实验三 分压式偏置放大电路调试与分析

实验三 分压式偏置放大电路调试与分析
实验三 分压式偏置放大电路调试与分析

实验三分压式偏置放大电路调试与分析

[课题引入]:

分压式偏置放大电路具有放大和反相的作用,而静态工作点的设置对放大电路的正常工作又具有极其重要的影响,这节课我们就来具体的研究和探讨一下这个问题。

1、学会静态工作点、放大倍数的测量方法。

2、会观察和分析静态工作点的变化对输出波形的影响。

3、培养理论联系实际,细心认真的学习态度,增强动手能力。

图1 分压式偏置放大电路

任务一

任务一:测试静态工作点

如何来测静态工作点呢?我们来看实验图。

1、调试直流稳压电源,使得V CC=12V,并接入电路。

2、调节上偏置电阻Rp,使得基极电位V B固定在3V。

3、用万用表测量V E、V C判断此三极管处于何种工作状态。

4、然后我们再去测I C和V CE。I C如何去测量呢?

第一种方法:断开C,将万用表串联至电路中,读出I C。

第二种方法:测量U RC,根据欧姆定律算出I C的值。

5、(学生操作,老师循回指导)

强调:安全操作规范:

①.调电源时,请正确选择万用表量程。

②.测试时:先接线,后开电源,再测量。

③.测量时,不可以带电转换万用表转换开关。

④.调节电位器测量电位时,俩人合作。

通过测量,我们发现三极管处于放大工作状态。其次,I C和V CE的值有了,那么,在三极管的输出特性曲线的负载线上,就能确定静态工作点Q的位置。(画输出特性曲线,确定Q点)Q对应的横坐标是V CE,所对应的纵坐标为Ic。

任务二

这是放大电路静态时的情况,我们知道放大电路的作用是能把微弱的电信号放大成较强的电信号,所以若此时给放大电路的输入端加上信号源vi的话,电路的输出vo又是一种什么样的信号呢?即我们来研究放大器的动态特性。

任务二、观察vi与vo,测量放大倍数Av。

(如何来测呢?步骤:)

1、使用函数信号发生器,调出频率f=1KHZ,峰-峰值Vip-p为20mV左右的正弦波信号,

接入电路的输入端。

2、用双踪示波器同时观察vi和vo的波形,判断相位关系。

3、以示波器上的读数为准,读出V ip-p和V op-p,计算A v=V op-p/Vip-p。

4、(学生操作,老师循回指导)

强调:安全操作规范:

①.使用示波器前,必须进行校准。

②.函数信号发生器、示波器接入放大电路时,需可靠接地。

③.读数时,仔细观察、准确读数。

5、

通过观察和计算,我们可以知道:在共发射极放大电路中,输入电压vi和输出电压vo 之间,兼有放大和反相的作用。

任务三

如果此时改变电路的静态工作点,电路的输出vo会有怎样的变化呢?我们来看任务三。

任务三、观察和分析静态工作点变化对输出波形的影响。

如何来改变电路的静态工作点呢?我们仍可以通过调节Rp。

首先

1、减小Rp,观察vo的波形变化。

2、当vo出现明显失真时,画出vo波形,并判断失真类型。

3、用万用表测量如下静态参数。

4、(学生操作,老师循回指导)

强调:1、微调Rp,仔细观察vo。

5、(填表、提出问题):

6、(提出问题):为什么输出电压vo的负半周会部分削除而产生饱和失真呢?[讨论]看实验

图,我们来分析一下。

当Rp(减小)→VB(↑)→VE(↑)→IE(↑)→IC(↑)→VCE(↓)。

7、(提出问题):那么在输出特性曲线的负载线上,Q点会如何来变化呢?

静态工作点Q会沿着负载线上移,接近饱和区。

8、[总结] 若加入输入信号vi后,iC的正半周进入饱和区而被部分削除,又因为输出与输入存在反相的关系,所以造成vo的负半周被部分削除,产生了饱和失真。

反过来,当增大Rp时,电路的输出vo又会有怎样的变化呢?

1、增大Rp,将Vip-p调至60mV左右,观察vo的波形变化。

2、当vo出现明显失真时,画出vo波形,并判断失真类型。

3、用万用表测量如下静态参数。

5、(填表、提出问题):为什么输出电压vo会产生截止失真呢?我们再来分析一下。

当Rp(↑)→VB(↓)→VE(↓)→IE(↓)→IC(↓)→VCE(↑)。

6、(提出问题):在输出特性曲线的负载线上,Q点又会如何来变化呢?

此时,静态工作点Q会沿着负载线下移,接近截止区。

7、[总结]:若加入输入信号vi后,iC的负半周进入截止区而部分削除,又因为输出与输入存在反相的关系,所以造成vo的正半周被部分削除,产生了截止失真。

[归纳]:可见,选择合适的静态工作点对放大电路而言,具有极其重要的影响。Q点过高,会产生饱和失真,相反,Q点过低,会产生截止失真。又因为他们都是Q点离开了线性的放大区,而到了非线性的饱和区和截止区所造成的,所以饱和失真,截止失真又称为非线性失真。

任务四

问题:为了获得最大而不失真的输出电压,我们该如何设置静态工作点Q呢?

解答:应把Q点选择在交流负载线的中点处。

(提出问题)如何来实现呢?即怎样才能把Q选择在交流负载线的中点处呢?

任务四:调节静态工作点与输入信号,使放大器获得最大不失真输出电压。

1、同时调节Rp和输入信号vi(35mV左右),观察输出波形vo,使之同时出现临近

饱和与截止失真。此时的vo为最大不失真输出电压。

2、

[总结]:今天这节课,我们通过对分压式偏置放大电路的调试和分析,进一步明确了静态工作点的设置对放大电路的重要影响,请大家完成实验报告。

差分放大电路仿真02605

苏州市职业大学实验报告姓名:学号:班级:

二、选好元器后,将所有元器件连接绘制成仿真电路(见图 1) R3 6.8k Q 三、仿真分析 1.静态工作点分析 1)调零。信号源先不接入回路中,将输入端对地短接,用万用表测量两个输出 节点,调节三极管的射极电位,使万用表的示数相同,即调整电路使左右完 全对称。测量电路及结果如图2所示 2)静态工作点调试。零点调好以后,可以用万用表测量 Q1、Q2管各电极电位, 结果如图 3 所示,测得 I B 1 15 A , I C 1 1.089mA , U CE 5.303V 。 2.测量差模放大倍数 将函数信号发生器XFG1的“ +”端接放大电路的R1输入端,“一”端接R2输入 端,COM 端接地。调节信号频率为1kHz ,输入电压10mV 调入双踪示波器,分别 接输入输出,如图4所示,观祭波形变化,示波器观祭到的差分放大电路输入、 输出波形如图5所示 R4 6.8k Q R1 ■ 酉 2 ?R6 >510 Q <3 ------- Q1 R8 12k Q 12 V 双端输入、 100Q Key=A 丄V2 -— 12 V 11 R5 5.1k 10 双端输出的长尾式差分放大电路 8 Q ■ 4 Q2 2N3903 R2 AAAr-| 2k Q 7 50% Rp1

4.607 V H-、4 -Q *: LR3 S : : ?6+BkQ : a ): >R4 :>G.?kn ............ R& '''' ---------- VA ---------- it::12W5::: 1 F ■! ■ I R1 .,,斗,- VA- :7W. . \ ■1 2M39G 3 :R2 : : 2K1: 2N39G3 -” R6 5100 : ::5C% :10QQ ::Key=A 丄V2「::二12W TV '' 图2差分放大器电路调零

实验三 分压式偏置放大电路调试与分析

实验三分压式偏置放大电路调试与分析 [课题引入]: 分压式偏置放大电路具有放大和反相的作用,而静态工作点的设置对放大电路的正常工作又具有极其重要的影响,这节课我们就来具体的研究和探讨一下这个问题。 1、学会静态工作点、放大倍数的测量方法。 2、会观察和分析静态工作点的变化对输出波形的影响。 3、培养理论联系实际,细心认真的学习态度,增强动手能力。 图1 分压式偏置放大电路 任务一 任务一:测试静态工作点 如何来测静态工作点呢?我们来看实验图。 1、调试直流稳压电源,使得V CC=12V,并接入电路。 2、调节上偏置电阻Rp,使得基极电位V B固定在3V。 3、用万用表测量V E、V C判断此三极管处于何种工作状态。 4、然后我们再去测I C和V CE。I C如何去测量呢? 第一种方法:断开C,将万用表串联至电路中,读出I C。 第二种方法:测量U RC,根据欧姆定律算出I C的值。 5、(学生操作,老师循回指导) 强调:安全操作规范: ①.调电源时,请正确选择万用表量程。 ②.测试时:先接线,后开电源,再测量。 ③.测量时,不可以带电转换万用表转换开关。

④.调节电位器测量电位时,俩人合作。 通过测量,我们发现三极管处于放大工作状态。其次,I C和V CE的值有了,那么,在三极管的输出特性曲线的负载线上,就能确定静态工作点Q的位置。(画输出特性曲线,确定Q点)Q对应的横坐标是V CE,所对应的纵坐标为Ic。 任务二 这是放大电路静态时的情况,我们知道放大电路的作用是能把微弱的电信号放大成较强的电信号,所以若此时给放大电路的输入端加上信号源vi的话,电路的输出vo又是一种什么样的信号呢?即我们来研究放大器的动态特性。 任务二、观察vi与vo,测量放大倍数Av。 (如何来测呢?步骤:) 1、使用函数信号发生器,调出频率f=1KHZ,峰-峰值Vip-p为20mV左右的正弦波信号, 接入电路的输入端。 2、用双踪示波器同时观察vi和vo的波形,判断相位关系。 3、以示波器上的读数为准,读出V ip-p和V op-p,计算A v=V op-p/Vip-p。 4、(学生操作,老师循回指导) 强调:安全操作规范: ①.使用示波器前,必须进行校准。 ②.函数信号发生器、示波器接入放大电路时,需可靠接地。 ③.读数时,仔细观察、准确读数。 5、 通过观察和计算,我们可以知道:在共发射极放大电路中,输入电压vi和输出电压vo 之间,兼有放大和反相的作用。

分压式偏置电路

§2-3 分压式偏置电路 教学目标: [知识目标] 1、理解温度对静态工作点的影响及分压式偏置电路的电路特点; 2、掌握分压式偏置电路稳定静态工作点的过程; 3、会近似估算分压式偏置电路的静态工作点、输入电阻、输出电阻和 电压放大倍数。 [能力目标] 1、通过教学,培养学生观察事物、总结归纳的能力; 2、通过教学,培养学生识别和分析电路的能力。 教学重点:1、温度对静态工作点的影响 2、分压式偏置电路的作用3、近似估算分压式偏置电路的静态工作点、输入电阻、输出电阻和电压放大倍数。 教学难点:分压式偏置电路稳定静态工作点的过程。 教学方法:讲授法、归纳总结法和类比法相结合 一、组织教学 (1分钟)安定课堂秩序,集中学生注意力,检查学生学习用品。 二、复习旧课 (4分钟) 图1〈共发射极基本放大电路〉 教师设问:问题:1、静态工作点的位置与波形失真之间有何关系? 学生回答:答案:静态工作点设置得太高,易引起饱和失真, 静态工作点设置得太低,易引起截止失真。 问题:2、要是放大电路输出最大不失真信号,静态工作点应该设置在何处? 答案:交流负载线的中点 导入:(1分钟) 由以上分析可知,要使放大器输出信号不失真,就必须设置合适的静态工作点,但已设置好的静态工作点在放大器的工作过程中并不是稳定不变的。那是什么因素影响静态工作点的稳定,如何稳定静态工作点就是我们这节课要学习的内容。

四、展开讲授新课 (58分钟) §2-3 分压式偏置电路 一 、温度对静态工作点的稳定 固定偏置电路电路如图1所示。由直流通路可见,偏置电流BQ I 是通过偏置电阻R b 由电源Ucc 提供,当BEQ U Ucc >>时 只要Ucc 和b R 为定值,BQ I 就是一个常数,故把这种电路称为固定偏置电路。该电路由于 因此,当环境温度升高时,虽然BQ I 为常数,但???和CEQ I 的增大会导致CQ I 的上升。可见,电路的温度稳定性较差。只能用在环境温度变化不大,要求不高的场合。 β↑ (T ↑1℃ β↑%~%) T ↑→I CBO ↑(T ↑10℃ I CBO ↑一倍)→I CEO ↑→I C ↑ 工作点不稳定 |U B E |↓(T ↑1℃ U B E ↓ mV ) 导语:通过以上分析可知,如果把共射基本放大电路置于温度变化较大的环境中,已设定的静态工作点会偏离原来设定的位置,输出信号可能会产生失真。因此,要稳定静态工作点,必须对共射基本放大电路结构加以改进,采用分压式偏置电路。 二、分压式偏置电路 1.电路结构特点 电路特点是静态工作点比较稳定 图2分压式偏置电路 (1).元件作用 b1R R R e C :发射极旁路电容。 强调:C E 对于直流相当于断路。 (2).工作原理 基极电压BQ U 由b1R 和b2R 分压后得到,即Ucc R R R U b2 b1b2 BQ += 固定。当环境温度上升时, 引起CQ I 增加,导致EQ I 的增加,使e EQ EQ R I U ?=增大。由于EQ BQ BEQ U U U -=,使得BEQ U 减小,于是基极偏流BQ I 减小,使集电极电流CQ I 的增加受到限制,从而达到稳定静态工作点的目的 对于节点A: 21I I I BQ += (取BQ I I ??2)

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

运放差分放大电路

差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点: (1)A1和A2提高了差模信号与共模信号之比,即提高了信噪比; (2)在保证有关电阻严格对称的条件下,各电阻阻值的误差对该电路的共模抑制比K CMRR 没有影响; (3)电路对共模信号几乎没有放大作用,共模电压增益接近零。 因为电路中R1=R2、 R3=R4、 R5=R6 ,故可导出两级差模总增益为: 3 5P 1p i2i1o vd R R R 2R R u u u A ???? ??+-=-= 通常,第一级增益要尽量高,第二级增益一般为1~2倍,这里第一级选择100倍,第二级为1倍。则取R3=R4=R5=R6=10K Ω,要求匹配性好,一般用金属膜精密电阻,阻值可在10K Ω~几百K Ω间选择。则 A vd =(R P +2R 1)/R P 先定R P ,通常在1K Ω~10K Ω内,这里取R P =1K Ω,则可由上式求得R 1=99R P /2=49.5K Ω 取标称值51K Ω。通常R S1和R S2不要超过R P /2,这里选R S1= R S2=510,用于保护运放输入级。 A1和A2应选用低温飘、高K CMRR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试

分压式放大电路 (2)

分压式单级放大电路 课程名称:分压式单级放大电路 学院::计算机学院 班级:信息安全专业 192111 小组成员:王莉娜,韩春玲,李晓 指导老师:罗大鹏 日期:20112年5月

目录 第一章课题简介 (2) (小组成员介绍及分工) (2) 第二章初始分析 (3) (原理分析) (4) 第三章电路的设计方案 (6) 第四章实验内容 (7) 第五章设计评价及改进方案 (12) 第六章心得体会 (13) 第七章参考文献及鸣谢 (14)

第一章课题简介 通过实验箱制作并测试一个三极管共发射极放大电路, 要求如下: (1)放大电路输出为正弦波,波形无明显失真 (2)放大信号的频率范围:1kHz——100kHz (3)电压放大倍数>100 (4)输出电压峰-峰值:Vp-p>5+/-0.1V (5)测量电路输入、输出电阻及真实的放大倍数 (6)讨论该电路的优缺点及改进方案 实验器材 小组分工: 初始分析 (实验原理)

1.晶体管的放大作用 晶体管具有电流放大作用,它的实质是电流控制作用,在共射接法的NPN 型晶体管中一个较小的基极电流微小变化,就能引起集电极电流的很大变化从而实现电流放大作用。 I C =I CE +I CBO ≈I CE I CE 与I BE 之比称为电流放大倍数 B C CBO B CBO C BE CE I I I I I I I I ≈--== β I B =I BE -I CBO ≈I BE 共射接法采用发射极正向偏置集电极反向偏置的接法 2.晶体管的输出特性曲线 I E I C

要使三极管能正常放大,需了解三极管的输出特性曲线输出特性曲线是在I B 为一常数时,输出回路中I C 与U CE 的关系曲线,它反映了晶体管输出回路中电压与电流的关系。 晶体管可以工作在输出特性曲线的3个区域内,如图: 输出特性曲线的近于水平部分是放大区。晶体管工作在放大区的主要特征是:发射极正向偏置,集电极反向偏置,I C 与I B 具有线性关系: I C =βI B 。在放大电路中晶体管必须工作在放大区。所以实验中静 态工作点必须合适。 3.由于晶体管工作一段时间后温度会上升,使得β会发生改变,固定偏置电路的Q 点是不稳定的。 Q 点不稳定可能会导致静态工作点靠近饱和区或截止区,从而导致失真。为此,需要改进偏置电路,当 1 2 3 4 CE (V) 6 9 =0 μA μA μA μA μA

实验八 差分放大器

实验八 差分放大电路 一、实验目的 1. 加深对差动放大器性能及特点的理解。 2. 学习差动放大器主要性能指标的测试方法。 二、实验原理 差分放大电路是模拟电路基本单元电路之一,是直接耦合放大电路的最佳电路形式,具有放大差模信号、抑制共模干扰信号和零点漂移的功能。图8-1是差分放大电路的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向C 时(K 接R E ),构成典型的差分放大器。调零电位器R W 用来调节T 1、T 2管的静态工作点,使得输入信号u i =0时,双端输出电压u O =0。R E 为两管共用的发射极电阻,它对差模信号无反馈作用,因此不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 12V EE A B 图8-1 差分放大电路 当开关拨向D 时(K 接T 3),构成具有恒流源的差分放大器。它用晶体管恒流源T 3代替发射极电阻R E ,T 3的交流等效电阻r CE3远远大于R E ,可以进一步提高差分放大器对共模信号的抑制能力。 当差分放大器的电路结构对称,元件参数和特性相同时,两个三极管集电极的直流电位相同。但在实验过程中,由于三极管特性和电路参数不可能完全对称,导致差分放大电路在输入信号为零时双端输出却不为零。故需要对差分放大电路进行零点调节。 当T 1、T 2的基极分别接入幅度相等、极性相反的差模信号时,使两管发射极产生大小相等、方向相反的变化电流。当两个电流同时流过发射极电阻R E (K 拨向C )时,其作用互相抵消,即R E 中没有差模信号电流流过。但对T 1、T 2而言,一个管子集电极电流增大,另一个管子集电极电流减小,于是两管集电极之间的输出电压就得到了被放大了的差模输出电压。 当共模信号作用于电路时,T 1、T 2的发射极电流的变化量相等,显然R E 上电流的变化量为2△I E ,由此而引起的R E 上的电压变化量△u E 的变化方向与输入共模信号的变化方向相同,使B -E 间的电压变化方向与之相反,导致基极电流变化,从而抑制了集电极电流的变化。 集成运算放大器几乎都采用差分放大器作为输入级。这种对称的电压放大器有两个输入端和两个输出端,根据电路的结构可分为,双端输入双端输出、双端输入单端输出、单端输入双端输出及单端输入单端输出。若电路参数完全对称,则双端输出时的共模电压放大倍数A C =0,共模抑制比K CMR 越大,说明电路抑制共模信号的能力越强。 1. 静态工作点的估算 典型电路(K 接R E ): E BE EE E R U V I -= (认为U B1=U B2≈0) E 2C 1C I 2 1 I I = = 恒流源电路(K 接T 3):

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

(完整word版)差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的 差动放大器 图是差动放大器的结 构。它由两个元件参数相 近的基本共射放大电路组 成。 1.直流分析数据 2.直流分析仿真数据

3.交流分析数据 4.交流分析仿真数据 具有恒流源的差动放大器 图2-3是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 图3.1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。用晶体管恒流源代替发射极电阻 E R ,可以进一步提高差动 放大器抑制共模信号的能 力。 1、差动电路的输入输 出方式 根据输入信号和输出信号的不同方式可以有四种连接方式,即 : (l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。 (2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。 (3) 单端输入一双端输出,将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 、2o V 两端。 (4) 单端输入 -单端输出 将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 或2o V 到地。

分压式放大电路

分压式放大电路 前面讨论的基本放大电路,当基极偏置电阻b R 确定后,基极偏置电流BQ I (/BQ CC b I U R =)也就固定了,这种电路叫固定偏置放大电路。它具有元器件少,电路简单和放大倍数高等优点,但它的最大缺点就是稳定性差,因此只能在要求不高的电路中使用。 当温度变化时,三极管的的参数都会随之发生改变,从而使静态工作点发生变动,进而影响放大器的性能,甚至不能正常工作。 为了使放大电路能减小温度的影响,通常采用改变偏置的方式或者利用热敏器件补偿等办法来稳定静态工作点,下面介绍三种常用的稳定静态工作点的偏置电路。 1)1)电路的特点和工作原理 分压式放大电路如图2-8所示。 图2-8 分压式偏置电路 设流过电阻1b R 和2b R 的电流分别为1I 和2I ,并且,一般I BQ 很小,所以近似认为1I ≈2I 。这样,基极电位B U 就完全取决2b R 上的分压,即 212b b b CC BQ R R R U U +≈ (2-13) 从上式看出,在BQ I I <<2的条件下,基极电位BQ U 由电源CC U 经1b R 和2b R 分压所决定,与三极管参数无关,当然也就不受温度影响。

如果BEQ BQ U U <<,则发射极电流为 e 2b 1b CC 2b e BQ e BEQ BQ EQ R )R R (R R R +=-=U U U U I ≈ (2-14) 从上面分析来看,静态工作点稳定是在满足两式的条件: BQ I I >>1和BEQ BQ U U >> 1I 和BQ U 越大,则工作点稳定性越好。但是1I 也不能太大,因为一方面1I 太大使电阻1b R 和2b R 上的能量消耗太大;另一方面1I 太大,要求1b R 很小,这样对信号源的分流作用加大了,当信号源有内阻时,使信号源内部压降增大,有效输入信号减小,降低了放大电路的放大倍数。同样BQ U 也不能太大,如果BQ U 太大,必然E U 太大,导致CEQ U 减小,甚至影响放大电路的正常工作。在工程上,通常这样考虑: 对于硅管:1I =(5~10)BQ I BQ U =(3~5)V (2-15) 对于锗管:1I =(10~20)BQ I BQ U =(1~3)V (2-16) 2)静态工作点的近似估算 根椐以上分析,由图2-8可得 2 12b b b CC B R R R U U +≈ e BEQ B EQ CQ R U U I I -=≈ (2-17) )R R (e c CQ CC CEQ +-=I U U (2-18) β≈CQ BQ I I (2-19) 这样就可根据以上各式来估算静态工作点,式(2-19)的实际意义不大。 3)电压放大倍数的估算 图2-8的微变等效电路如图2-9所示。

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

差分放大电路解读

实验三差分放大电路 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放 大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。 R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (12 r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -==

分压式偏置放大电路

2 分压式偏置放大电路 2.1 分压式偏置放大电路的组成 分压式偏置放大电路如图所示。V 是放大管;R B1、R B2是偏置电阻,R B1、R B2组成分压式偏置电路,将电源电压U CC 分压后加到晶体管的基极;R E 是射极电阻,还是负反馈电阻;C E 是旁路电容与晶体管的射极电阻R E 并联,C E 的容量较大,具有“隔直、导交”的作用,使此电路有直流负反馈而无交流负反馈,即保证了静态工作点的稳定性,同时又保证了交流信号的放大能力没有降低。 . 图a 图b 2.2 稳定静态工作点的原理 分压式偏置放大电路的直流通路如图a 所示。当温度升高,I C 随着升高,I E 也会升高,电流I E 流经射极电阻R E 产生的压降U E 也升高。又因为U BE=U B-U E ,如果基极电位U B 是恒定的,且与温度无关,则U BE 会随U E 的升高而减小,I B 也随之自动减小,结果使集电极电流I C 减小,从而实现I C 基本恒定的目的。如果用符号“ ”表示减小,用“ ”表示增大,则静态工作点稳定过程可表示为: 要实现上述稳定过程,首先必须保证基极电位U B 恒定。由图b 可见,合理选择元件,使流过偏置 电阻R B1的电流I 1比晶体管的基极电流I B 大很多,则U CC 被R B1、R B2分压得晶体管的基极电位U B : 分压式偏置放大电路中,采用了电流负反馈,反馈元件为R E 。这种负反馈在直流条件下起稳定静态工作点的作用,但在交流条件下影响其动态参数,为此在该处并联一个较大容量的电容C E ,使R E 在交流通路中被短路,不起作用,从而免除了R E 对动态参数的影响。 .2.3 电路定量分析 1.静态分析 根据定理可得输出回路方程 ↓↓→↓??????→?↑↑→↑→↑→-=C B BE U U U U E E C I I U U I I T B E B BE 恒定 且CC B B B B U R R R U 2 12 +=↑↓

实验三差分放大电路

EDA(一)模拟部分电子线路仿真实验报告 实验名称:差分放大电路 姓名:殷琦 学号:150320150 班级:15自动化一班 时间:2016.12.4 南京理工大学紫金学院计算机系

一.实验目的 1.熟悉差分放大电路的结构。 2.了解差分放大电路抑制零点漂移的原理。 3.掌握差分放大电路静态工作点的估算方法及仿真分析方法。 4.掌握差分放大电路电压放大倍数,输入电阻,输出电阻的估算 方法及仿真分析方法。 5.了解差分放大电路的大信号特性。 6.理解差分放大电路提高共模抑制比的方法。 二、实验原理 1.单端输出差模电压放大倍数可正可负,当信号从3端口输出时,1端口称为同相输入端,2端口称为反相输入端;当信号从4端口输出时,1端口称为同相输入端,2端口称为反相输入端。 2.单端输出差模电压放大倍数与双端输出差模放大倍数的比值与负载大小有关系,当RL=RC时比值为4:3,当负载为空载时比值为2:1。 3.共模电压放大倍数为负值。 4.长尾电路双端输出:

E C V -==+= V U I I R 12U -V I 1CE 1 B 1 C E BE EE 1B ββ)( 11,1d 2,2A o o i id u R R R R A === 单端输出: 3端输出: 11,1d ,22 1 A o o i id u R R R R A === 4端输出:1 1,1d ,22 1-A o o i id u R R R R A === 三.实验内容 包括搭建的电路图,必要的文字说明,对结果的分析等。 差分放大电路如图所示,三极管型号为2N3439,bb r =50Ω

武汉大学差动放大电路实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年12 月14 日实验名称差动放大电路实验台号实验时数3小时姓名学号年级2013班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 一、实验目的 1 、熟悉差动放大器工作原理 2、掌握差动放大器的基本测试方法 实验内容 1.计算下列差动放大器的静态工作点和电压放大 倍数电路图见5.1 信号源已替代 5.1 在图5.1的基础上画出单端输入时和共模输入时的电路图 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用表 4.TPE-A3模拟电路实验箱 3、实验步骤: 1、将电路图5.1接线 2、测量静态工作点 3、测量差模电压放大倍数 4、测量共模电压放大倍数 5、在实验台上组成单端输入的差动电路进行下列实验

三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等) 实验内容及数据记录 1、将电路图5.1接线 2、测量静态工作点 ①调零 将放大器输入端V11、V12接地,接通直流电源,调节调零电位器R P,使V O=0。 ②测量静态工作点:测量V1,V2,V3各极各地电压, 并填入表5.1中。 5.1 对地 电压 Vc1 Vc2 Vc3 Vb1 Vb2 Vb3 Ve1 Ve2 Ve3 测量值 6.29 6.31 -0.74 0 0 - 7.77 -0.61 -0.61 - 8.39 3)测量差模电压放大倍数 在两个输入端各自加入直流电压信号,按有5.2要求测量并记录,由测量得到的数据计算出单端和输出的电压放大倍数。接入到V11t和V12,调节Dc信号源,使其输出为0.1和-0.1. (须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 4) 测量共模电压放大倍数 将输入端b1和b2 短接,接到信号源的输入端,信号源另一端接地。DC信号先后接OUT1和OUT2 测量有关数据后填入表5.32.,由测量得到的数据计算出单端和双端输出的电压放大倍数,并进一步计算出共模抑制比。 5.2 差模输入共模输入抑制 比测量值计算值测量值计算值计算 值Uc1 Uc2 Uo双Ad1 Ad2 Ad双Uc1 Uc2 Uco双Ac1 Ac2 Ac双CMRR +0.1V 10.08 2.55 7.46 -16. 8616.8 6-33. 71 6.29 6.31 -0.02 0.00 5 0.00 5 0 186.5 -0.1V 6.29 6.31 -0.02 0.00 50.00 5 0 186.5

实验三 差分放大电路

EDA(一)模拟部分 电子线路仿真实验报告 实验名称:差分放大电路 姓名:殷琦 学号: 150320150 班级: 15自动化一班 时间: 2016.12.4 南京理工大学紫金学院计算机系

一. 实验目的 1.熟悉差分放大电路的结构。 2.了解差分放大电路抑制零点漂移的原理。 3.掌握差分放大电路静态工作点的估算方法及仿真分析方法。 4.掌握差分放大电路电压放大倍数,输入电阻,输出电阻的估算方法及仿真分析方法。 5.了解差分放大电路的大信号特性。 6.理解差分放大电路提高共模抑制比的方法。 二、实验原理 1.单端输出差模电压放大倍数可正可负,当信号从3端口输出时,1端口称为同相输入端,2端口称为反相输入端;当信号从4端口输出时,1端口称为同相输入端,2端口称为反相输入端。 2.单端输出差模电压放大倍数与双端输出差模放大倍数的比值与负载大小有关系,当RL=RC 时比值为4:3,当负载为空载时比值为2:1。 3.共模电压放大倍数为负值。 4.长尾电路双端输出: E C V -==+= V U I I R 12U -V I 1CE 1B 1C E BE EE 1B ββ)(

11,1d 2,2A o o i id u R R R R A === 单端输出: 3端输出: 11,1d ,22 1 A o o i id u R R R R A === 4端输出:1 1,1d ,22 1-A o o i id u R R R R A === 三.实验内容 包括搭建的电路图,必要的文字说明,对结果的分析等。 差分放大电路如图所示,三极管型号为2N3439,bb r =50Ω

差动放大电路_实验报告

实验五差动放大电路 (本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~) 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 R P用来调节T1、T2管的静态工作点, V i=0时, V O=0。R E为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。 差分放大器实验电路图 三、实验设备与器件 1、±12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。 四、实验内容 1、典型差动放大器性能测试 开关K拨向左边构成典型差动放大器。 1) 测量静态工作点 ①调节放大器零点

信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压V O ,调节调零电位器R P ,使V O =0。 ②测量静态工作点 再记下下表。 2) 测量差模电压放大倍数(须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 3) 测量共模电压放大倍数 理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点: E3 BE EE CC 212 E3 C3R V )V (V R R R I I -++≈≈=1.153mA I c Q =I c 3/2=0.577mA, I b Q =I c /β=0.577/100=5.77uA U CEQ =V cc-I c R c+U BEQ =12-0.577*10+0.7=6.93V 双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨) P be B C i O d β)R (12 1 r R βR △V △V A +++- ===-33.71 A c 双 =0.

实验八_差分放大器实验报告

差分放大电路 实验报告 姓名:黄宝玲 班级:计科1403 学号:201408010320 实验摘要(关键信息) 实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。通过实验弄清差分放大器的工作方式和参数指标。这些概念有:差模输入和共模输入;差模电压增益Avd和共模电压增益Avc;共模抑制比Kcmr。 实验内容与规划: 1、选用实验箱上差分放大电路;输入信号为Vs=300mV,f=3KHz正弦波。 2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0。(Vo=Vc1-Vc2) 3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。 4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Avc。 5、计算共模抑制比Kcm R 。 最好作好记录表格,因为要记录的数据较多。电路中两个三极管都为9013。 实验环境(仪器用品等) 1.仪器:示波器(DPO 2012B 100MHZ 1GS/s) 直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A) 台式万用表(UT805A) 模拟电路实验箱(LTE-AC-03B)。 2、所用功能区:单管、多管、负反馈放大电路。 实验原理和实验电路 1、实验原理: 差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。 概念梳理:

差模和共模是对于差动放大电路的两个输入端而言的。 A )差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。 差模信号Vid :即差模输入的两个输入信号之差。 B )共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。 共模信号Vic :即共模输入的两个输入信号的算数平均值。 C )差模电压增益Avd :指差动放大电路对差模输入信号的放大倍数。差模电压增益越大,放大电路的性能越好。 = D )共模电压增益Avc :指差动放大电路对共模输入信号的放大倍数。共模电压增益越小,放大电路的性能越好。 = E )共模抑制比Kcmr :指差模电压放大倍数与共模电压放大倍数之比,它表明差动放大电路对共模信号的抑制能力。 =20lg| |(dB ) =| | 2、实验电路: SW1 SW-SPDT Q1 NPN Q2 NPN Q3 NPN R1 510 R2 510 R3 10k R4 10k R5 10k R6 10k R7 10k R8 5.1K R9 68K R10 36K RV1 100 R9(1) R10(2) A B C D AM FM + -

相关文档
最新文档