业敏感性,开始冷静地考虑纳米料将对人类健康产生的深远影响。事实上,纳米技术还将在生态环境、经济、政治、伦理道德等等方面引发诸多问题,从而在社会各个层面,它将取代基因技术成为最受争议的应用技术。

总而言之,纳米科技的发展的确给人类带来很多恩惠,推动人们加深对物质世界和生命科学的理解。但是在迅猛发展的纳米浪潮中,我们不能忽视任何事物都会产生的两重效果。因此,应该对纳米材料对人类的潜在影响给予足够的关注和探讨,让纳米材料为人类的发展和社会的进步发挥自身的作用。

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

小学数学 几何图形的认识.教师版

本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力. 几何图形的定义: 1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素. (1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置. (2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点. (3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有 尽头. (4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸 (5)两条直线相交: 两条直线相交,只有一个交点. (6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交. (7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边. (8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角. 教室里天花板上的角都是直角. 锐角比直角小,钝角比直角大. (9)三角形:三角形有三条边,三个角,三个顶点. 边 边 顶点 直角锐角钝角 顶角顶角 边边 角 角 角顶角 边 知识点拨

(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫 斜边. (11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外 的一条边叫”底”. (12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形. (13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等). (14)四边形:四边形有四条边,内部有四个角. (15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角. (16)正方形:正方形的四条边都相等,四个角都是直角. (17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等. (18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下 底,相等的两边叫腰. 直角边 斜边 直角边 腰 腰 底 直角边 直角边 斜边 腰腰 底边边 边 角 角 角 腰 腰 下底 上底

纳米科技与纳米材料课程总结

西南科技大学 纳米科技与纳米材料课程 总 结 报 告 报告人:理学院光信息1102班杨星 时间:2012.4.9

早在1959年,美国著名的物理学家,诺贝尔奖金获得者费曼就设想:“如果有朝一日人们能把百科全书存储在一个针尖大小的空间内并能移动原子,那么这将给科学带来什么!”这正是对纳米科技的预言,也就是人们常说的小尺寸大世界。 纳米科技是研究尺寸在0.1~100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。 纳米材料和技术是纳米科技领域最富有活力、研究内涵十分丰富的学科分支。“纳米”是一个尺度的度量,最早把这个术语用到技术上的是日本在1974年底,但是以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm范围。 可以说纳米技术是前沿科学,有很大的探索空间和发展领域,比如:医疗药物、环境能源、宇航交通等等。而今纳米时代正走向我们,从古文明到工业革命,从蒸汽机到微电子技术的应用,纳米时代的到来将不会很远。

这门课程我最深刻的内容是:第二讲扫描隧道显微镜及其应用 引言: 在物理学、化学、材料学和生物研究中,物质真实表面状态的研究具有重要意义。常用的手段有: 1.光学显微镜:由于可见光波长所限,光学显微镜的分别率非常 有限(一般1000nm,分辨率高的可到250nm,理论极限为200nm)。 2.扫描电镜:虽然给表面观察及分析提供了有力的工具,但由于 高能电子束对样品有一定穿透深度,所得的信息也不能反映 “真实”表面状态,分辨率3nm。 3.透射电镜:虽有很高的分辨率,但它所获得的图像实际上是很 薄样品的内部信息,用于表面微观观察及分析几乎是不可能的。 分辨率0.1nm。 4.针对这一问题,宾尼与罗雷尔于1982年发明了扫描隧道显微镜。 在不到5年的时间内,分辨率就达到了原子水平。分辨率0.01nm。 扫描隧道显微镜的基本原理: 1982年,国际商业机器公司(IBM)苏黎世研究所的 Gerd Binnig 和 Heindch Rohrer及其同事们成功地研制出世界上第一台新型的表面分析仪器,即扫描隧道显微镜(Scanning Tunneling Microscope,STM)。它使人类第一次能够直接观察到物质表面上的单个原子及其排列状态,并能够研究其相关的物理和化学特性。因此,它对表面物理和化学、材料科学、生命科学以及微电子技术等研究领域有着十分重大的意义和广阔的应用前景。STM的发明被国际科学界公认为20世

纳米科学与技术的发展历史

纳米科学与技术的发展历史 物三李妍 1130060110 纳米科学与技术(简称纳米科技)是80年代后期发展起来的,面向21 世纪的综合交叉性 学科领域,是在纳米尺度上新科学概念和新技术产生的基础.它把介观体系物理、量子力学、混沌物理等为代表的现代科学和以扫描探针显微技术、超微细加工、计算机等为代表的高技术相结合, 在纳米尺度上(0.1nm到10nm之间)研究物质(包括原子、分子)的特性和相互 作用,以及利用原子、分子及物质在纳米尺度上表现出来的特性制造具有特定功能的产品,实现生产方式的飞跃。 历史背景 对于纳米科技的历史, 可以追溯到30多年前着名物理学家、诺贝尔奖获得者Richard Feynman于美国物理学会年会上的一次富有远见性的报告 . 1959 年他在《低部还有很大 空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说, 人类 能够用最小的机器制造更小的机器。直至达到分子或原子状态, 最后可以直接按意愿操纵原子并制造产品。他在这篇报告中幻想了在原子和分子水平上操纵和控制物质.他的设想 包括以下几点: (1)如何将大英百科全书的内容记录到一个大头针头部那么大的地方; (2) 计算机微型化; (3)重新排列原子.他提醒到, 人类如果有朝一日能按自己的主观意愿排列原子的话, 世界将会发生什么? (4) 微观世界里的原子.在这种尺度上的原子和在体块材 料中原子的行为表现不同.在原子水平上, 会出现新的相互作用力、新颖的性质以及千奇 百怪的效应. 就物理学家来说, 一个原子一个原子地构建物质并不违背物理学规律.这正 是关于纳米技术最早的构想。20 世纪70 年代, 科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist 和Buhrman 利用气相凝集的手段制备出纳米颗粒, 提出了纳米晶体材料的概念, 成为纳米材料的创始者。之后, 麻省理工学院教授德雷克斯勒积极提倡纳米科技的研究并成立了纳米科技研究小组。纳米科技的迅速发展是在20 世纪 80 年代末、90 年代初。1981 年发明了可以直接观察和操纵微观粒子的重要仪器——— 扫描隧道显微镜(STM)、原子力显微镜(AFM), 为纳米科技的发展起到了积极的促进作用。1984 年德国学者格莱特把粒径6 nm 的金属粉末压成纳米块, 经研究其内部结构, 指出了它界面奇异结构和特异功能。1987 年, 美国实验室用同样的方法制备了纳米TiO2 多晶体。1990 年7月第一届国际纳米科学技术会议与第五届国际扫描隧道显微学会议在美国巴尔

纳米材料在现实生活中的应用

纳米材料属于纳米技术中的一种,是一种很特殊的材料。物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。纳米材料指的就是这种尺度达到纳米单位的、具备特殊性能的材料。它在现实生活中的应用广泛,包含以下几点: 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳

米材料的延展性的高性能陶瓷。 3、纳米传感器 纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。 4、纳米倾斜功能材料 在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。 5、纳米半导体材料 将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。 利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,然后生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能

1.1简单几何体 教案 (高中数学必修二北师大版)

§1简单几何体 1.1简单旋转体 1.2简单多面体 (教师用书独具) ●三维目标 1.知识与技能 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)掌握简单几何体的分类. 2.过程与方法 通过对简单几何体结构的描述和判断,培养学生的观察能力和空间想象能力. 3.情感、态度与价值观 通过对简单几何体的学习,体会数学的应用价值,增加学生学习数学的兴趣. ●重点难点 重点:简单几何体的结构特征. 难点:简单几何体的分类. 教学时要从生活空间里各式各样的几何体的特点入手,引导学生观察、归纳出几何体的结构特征,进而认识旋转体与多面体,找准彼此的分类特征. (教师用书独具)

●教学建议 本节内容是学习立体几何的第一节,是对简单几何体的初步认识,为以后学习立体几何内容作好图形基础.本节课宜采用观察总结式教学模式,即在教学过程中,让学生观察现实生活的几何体,在老师的引导下,去认识简单的旋转体和简单的多面体,让学生观察、讨论、总结出各几何体的特征,让学生学会把具体生活空间几何体抽象到数学中的立体几何体. ●教学流程 创设问题情景,引出问题,旋转体与多面体的特征是什么??引导学生结合现实空间几何体来认识圆柱、圆锥、圆台、球与棱柱、棱锥、棱台?通过例1及其互动探究,使学生掌握平面图形的旋转问题?通过例2及其变式训练,使学生掌握简单多面体的特征?通过例3及变式训练,使学生认识简单组合体的构成?归纳整理,进行课堂小结整体认识本节课所学知识?完成当堂双基达标,巩固所学知识并进行反馈、矫正 观察下列图形 思考它们有什么共同特点?是怎样形成的? 【提示】共同特点:组成它们的面不全是平面图形.可以由平面图形旋转而成. 1.旋转体的定义:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体.

对纳米材料的认识

浅谈对纳米材料的认识 “纳米”这个词语我们并不陌生,生活中常见的有“纳米洗衣机”、“纳米羊绒衫”等等。纳米材料几乎无处不在,在这里简单谈谈我对纳米材料的认识。 纳米级结构材料简称为纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深人至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。 纳米材料具有许多的特殊性质。由于纳米级尺寸与光波波长、德布罗意波长以及超导态的相干长度等物理特征尺寸相当或更小,使得晶体周期性的边界条件被破坏纳米微粒的表面层附近的原子密度减小;电子的平均自由程很短,而局域性和相干性增强。尺寸下降还使纳米体系包含的原子数大大下降,宏观固定的准连续能带转变为离散的能级。这些导致纳米材料宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等。 纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征三个研究领域。 经过几十年对纳米技术的研究探索。现在科学家已经能够在实验室操纵单个原子.纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪四大领域高速发展。 目前,不少国家纷纷制定相关计划,投入巨资抢占纳米技术的战略高地。每一种新科技的出现,似乎都包涵着无限可能,尤其是纳米机器人具有不可限量的应用前景。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。

石墨烯纳米材料及其应用

墨烯纳米材料及其应

二?一七年十二月

摘要 ................. 错误!未定义书签 1引言................ 错误!未定义书签 2石墨烯纳米材料介绍......... 错误!未定义书签 3石墨烯纳米材料吸附污染物...... 错误!未定义书签金属离子吸附........... 错误!未定义书签 有机化合物的吸附......... 错误!未定义书签 4石墨烯在膜及脱盐技术上的应用..… 错误!未定义书签石墨烯基膜............ 错误!未定义书签 采用石墨烯材料进行膜改进..... 错误!未定义书签 石墨烯基膜在脱盐技术的应用??… 错误!未定义书签5展望................ 错误!未定义书签

石墨烯因为其独特的物理化学方面的性质,特别是其拥有较高的比表面积、 较高的电导率、较好的机械强度和导热性,使其作为一种新颖的纳米材料赢得了越来越广泛的关注。 关键词:石墨烯;碳材料;环境问题;纳米材料 1引言 随着世界人口的增长,农业和工业生产出现大规模化的趋势。空气,土壤和水生生态系统受到严重的污染;全球气候变暖等环境问题正在成为政治和科学关注的重点。目前全球已经开始了解人类活动对环境的影响,并开发新技术来减轻相关的健康和环境影响。在这些新技术中,纳米技术的发展已经引起了广泛的关注。 纳米材料由于其在纳米级尺寸而具有独特的性质,可用于设计新技术或提高现有工艺的性能。纳米材料在水处理,能源生产和传感方面已经有了诸多应用,越来越多的文献描述了如何使用新型纳米材料来应对重大的环境挑战。 石墨烯引起了诸多研究人员的关注。石墨烯是以sp2杂化连接的碳原子层构成的二维材料,其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯还具有特殊的电光热特性,包括室温下高速的电子迁移率、半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度, 被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛的应用前景。在环境领域,石墨烯已被应用于新型吸附剂或光催化材料,其作为下一代水处理膜的构件,常用作污染物监测。 2石墨烯纳米材料介绍 单层石墨烯属于单原子层紧密堆积的二维晶体结构()。在石墨烯平面内,碳原子以六兀环形式周期性排列,每个碳原子通过C键与临近的二个碳原子相连,S Px和Py三个杂化轨道形成强的共价键合,组成sp2杂化结构,具有120° 的键角。石墨烯可由石墨单层剥离而产生,最初是通过微机械剥离,使用胶带依次将石墨粘黏成石墨烯来实现。Geim和Novoselov

高考理科数学一轮复习分层练习第八章简单几何体的再认识(表面积与体积)

[基础题组练] 1.圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是( ) A .4πS B .2πS C .πS D .233 πS 解析:选A.由πr 2=S 得圆柱的底面半径是S π,故侧面展开图的边长为2π·S π =2πS ,所以圆柱的侧面积是4πS ,故选A. 2.已知圆锥的高为3,底面半径长为4,若一球的表面积与此圆锥的侧面积相等,则该球的半径长为( ) A .5 B . 5 C .9 D .3 解析:选B.因为圆锥的底面半径R =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πRl =20π.设球的半径为r ,则4πr 2=20π,所以r =5,故选B. 3.(2020·安徽黄山一模)如图所示为某几何体的三视图,则几何体的体积为( ) A.1 2 B .1 C.32 D .3 解析:选B. 由主视图可得如图的四棱锥P -ABCD ,其中平面ABCD ⊥平面PCD . 由主视图和俯视图可知AD =1,CD =2,P 到平面ABCD 的距离为3 2. 所以四棱锥P -ABCD 的体积为V =13×S 长方形ABCD ×h =13×1×2×3 2=1.故选B. 4.(2020·河南郑州三模)某几何体的三视图如图所示,则该几何体的体积为( )

A.5π3 B .4π3 C.π3 D .2π3 解析:选D. 几何体是半个圆柱挖去半个圆锥所形成的,如图, 由题意可知几何体的体积为:12×12·π×2-13×12×12·π×2=2π 3 .故选D. 5.(2020·广东茂名一模)在长方体ABCD -A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,D 1B 与DC 所成的角是60°,则长方体的外接球的表面积是( ) A .16π B .8π C .4π D .42π 解析:选A.如图,在长方体ABCD -A 1B 1C 1D 1中,因为DC ∥AB ,所以相交直线D 1B 与AB 所成的角是异面直线D 1B 与DC 所成的角. 连接AD 1,由AB ⊥平面ADD 1A 1,得AB ⊥AD 1,所以在Rt △ABD 1中,∠ABD 1就是D 1B 与DC 所成的角,即∠ABD 1=60°,又AB =2,AB =BD 1cos 60°, 所以BD 1=AB cos 60°=4,设长方体ABCD -A 1B 1C 1D 1外接球的半径为R ,则由长方体的 体对角线就是长方体外接球的直径得4R 2=D 1B 2=16,则R =2, 所以长方体外接球的表面积是4πR 2=16π.故选A. 6.一个四棱锥的侧棱长都相等,底面是正方形,其主视图如图所示,则该四棱锥的侧面积是________.

生活中的纳米技术的认识和感想

生活中的纳米技术的感想 熊靖雯 法学1402班U201416553 ·初印象 对纳米这个词的第一印象大概是初中物理课堂时老师说到质子与分子时偶然的提到,于是这个概念就随着那句“一件纳米衣服可以穿几年不洗不换”深刻的印在我的脑海里。 而现在纳米这个概念对于人们来说似乎不在那么陌生了,我们在生活的各个领域甚至有时会偶尔不经意发现它的存在。 但归根结底我对纳米的了解其实也不过是这是种很小的度量单位,可以应用于各种材料制作方面。于是本学期的公选课我选了这门生活中的纳米技术,希望可以更进一步了解这种神奇而实用的技术,了解它应用的一些基本原理,了解它具体可以影响与改变我们生活中的什么。 ·初接触 像初中物理老师提及的一样,纳米技术在纺织服装领域有着广泛的应用。通过简单的了解,我知道了除了可以利用纳米技术制作防水防灰尘的衣服,还可以利用纳米技术改变衣服材质增加衣物的舒适感,或者加入纳米物质使衣物有效的避免散发汗臭味等不良气味,还可以应用于军队士兵的服装上。使用这种纳米技术做出的衣物可以有效的吸收电磁波,增强士兵在战场上的隐蔽能力保护士兵的安全,在未来的战场上有很广的前景。 其中让我觉得最神奇的是科学家利用纳米技术发明了第一批有机发光体材料,这种材料的应用性很灵活而且很神奇,能制造的像叶子一样薄,也可以用作当背景屏幕,还可以在上面展览画作,甚至制作成衣服后可以在上面放电影。这不禁让我想起了小时候看的天线宝宝,原来觉得神奇的事情其实已经随着科学技术的发展变成现实了啊。 总的来说,纳米科技在纺织服装上的应用主要是利用其小分子的特性,通过加工处理改变原有衣物材料的质地或性能,增加一些新的功能。或改变产品的外观效果使其防缩防皱,或改变产品的质地增加着装的舒适度与人体的贴合性,或强化产品的抗污清洁能力,或增加一些护体或保健的功能,比如防紫外线等。 像上面说的一样,纳米材料的应用不仅是高科技或者军用领域,现在也正在广泛的进入民用领域,提高我们的生活水平,给生活带来极大的便利。科技与人们的生活越来越不可分离的,人们生活的需要使纳米这种物质的应用更亲民化,也是这种看起来神秘的物质变得有些可爱了。 随着生产力的发展,人们的生活水平日益提高,对生活质量的要求也越来越高。纳米技术的出现使人们在改善衣服的材质上有了新的突破方面。我们又在自然中寻找制作材料,到自己加工改造制作材料,到可以应用纳米技术自己创造出新的材料。不得不说纳米技术在生活中的应用,不仅反映着生产力发展水平的提高,人类智慧的应用,也间接反映了社会心理。我们在追求美学的同时,也更在注重对自身的保护。 但是这些新材料在衣物上的应用给人们带来前所未有的新体验或舒适感的同时。其实也存在着问题。纳米材料是否对人类健康全然没有损害还有待考证,所有的纳米材料应用的无毒性也还有待进一步研究。在纳米材料的安全性上我们还是应该予以重视,要有效的避免这种新材料的应用对人们的害处反而大于其益处。

简述纳米材料的发展历程

简述纳米材料的发展历程 纳米材料问世至今已有20多年的历史,大致已经完成了材料创新、性能开发阶段,现在正步人完善工艺和全面应用阶段。 “纳米复合聚氨酯合成革材料的功能化”和“纳米材料在真空绝热板材中的应用”2项合作项目取得较大进展。具有负离子释放功能且释放量可达2000以上的聚氨酯合成革符合生态环保合成革战略升级方向,日前正待开展中试放大研究。 该产品的成功研发及进一步产业化将可辐射带动300多家同行企业的产品升级换代。联盟制备出的纳米复合绝热芯材导热系数可控制为低达4.4mW/mK。该产品已经在企业实现了中试生产,正在建设规模化生产线。 联盟将重点研究开发阻燃型高效真空绝热板及其在建筑外墙保温领域的应 用研发和产业化,该技术的开发将进一步促进我国建筑节能环保技术水平的提升,带动安徽纳米材料产业进入高速发展期。 纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。 纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。 一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。

纳米材料新进展及应用

纳米材料应用的新进展 来源:全球电源网 世界上已经研制成功四种贮氢合金材料:即稀土镧镍系、铁一钛系、镁系以及钒、铌、锆等多元素系合金材料。但它们全都是非纳米材料。最近几年世界各国在大力开发纳米贮氢电极材料,一系列纳米贮氢材料不断问世。它们的进展为更好利用氢能带来了福音。目前开发的主要材料系列有镁镍合金、碳纳米管和纳米铁钛合金。三种纳米材料的开发已经形成热潮。美洲和欧洲国家开发工作最集中的是镍金属氢化物电池用的镁镍合金和碳纳米管,其次是燃料电池用的铁钛合金及碳纳米管。包括中国在内的亚洲国家开发纳米镁镍合金主要是针对镍金属氢化物电池的应用,开发纳米铁钛合金及碳纳米管主要是针对燃料电池的应用。在开发金属氢化物储氢方面,过去的主要问题是贮氢量低,成本高及释氢温度高。现在在开发纳米储氢材料过程中这些问题仍是值得注意的问题。本文介绍目前科研人员针对上述问题开发纳米储氢材料方面的进展。1 镁镍合金开发继续升温镁系贮氢合金是最具开发前途的贮氢材料之一,所以目前开发最热的是镁镍合金。镁镍合金成本低,其贮氢质量高,若以CD ( H )代表合金贮氢的质量分数, 理论上纯镁的质量分数为7.6% ,而稀土LaNi5 的只有1.4% ,钛系TiFe 只为1.9%。这就是形成镁系合金开发热潮的原因。以前主要使用熔铸法和快速凝固法生产镁合金。能够体现出高技术的发展水平是现在的机械研磨技术。也就是先在600 C以上使镁与镍形成合金,经过检测确定是Mg2Ni合金以后,然后进行机械研磨。目前普遍用机械研磨法生产多元纳米贮氢合金、纳米复合贮氢合金。新型纳米镁镍合金同稀土系、钛系和锆系贮氢材料相比具有许多优点。镁系合金中最典型的是Mg2Ni 合金。其氢化物Mg2NiH4 合金贮氢量为3.6%。1.1 代换镁的金属呈增加趋势国内外制备传统镁系合金采取的措施是添加铝、铁、钴、铬、钒、锰、铜、钛及镧等元素来替换镁,使其形成多元镁镍合金。第二种是将 纯镁粉与低稳定性的贮氢合金复合。第三种是把镁系合金与别的合金混合制成复 合贮氢材料。最后就是将负极浸入铜、镍-硼或镍-磷等镀液里,使镀上一层金属膜,镀

纳米材料认识浅谈

纳米材料认识浅谈 纳米材料认识浅谈 (1) 摘要:纳米技术和纳米材料在科技领域扮演着越来越重要的重要角色,纳米技术是当今世界最有前途的决定性技术之一。本文主要概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并展望了纳米材料的应用前景。 (1) 关键词:纳米材料功能应用; (1) 一、纳米材料和纳米技术的基本特点 (1) 二、纳米材料的特性 (2) 1.小尺寸效应 (2) 2.表面效应 (2) 三.纳米材料的制备(举例) (3) 1.碳纳米管 (3) 2. 碳60 (4) 四.纳米科技具有非常重要的科技意义 (5) 1.纳米科技将促使人类认知的革命 (5) 2.纳米科技将引发一场新的工业革命 (5) 五.纳米科技前景的展望 (5) 1.材料和制备 (5) 2.微电子和计算机技术 (5) 3.环境和能源 (6) 4.医学与健康 (6) 5.生物技术 (6) 6.航天和航空 (6) 7.国家安全 (6) 摘要:纳米技术和纳米材料在科技领域扮演着越来越重要的重要角色,纳米技术是当今世界最有前途的决定性技术之一。本文主要概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并展望了纳米材料的应用前景。 关键词:纳米材料功能应用; 一、纳米材料和纳米技术的基本特点 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100nm或者由他们形成的材料。所以在纳米尺寸上对物质和材料进行研究处理的技术称为纳米技术。纳米材料是指显微结构中的物相具有纳米级尺度的材料。它包含了三个层次,即:纳米微粒、纳米固体和纳米组装体系。

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 纳米技术本质上是一种用单个原子、分子制造物质的科学技术,旨在创造和制备优异性能的纳米材料,设计、制备各种纳米器件和装置,探测分析纳米区域的性质和现象。纳米科技主要包括:①纳米体系物理学;②纳米化学;③纳米材料学;④纳米生物学;⑤纳米电子学;⑥纳米加工学;⑦纳米力学。 二、纳米材料的特性 1.小尺寸效应 ⑴特殊的光学性质 当黄金(Au)被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在纳米颗粒状态都呈为黑色,而且尺越小,颜色愈黑. ⑵特殊的电学性质 介电和压电特性是材料的基本物性之一。纳米半导体的介电行为(介电常数、介电损耗)及压电特性同常规的半导体材料有和很大的不同。 ⑶特殊的磁性 小尺寸超微颗粒的磁性比大块材料强许多倍,大块的纯铁矫顽力约为80A/m,而当颗粒尺寸减小到20nm以下时,其矫顽力可增加1000倍,若进一步减小其尺寸,大约小于6nm时,其矫顽力反而降低到零,表现出所谓超顺磁性 ⑷特殊的热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 ⑸特殊的力学性质 由纳米超微粒压制成的纳米陶瓷材料却具有良好的韧性,这是因为纳米超微粒制成的固体材料具有大的界面,界面原子的排列相当混乱。原子在外力变形条件下容易迁移,因此表现出很好的韧性与一定的延展性,使陶瓷材料具有新奇的力学性能。这就是目前的一些展销会上推出的所谓“摔不碎的陶瓷碗”。 2.表面效应 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手段。纳米技术以物理、化学的微观研究理论为基础,以当代精密仪器和先进的分析技术为手段,是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 2、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 3、纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。纳米技术是建设者的最后疆界,它的影响将是巨大的。 纳米技术的发展史 1959年著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小 的机器制做更小的机器,最后将变成根据人类意愿,逐个地排列原 子,制造产品,这是关于纳米技术最早的梦想。 20世纪70年代科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家 唐尼古奇最早使用纳米技术一词描述精密机械加工 1982年科学家发明研究纳米的重要工具——扫描隧道显微镜,揭示了一个 可见的原子、分子世界,对纳米科技发展产生了积极的促进作用。1990年7月第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

相关文档
最新文档