现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势..
现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势

摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。

一、雷达的起源及应用

雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。

雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

还有一种精神感应雷达,该雷达能够对人类在脑电波起反应,对人体的生命迹象进行感知。当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。自动目标识别则可使武器系统最大限度地发挥作用,空中预警机和JSTARS这样的具有战场敌我识别能力的综合雷达系统实际上已经成为了未来战场上的信息指挥中心。

雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。以地面为目标的雷达可以探测地面的精确形状。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面也显示出了很好的应用潜力。

二、雷达信号处理技术

信号处理是雷达完成信号检索和信息提取功能所采取的实施手段,是现代雷达系统的核心研究内容之一。在实际应用中,利用雷达系统中的信号处理技术对接收数据进行处理,不仅可以实现高精准的目标定位和目标跟踪,还能够将目标识别、目标成像、精确制导、电子对抗等功能进行拓展,实现综合业务的一体化,从而为后续军事行动的实施提供技术上的支持。雷达信号处理主要集中在通信和电子对抗两方面。在通信方面,雷达信号处理需要通过调制、编码等技术对通信信号进行处理,以提升无线信号的可靠性,和随机性,降低其被识别的概率,增强其抗噪声、抗干扰以及抗衰落等性能,保证信号可被准确识别和处理。在电子对抗方面,雷达信号处理需要利用其前端设备输出的脉冲信号流进行信号识别、参数估值以及信源识别,获取雷达系统关注的信号时候别结果为后续其他设备和作战计划的应用提供支持。

1、雷达信号处理内容

雷达信号处理是雷达系统的主要组成部分。信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。内容包括雷达信号处理的几个主要部分:

正交采样、脉冲压缩、MTD和恒虚警检测。

正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内,直接中频数字正交采样是当代雷达的主要技术之一。脉冲压缩技术在现代雷达系统中得到了广泛的应用。脉冲压缩雷达既能保持窄脉冲雷达的高距离分辨力,又能获得脉冲雷达的高检测力,并且抗干扰能力强。现在,脉冲压缩雷达使用的波形正在从单一的线性调频发展到时间、频率、编码混合调制,在尽可能不增加整机复杂度的条件下实现雷达性能的提升。杂波抑制是雷达需要具备的重要功能之一。动目标指示与检测是通过回波多普勒频移的不同来区分动目标和固定目标,通过设计合理的滤波器(组),就可以把目标号和杂波分开。一个完备的杂波抑制系统MTD、杂波图、CFAR检测等技术的综合应用,实现从杂波和噪声环境中检测目标任务。

2、雷达信号处理关键技术

⑴目标识别技术

雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的RTR系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。

现代雷达技术不仅能够对遥远的目标进行探测和定位,还能够完成对目标的分类和识别,这就是雷达目标识别技术。这种技术是利用雷达和计算机对遥远目标进行辨认,首先会对回波当中的各项指标进行分析,包括频谱和幅度等指标的

特点,在分析之后,采用数学当中的多维空间算法,对目标的各项物理特征参数进行确定,并且在此基础上,综合各项函数,最终做出识别判决。雷达的主要功能是发现目标和测量目标坐标和运动参数。但是,对于火力控制(火炮、导弹)和指挥决策来说,了解目标的性质也是十分重要的。目标识别是指判断目标是什么类型的目标,如区分飞机是轰炸机,还是战斗机;区分车辆是履带车辆还是轮式车辆;指出飞机和军舰的型号;从众多假目标中识别真目标;以及从SAR图像中识别机场、港口、交通枢纽等。

⑵抗电子干扰技术

雷达系统使用的是无线电磁波信号,而无线电磁波容易受到空间电磁环境以及防雷达侦察伪装技术的干扰和威胁,如设置防雷达伪装网,产生屏蔽效应,掩盖真实目标,就会影响雷达的实际探测效果。因此,现代雷达系统在应用时必须要解决电子干扰问题,可以利用无源雷达探测,减少雷达本身的电磁辐射属性,提升自身的隐蔽性和系统的生存能力。现代战争中雷达面临着各种威胁和挑战,如电子干扰、反辐射导弹、低空突防和隐身目标等,直接影响着雷达的探测性能,甚至威胁到雷达的生存。这些威胁中电子干扰是现代雷达系统的主要威胁,而且很难找到彻底的解决办法。现代雷达虽然采取了许多先进措施来对抗电子干扰、隐身技术、反辐射导弹攻击、低空和超低空突防四大威胁,但仍然没有解决这个问题。与有源探测系统相比,无源雷达探测系统具有隐蔽性高、提取目标属性信息等多种优点,且无源雷达本身不辐射电磁波,不易被敌方电子侦察系统探测到,从而具有抗干扰、抗反辐射导弹攻击等潜在的优势,因而系统的生存能力较强。

①与天线有关的抗干扰技术

雷达通过天线发射和接收目标信号,但同时可能接收到干扰信号,可以通过在天线上采取某些措施尽量减少干扰信号进入接收机。如提高天线增益,可提高雷达接收信号的信干比;控制天线波束的覆盖与扫描区域可以减少雷达照射干扰机;采用窄波束天线不仅可以获得高的天线增益,还能增大雷达的自卫距离、提高能量密度,还可以减少地面反射的影响,减小多径的误差,提高跟踪精度;采用低旁瓣天线可以将干扰限制在主瓣区间,还可以测定干扰机的角度信息,并能利用多站交叉定位技术,测得干扰机的距离信息;为了消除从旁瓣进入的干扰,还可以采取旁瓣消隐和旁瓣对消技术;当采用阵列接收天线时,可通过调整各个

阵列单元信号的幅度与相位,在多个干扰方向上构成天线波瓣的零点,从而减少接收干扰信号的强度。

从电波与天线理论可知:接收天线能很好地接收与其极化方式相同的电磁能量,若极化方式不同,则会引起很大衰减。因此在设计天线时,采用变极化技术,使极化形式和目标信号匹配而与干扰信号失配,就能减少对干扰信号的接收。另外还可采用旋转极化对消、视频极化对消技术等。

②与发射机有关的抗干扰技术

对付噪声干扰的最直接办法是增大雷达发射机功率,结合高增益天线可以使雷达获得更大的探测距离,但该方法对箔条、诱饵、转发器和欺骗式应答干扰等无效。对此,更有效的方法是使用复杂的、变化的、不同的发射信号,让电子支援(ESM)和电子干扰承受最大的负担。根据方法的不同可分为跳频法、频率分集或宽瞬时带宽信号。

如果频率能在较宽的范围内随机跳变,使雷达不断跳到不受干扰的频率上工作,它的抗干扰能力就能得到增强。常用的方法有固定跳频和频率捷变,由于频率捷变信号的跳频速度很快(可达微秒数量级),因此它能使瞄准式杂波干扰机很难截获或跟踪雷达。对于阻塞式干扰机,由于很难以足够的功率覆盖整个雷达的跳频带宽,干扰效果有限。在雷达发射机平均功率相同的条件下,宽带频率捷变雷达是目前抗杂波干扰的较好体制。

另外,开辟新频段,让雷达工作于更低或更高的频段上,散布范围尽量大;还可以使雷达突然在敌干扰频段的空隙中工作,使敌方不易干扰。

③与接收机有关的抗干扰技术

当雷达遭遇强大干扰时,强干扰信号与目标回波信号一同进入雷达接收机,使其超出正常的动态范围,工作状态进入饱和状态,这称为过载现象。一旦接收机出现过载,雷达就处于盲视状态,失去监视目标的作用,所有的反干扰措施也都失去意义。因此,抗饱和过载是雷达抗干扰的一条重要措施。雷达常采用的抗饱和过载技术有宽动态范围接收机(如对数接收机、线性-对数接收机)、瞬时自动增益控制电路、“宽-限-窄”电路、检波延迟控制电路、快速时间常数电路、近程增益控制电路、微波抗饱和电路等。

“宽-限-窄”抗宽带噪声调频干扰系统包括:宽带放大器、限幅器和窄带放

大器,综合利用了频域和时域抗干扰原理,多次“整削”宽带噪声调频干扰的能量,同时又充分保护目标回波信号能量不受损失,可极大地改善系统信干比,从而极大地降低雷达虚警概率、提高发现概率,因而是抗宽带噪声调频干扰的一种有效抗干扰技术。

④与信号处理有关的抗干扰技术

信号选择法

信号选择法,是基于信号的已知参数(脉冲宽度、脉冲重复频率、幅度、频率、相位等)区分干扰信号,可分为幅度选择、时间选择、频率选择、相位选择等。

幅度选择:根据雷达接收机输入端有用信号和干扰信号强度的不同,从干扰背景中分离出有用信号。当有用信号幅度大大超过干扰幅度时,可采用下限幅器,其输出仅在输入电压超过限幅电平时才出现。在脉冲雷达系统中,除了下限幅器外,还可以采用脉冲电平选择器,它可以除去振幅超过有用信号的干扰脉冲。

时间选择:在干扰背景下,脉冲信号的时间选择是以待选脉冲与干扰脉冲之间的时间位置(相位)、脉冲重复频率或脉冲宽度不同为基础的。在自动距离跟踪系统中,距离门选通电路就是根据脉冲位置的时间选择,它只允许预测距离门附近的信号通过,这不仅减小了信号处理量,而且消除了其他位置的噪声、干扰信号。脉冲重复频率鉴别电路是将接收机接收到的脉冲信号与基准脉冲比较,只有在时间上与基准脉冲信号重合的脉冲才能通过。脉宽选择电路,只让脉冲宽度处于事先确定范围内(大于、小于或等于给定值)的脉冲信号通过。脉冲重频鉴别电路与脉宽选择电路对抑制相干脉冲很有用。

频率选择:频率选择是以有用信号和干扰信号的频谱不同为基础的。如多普勒滤波器组是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器。当目标相对于雷达的径向速度不同,即多普勒频移不同时,它将落入不同的窄带滤波器。因此,窄带多普勒滤波器组起到了实现速度分辨和精确测量的作用。另外,窄带多普勒滤波器组滤除了多普勒频带外的干扰信号,它是PD雷达中不可缺少的组成部分。

相位选择:相位选择时,必须考虑所接收的有用信号和无线电干扰信号相位-频率特性的差别。这种选择是用相位自动频率微调系统来实现的,它可以完全

抑制与基准信号相位正交的干扰,并且可以大大减小宽带噪声干扰在接收机输出端的功率。在相位选择时,宽带噪声干扰影响的削弱,是由于噪声干扰中包含有相位与基准信号相同和正交的分量。

抗欺骗性干扰

当雷达遭遇欺骗干扰时,雷达接收机应当采取特殊的抗干扰措施。对抗距离欺骗干扰时,常用记忆波门法、幅度鉴别、用速度代替距离变化率法、重频捷变以及脉冲前沿跟踪法;对抗速度欺骗干扰时,也有记忆波门法、用距离变化率代替速度法、变发射脉冲周期法;对抗角度欺骗干扰则可采用隐蔽锥扫体制、单脉冲测角体制。

脉冲前沿跟踪是利用雷达目标回波脉冲信号的前沿信息,实现对目标的跟踪(通常指的是距离跟踪)。为了保护运动平台本身,如飞机,在运动平台上载有自卫用的回答式干扰机施放的自卫干扰脉冲与平台本身的雷达回波脉冲大部分重叠,而由于回答式干扰机在接收到雷达探测脉冲(此时已开始出现回波脉冲)到发射回答式干扰脉冲时不可避免的机内延迟(大约为50~200ns)的存在,不能完全掩盖回波脉冲形成的回波脉冲前沿暴露。所谓脉冲前沿跟踪,就是利用这一暴露于回答式干扰脉冲之前的回波脉冲前沿实现对目标距离跟踪,从而对抗距离回答式干扰的。

常见信号处理方法在抗干扰方面的作用

积累:用积累技术抗噪声干扰的原理,是充分利用信号和噪声之间在时间特性和相位特性上的区别,来完成在噪声背景中对信号的检测。相参积累同时利用了信号的幅度和相位信息,信噪比提高较多。理想的相参积累,信噪比可以提高N倍(N为积累的脉冲数),但技术上实现比较困难。非相参积累只利用了信号的幅度信息,而完全损失了相位信息,因此效果比相参积累差些。

相关:相关是搜索、跟踪、制导或引信系统处在恶劣工作环境时采用的一种检测处理技术。它的依据是:收到的数据和它经过一定延迟以后的数据之间的联系或相关性(自相关),收到的数据与本机参考数据之间的联系或相关性(互相关),以及信号的其他任意组合之间的联系或相关性。其目的在于改善受干扰的雷达系统正常工作的能力,或开发利用自然干扰和敌方辐射信号的资源。

恒虚警处理(CFAR):现代雷达广泛采用恒虚警处理,其主要功能就是对

云雨、气象杂波、地(海)杂波进行归一化处理,以提高雷达在各种干扰情况下的检测能力。雷达采用恒虚警处理,特别是采用两道门限处理的方案,具有抗强噪声干扰、改善雷达显示背景和提高雷达信号处理的能力。

动目标显示(MTI):MTI是多普勒处理的一种类型,它可以在固定杂波中检测出动目标,其基本原理是利用目标和杂波的相对径向移动而产生的不同多普勒频率来滤除杂波。

干扰源寻的(HOJ):用于导弹制导接收机的抗干扰技术,它把由目标发出的干扰信号作为制导信号,也称为被动跟踪干扰源。采用干扰源寻的方式使敌方不敢轻易施放干扰,是一种最积极的抗干扰方式。

被动测距:常用的被动测距方法有角速度测距、一部雷达或同其他雷达配合的三角测距方法、根据接收的回波信号强度增加的速率随21R(R为目标距离)变化测距等。

除了上述的技术抗干扰措施,在实战中采用数字信号处理电路,能够灵活选择和改变参数,可以提高雷达的可靠性,减轻重量、缩小体积、降低成本。采用新体制雷达,如频率捷变雷达、噪声雷达、无源雷达、红外雷达、激光雷达等,也是抗干扰的有效措施。

⑶信号处理技术

随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、计算机技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。雷达信号处理的功能大致可以分为如下三类:(1)信号产生:包括调制、上变频、倍频、合成、放大和波束形成;(2)信号提取:包括解调、下变频、分频、滤波、监测和成像;(3)信号变换:包括频率变换、A/D变换、相关、放大及延时。

⑷脉冲压缩技术

雷达装置脉冲压缩技术后,采取编码形式发射宽脉冲信号,并在接收器中经过匹配滤波器对回波进行处理,从而输出窄脉冲信号。脉冲压缩技术可以获得较

大的时宽带宽信号,使雷达同时具有作用距离远、高测距、高测速精度和好的距离、速度分辨率的优点。同时,在密集的有源电磁环境中,雷达之间的相互干扰会成为严重的问题。采用脉冲压缩技术的雷达发射端可以采用不同的调制波形,接收端采用不同的匹配滤波器,从而减少了雷达之间的相互干扰。雷达脉冲压缩技术在今后的应用中有着更为广泛的前景。它是提高现代雷达在未来战争中竞争力的重要手段之一,在整个雷达系统中,发挥着及其重要的作用,同时,脉冲压缩技术也是现代雷达信号处理技术的重要发展方向。

雷达是通过对回波信号做一些相应的处理来识别复杂回波中的有用信息的。因此,波形设计有着相当重要的作用,不同的波形将影响雷达发射机形式的选择、信号处理方式、雷达的作用距离及抗干扰、抗截获等很多重要问题。现代雷达为了提高雷达发射机平均功率,往往采取了时宽很宽的发射脉冲,脉宽甚至达到了若干毫秒。由雷达的模糊函数的概念可知,雷达的距离分辨率和发射信号的有效带宽成反比,为了能达到要求的距离分辨力,必须提高发射信号的有效带宽,常用的方法是采用脉冲压缩处理方式。

脉冲压缩技术可以获得较大的时宽带宽信号,使雷达同时具有作用距离远、高测距、高测速精度和好的距离、速度分辨率的优点。同时,在密集的有源电磁环境中,雷达之间的相互干扰会成为严重的问题。采用脉冲压缩技术的雷达发射端可以采用不同的调制波形,接收端采用不同的匹配滤波器,从而减少了雷达之间的相互干扰。

线形调频信号是一种典型的脉冲压缩信号,也是研究最早而又应最广泛的一种脉冲压缩信号。它具有对目标回波信号多普勒频移不敏感,技术较成熟等优点。但是为获得低副瓣,需要加权,这样会带来信噪比损失。在数字信号处理方法广泛应用之前,常采用模拟脉压方法。如今数字技术的不断提高使得数字脉压正在取代传统的模拟脉压方法。数字脉压相当于FIR匹配滤波,滤波器系数就是对应于发射的调频信号的参考信号。脉冲压缩有基于时域相关法和频域FFT法两种方式。采用频域算法的优点是大时宽信号时间可采用高效FFT算法,大大减少运算量(时域FIR滤波器实现数字脉压,对于N点长度的信号,需要进行2N次复数乘法运算,而频域卷积法仅需要雷达脉冲压缩技术在今后的应用中有着更为广泛的前景。它是提高现代雷达在未来战争中竞争力的重要手段之一,在整个雷达系统

中,发挥着及其重要的作用,同时,脉冲压缩技术也是现代雷达信号处理技术的重要发展方向。

雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。根据脉冲压缩系统实现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的模拟方式,另一类是数字方式实现的,主要采用数字器件实现。传统的脉冲压缩一般用模拟器件实现匹配处理,如用具有频率色散特性的声表面波器件(SAWD)等。其缺点主要是滤波器频率响应(包括加权函数)已在制造过程中决定,不能做到灵活可变。对于同一个数字脉压滤波器,改变其参数即可改变它的脉冲响应。脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣会掩盖或干扰附近的弱信号的反射回波,这种情况在实际工作中是不允许的。采用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB的量级。但用模拟技术实现时实际结果与理论值相差很大,而用数字技术实现时实际输出的距离旁瓣与理论值非常接近。数字脉压以其许多独特的优点正在或已经替代模拟器件进行脉冲压缩处理。数字脉压技术可以用时域卷积法或频域快速卷积法实现。随着集成电路技术的不断发展,各种高速DSP芯片和各种专用FFT芯片的性能越来越好,使用越来越方便使得频域脉压法得到越来越广泛的应用。

三、雷达信号处理的发展趋势

雷达信号理论形成于20世纪40~50年代。Wiener1942年建立了最佳线性滤波和预测理论,North1943年提出了匹配滤波器理论,Urkowitz把匹配滤波器理论推广到色噪声场合,建立了“白化滤波器”和“逆滤波器”的概念。从此,人们对雷达信号形式及处理的认识上升到了一个新的高度,极大地推动了雷达技术理论的发展。进入90年代后,随着反辐射武器的发展,在雷达技术的发展和进步的同时,现代雷达所面临的挑战也逐渐严峻起来。现代雷达信号处理的发展趋势主要是以下几个方面。

⑴推广数字化技术

自从20世纪70年代数字技术进入雷达信号处理领域以来,雷达信号处理呈现出蓬勃发展的趋势。70年代以前,雷达信号处理技术主要采用模拟电路,这严重制约了信号处理的发展。例如,在雷达信号处理理论方面,“匹配滤波理论”,“傅里叶变换算法”早就提出,但在当时来说实现起来非常困难。就是现对简单

的“一次对消”和“二次对消”等动目标显示技术在实现上也只能采用水银延迟线和固体延迟线等,既笨重,性能也差。随着数字技术的进展,这些理论和算法迅速在雷达信号处理系统中得到推广应用,数字技术也得到了雷达技术人员的认同。信号处理技术实现手段的强化,大大促进了信号处理技术的迅速发展,使现代雷达信号处理系统向着数字化、软件化、模块化的方向迅速发展,应用范围也越来越广。

⑵雷达信号处理的多功能应用

雷达信号处理的领域非常广泛,可以设计气象、导弹制导、空间卫星、航空领域等。自从20世纪40年代初期,人们就已开始使用雷达进行气象观测和大气物理探测的研究,经过多年的发展,气象雷达成为雷达领域的一个重要组成部分;现代战场上,雷达已经成为各类军事武器装备的重要组成部分。根据雷达应用的技术的不同,可以将雷达分为脉冲多普勒雷达、相控阵雷达和合成孔径雷达等,各种性能的雷达根据其性能被应用到各个领域。

⑶雷达信号处理算法的发展

雷达信号处理向多功能方向的发展对信号处理理论的发展提出了新的需求,而雷达信号处理数字化技术的进展又为各种信号处理理论在雷达信号处理中的应用提供了可能,所以雷达信号处理的算法发展很快。自适应信号处理算法20世纪中叶,美国的B.Widrow和M.hoff提出了最小均方自适应算法;70年代,自适应动目标显示(AMTI)开始应用于雷达;80年代出现了自适应波束形成算法;现在自适应信号处理已在雷达中得到了比较广泛的应用,如自适应杂波对消、自适应干扰抑制、自适应频率控制、自适应波形捷变、二维或多维自适应处理等。新的信号处理理论逐步进入雷达信号处理领域在雷达目标识别中,子波形分析、模糊理论、神经网络、分形算法和遗传算法已经被越来越广发地应用,以数据信息挖掘为代表的人工智能技术正在引入。在SAR图像处理中,各种图像处理算法也被全面应用来解决有关问题。

参考文献

[1] 吴顺军,梅晓春,等.雷达信号处理和数据处理技术[M].北京:电子工业出版社,2008.

[2] 赵晨光.现代雷达信号处理及其发展趋势探讨[J].电子技术与软件工程, 2014,4(8):21-23.

[3] 熊孝华.现代雷达信号处理及发展趋势探讨[J].中国高薪技术企业,2011,2(7):26-27.

[4] 于文震.雷达信号数据处理平台发展趋势探讨[J].现代雷达,2009,6(9): 31-32.

[5] 刘营营.多功能一体化雷达电子战系统信号处理机的研究及仿真[D].江苏科技大学,2012.

现代信号处理技术试题

学院________________班级_____________学号________姓名______ 现代信号处理技术试题 一、选择题(下面各题中只有一个答案是正确的,请将正确答案的序号写在每 小题的()上;每小题2分,共20分) 1. 下列四个离散信号,只有( )是周期序列。 A.)100sin(n B. n j e 3 C.)30sin()cos(n n +π D.5432π π j j e e + 2.x(n)非零范围为21N n N ≤≤,h(n)的非零范围为43N n N ≤≤,y(n)=x(n)*h(n) 的非零范围为( )。 A.4231N N n N N +≤≤+ B. 42311N N n N N +≤≤-+ C. 14231-+≤≤+N N n N N D. 114231-+≤≤-+N N n N N 3.求周期序列[]?? ? ??=k k x 5cos 2~π的DFS 系数为( )。 A.[]???==others m m x 09,12~ B. []???==others m m x 09,110~ C. []???==others m m x 0510~ D. []? ??==others m m x 05,15~ 4.序列[]{}210121,,:,,==k k x 的幅度谱和相位谱为( ) 。 A.()()02cos 42=ΩΩ=Ωφ,j e X B. ()()Ω-=ΩΩ=Ωφ,2 cos 42j e X C. () ()2 -2cos 42πφ+Ω=ΩΩ=Ω,j e X D. ()()Ω-=Ω=Ωφ,4j e X 5.当序列x[k]为实序列,且具有周期偶对称性,则序列的DFT 满足( )。 A.X[m]周期共轭对称 B. X[m]虚部为零,实部周期奇对称 C.X[m]实部为零,虚部周期奇对称 D. X[m]虚部为零,实部周期偶对称 6.与512点的DFT 相比,512点的FFT 只需( )。 A.1/2的计算量 B.1/100的计算量 C.2倍的计算量 D.1/10的计算量 7.通带和阻带内均有波纹的IIR 滤波器是( )。 A.Butterworth B.Chebyshev I C.Chebyshev II D.椭圆 8.M 阶FIR 滤波器具有线性相位的条件是( )。 A. ()()n h n h -= B. ()()n M h n h -±=

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

现代信号处理及其应用

成绩: 现代信号处理 及其应用 题目:现代信号处理在通信对抗中的应用学号:111143321 姓名:王琦 2015年6月

现代信号处理在通信对抗中的应用 摘要:信息技术在现代军事领域占有越来越重要的地位,成为决定战争胜负的一个关键因素。信息战已经成为现代战争的主要作战形式之一。应用于军事通信对抗的现代信号处理理论发展非常迅速,这得益于两个方面的动力:其一,军事通信的技术和手段不断更新。其二,现代信号处理的三大热点—谱估计、高阶统计量方法、时频分析的理论和技术日臻完善,并逐渐应用于通信对抗领域。通信对抗是电子战的重要组成部分。 关键词:通信对抗;信号检测;现代信号处理技术 一、引言 信号处理是信息科学的重要组成部分。在现代科技领域,电子信息系统的应用范围十分广泛,主要有通信、导航、雷达、声纳、自动控制、地震勘探、医学仪器、射电天文等。这些领域的研究进展很大程度上依赖于信号处理理论和技术的进步。通信对抗是电子战的重要组成部分,也是电子战领域中技术含量最高的部分。[1]通信对抗不仅采用了最先进的电子和通信技术,而且有力地推动了信号处理理论的发展,促进了通信技术的发展。通信对抗在现代战争中具有广泛的应用价值。本文探讨的内容主要涉及现代信号处理理论在通信对抗技术中相关的应用。 二、现代信号处理技术基本原理 信号是信息的载体,是随时间和空间变化的物理量。要想得到有用信息就必须对信号进行分析处理。它分为确定信号和随机信号。其中,确定信号:序列在每个时刻的取值服从某种固定函数的关系的信号;随机信号:序列的取值服从某种概率规律的信号。而确定信号又分为周期信号与非周期信号;随机信号分为平稳随机信号和非平稳随机信号。 现代信号处理技术,则是要把记录在某种媒体上的信号进行处理,以便抽取出有用信息的过程,是对信号进行提取、变换、分析、综合等处理过程的统称。 [2]利用观测数据作出关于信号与(或)系统的某种统计决策。统计决策理论主要解决两大类问题:假设检验与估计。信号检测、雷达动目标检测等是假设检验的典型问题。估计理论设计的范围更广泛,它又被分为非参数化和参数化两类方法。 三、现代信号处理技术在通信对抗中应用 在军事通信对抗中,军用无线电台是电子战部队实施电子侦测、截获和干扰的主要目标。电台在工作中常常受到敌方有针对性地发射的电磁波攻击。扩频通信是目前军用电台的常见通信方式。扩频通信具有良好的低功率谱密度发射所带

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

一种雷达信号处理模块的设计和实现

一种雷达信号处理模块的设计和实现 一种雷达信号处理模块的设计和实现 现代雷达特别是机载雷达数字信号处理机的特点是输入数据多,工作模式复杂,信息处理量大。因此,在一个实时信号处理系统中,雷达信号处理系统要同时进行高速数据分配、处理和大量的数据交换.而传统的雷达信号处理系统的设计思想是基于任务,设计者针对应用背景确定算法流程,确定相应的系统结构,再将结构划分为模块进行电路设计。这种方法存在一定的局限性。 首先,硬件平台的确定会使算法的升级受到制约,由此带来运算量加大、数据存储量增加甚至控制流程变化等问题。此外,雷达信号处理系统的任务往往不是单一的,目前很多原来由模拟电路完成的功能转由数字器件来处理。系统在不同工作阶段的处理任务不同,需要兼顾多种功能。这些问题都对通用性提出了进一步要求[2].随着大规模集成电路技术、高速串行处理及各种先进算法的飞速发展,利用高速DSP和FPGA相结合的系统结构是解决上述问题的有效途径。 1雷达信号处理机方案设计 1.1雷达信号处理的目的 现代机载雷达信号处理的任务繁重,主要功能是在空空方式下将AD 数据录取后进行数字脉压处理、数据格式转换和重排、加权降低频谱副瓣电平,然后进行匹配滤波或相参积累(FFT或DFT)、根据重复频率的方式进行一维或二维CFAR处理、跟踪时测角等运算后提取出点迹目标送给

数据处理机。空地方式下还要进行地图(如RBM和SAR)等相关图像成像处理,最后坐标转换成显示数据送给显控处理机。 上述任务需要基于百万门级可编程逻辑器件FPGA与高性能DSP芯片作为信号处理模块,以充分满足系统的实时性要求,同时为了缩短机载雷达系统的研制周期和减少开发经费,设计的基本指导思想是通用化的信号处理模块,可以根据不同要求,通过软件自由修改参数,方便用户使用。 1.2系统模块化设计方案 的功能模块,除了信号处理所必需的脉冲压缩模块、为MTD模块作准备的数据重排模块、FIR滤波器组模块、求模模块、恒虚警处理模块和显示数据存储模块外,还包括雷达同步信号和内部处理同步产生模块、自检数据产生模块以及不同测试点测试数据采样存储模块。这些模块更加丰富了系统的功能,使得雷达系统的研制者能够更方便地测试和观察信号处理各功能模块的工作情况。 主要功能模块的具体功能描述如下: (1)正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务,中频接收机输出的信号先通过A/D转换器进行采样,然后进行正交解调,以获得中频信号的基带信号(也称为中频信号的复包络)的I、Q两路正交信号,采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内。 (2)脉冲压缩模块是在发射峰值功率受限的情况下,使用匹配滤波器将接收到的宽脉冲信号变成窄脉冲且保持能量不变,以获得更高的距离

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩)快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT(时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT乘上参考信号FFT的共轭再逆FFT; Sc=ifft(fft(Sb).*conj(fft(S))); Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j* pi*f0*tau);%回波信号 x 107

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) x 10 -5 x 10 -5 x 10 7 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on -400 -350-300-250-200-150-100-500

二、去斜处理(宽带的匹配滤波) 去斜处理“有源相关”,通常用来处理极大带宽的LFM波形(如果直接采样的话因为频带很宽所以在高频的时候需要的采样率就很大,采样点数就很多,所以要经过去斜处理) Stretch方法是针对线性调频信号而提出的,其方法是将输入信号与参考信号(经适当延迟的本振信号,延迟量通常由窄带信号测距结果估计出)混频,则每一个散射点就对应一个混频后的单频分量,对混频输出的信号进行DFT处理,即可获得目标的距离像,对参考信号的要求是应具有与输入信号相同的调频斜率。 去斜处理流程: 输入信号输出信号 参考信号 混频过程为回波信号在时域与参考信号的共轭相乘 混频后得到一个瞬时频率和目标距离成正比的单频信号,对其进行频谱分析即可得到目标的距离像; 去斜处理一般情况下可降低信号带宽; %%%%%%%%%%%%%%%%%%%%%%%% 去斜处理仿真程序 %%%%%%%%%%%%%%%%%%%%%%%%% clc;clear all;close all; B=10e6;%带宽10MHz tp=10e-6;%脉宽10us k=B/tp;%LFM系数 fs=50e6; R0=3e3;R1=2000;R2=3500;R=5000; c=3e8; f0=60e6; N=round(2*R/c*fs); fft_N=2^nextpow2(N); t=linspace(0,2*R/c,N);

现代信号处理复习要点总结

《信号处理技术及应用》复习要点总结 题型:10个简答题,无分析题。前5个为必做题,后面出7个题,选做5个,每个题10分。 要点: 第一章:几种变换的特点,正交分解,内积,基函数; 第二章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应用(能举个例子最好) 第三章:傅里叶级数、傅里叶变换、离散傅里叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:一阶和二阶循环统计量的定义和计算过程,怎么应用? 第五章:多分辨分析,正交小波基的构造,小波包的基本概念 第六章:三种小波各自的优点,奇异点怎么选取 第七章:二代小波提出的背景及其优点,预测器和更新器系数计算方法,二代小波的分解和重构,定量识别的步骤 第八章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。看8.3小节。 信号的时域分析 信号的预处理 传感器获取的信号往往比较微弱,并伴随着各种噪声。 不同类型的传感器,其输出信号的形式也不尽相同。 为了抑制信号中的噪声,提高检测信号的信噪比,便于信息提取,须对传感器检测到的信号进行预处理。 所谓信号预处理,是指在对信号进行变换、提取、识别或评估之前,对检测信号进行的转换、滤波、放大等处理。 常用的信号预处理方法 信号类型转换 信号放大 信号滤波 去除均值 去除趋势项 理想低通滤波器具有矩形幅频特性和线性相位特性。 经典滤波器 定义:当噪声和有用信号处于不同的频带时,噪声通过滤波器将被衰减或消除,而有用信号得以保留 现代滤波器 当噪声频带和有用信号频带相互重叠时,经典滤波器就无法实现滤波功能 现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进行估计,在统计指标最优的意义下,用估计值去逼近有用信号,相应的噪声也在统计最优的意义下得以减弱或消除 将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤 采样定理:为避免混叠,采样频率ωs必须不小于信号中最高频率ωmax的两倍,一般选取采样频率ωs为处理信号中最高频率的2.5~4倍 量化是对信号采样点取值进行数字化转换的过程。量化结果以一定位数的数字近似表示信号在采样点的取值。 信号采样过程须使用窗函数,将无限长信号截断成为有限长度的信号。 从理论上看,截断过程就是在时域将无限长信号乘以有限时间宽度的窗函数 数字信号的分辨率包括时间分辨率和频率分辨率 数字信号的时间分辨率即采样间隔ρt,它反映了数字信号在时域中取值点之间的细密程度 数字信号的频率分辨率为ρω=2π/T

一种雷达通用信号处理系统的实现与应用

一种雷达通用信号处理系统的实现与应用 一种雷达通用信号处理系统的实现与应用 FPGA是一种现场可编程器件,设计灵活方便可以反复修改内部逻辑,适用于算法结构比较简单、处理速度较高的情况。DSP是一种基于指令集的处理器,适于大信息、复杂算法的信息处理场合。鉴于两种处理器件自身优势,FPGA+DSP信号处理架构,已成为信号处理系统的常用结构。但当前FPGA+DSP的信号处理平台或者是基于某些固定目的,实现某些固定功能,系统的移植性、通用性较差。或者仅仅简要介绍了平台的结构没有给出一些具体的实现。本文提出的基于FPGA+DSP通用信号处理平台具有两种处理器的优点,兼颐速度和灵活性,而且可以应用在不同雷达信号处理系统中,具有很强的通用性。本文举例说明该系统在连续波雷达和脉冲雷达中的典型应用。1系统资源概述1.1处理器介绍本系统FPGA选择Altera公司的EP2S60F1020。Stratix II FPGA采用TSMC的90nm 低k绝缘工艺技术。Stratix II FPGA支持高达1Gb·s-1的高速差分I/O信号,满足新兴接口包括LVDS,LNPECL和HyperTransport标准的高性能需求,支持各种单端I/O接口标准。EP2S60系列内部有48352个ALUT;具有2544192bit的RAM 块,其中M512RAM(512bit)329个,M4K RAM(4kbit)255个,M-RAM(512kbit)2个。具有嵌入式DSP块36个,等效18bit×18bit乘法器144个;具有加强型锁相环EPLL4个,

快速锁相环FPLL8个。这些锁相环具有高端功能包括时钟切换,PLL 重新配置,扩频时钟,频率综合,可编程相位偏移,可编程延迟偏移,外部反馈和可编程带宽等。本系统DSP选择ADI公司的ADSP TS201。它有高达600MHz的运行速度,1.6ns的指令周期;有24MB的片内DRAM;双运算模块,每个计算块包含1个ALU,一个乘法器,1个移位器,1个寄存器组和1个通信逻辑单元(CLU);双整数ALU,提供数据寻址和指针操作功能;集成I/O接口,包括14通道的DMA控制器,外部端口,4个链路口,SDRAM控制器,可编程标识引脚,2个定时器和定时器输出引脚等用于系统连接;IEEE1149.1兼容的JTAG端口用于在线仿真;通过共享总线可以无缝连接多达8个TigerSHARC DSP。1.2FPGA+DSP结构由于FPGA和DSP各自的自身优势,FPGA+DSP信号处理架构已成为信号处理系统的常用结构。一般情况下FPGA+DSP的拓扑结构会根据需要进行不同的连接,这就导致这种结构的专用性,缺乏灵活性。对于一个通用处理平台要考虑到各种不同的信号通路,因此大部分通用FPGA+DSP平台都采取各个处理器间均有通路的方式。这种拓扑结构灵活方便,可以满足各种不同的通路需求,这种结构的缺点就是硬件设计的复杂以及可能会有资源浪费。对于这种通用FPGA+DSP 结构,FPGA与各个DSP之间均有连接,不同之处便是DSP之间的拓扑结构。一般分两种,一是高速外部总线口耦合结构组成多DSP 系统,这种结构可以实现多DSP共享系统内的资源,系统内的个处理器可以共享RAM,SDRAM和主机等资源,还可共享其他处理器核

雷达信号处理

雷达信号处理技术与系统设计 第一章绪论 1.1 论文的背景及其意义 近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。 雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。固定杂波的中心频率位于零频,很容易设计滤波器将其消除。但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术 2.1 引言 雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。 脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。这种情况在实际工作中是不允许的。采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。但用模拟技术实现时实际结果与理论值相差很大,而用数字技术实现时实际输出的距离旁瓣与理论值非常接近。数字脉压以其许多独特的优点正在或已经替代模拟器件进行脉冲压缩处理。 2.2 数字脉压实现方法 用数字技术实现脉冲压缩可采用时域方法或频域方法。至于采用哪种方法。 要根据具体情况而定,一般而言,对于大时宽带宽积信号,用频域脉压较好;对 于小时宽带宽积信号,用时域脉压较好。 2.2.1 时域卷积法实现数字脉压 时域脉冲压缩的过程是通过对接收信号)(t s 与匹配滤波器脉冲响应)(t h 求卷积的方法实现的。根据匹配滤波理论,)()(0*t t s t h -=,即匹配滤波器是输入信号的共轭镜像,并有响应的时移0t 。 用数字方法实现时,输入信号为)(n s ,起匹配滤波器为)(n h ,即匹配滤波器的输出为输入离散信号)(n s 与其匹配滤波器)(n h 的卷积

最新 连续波雷达及信号处理技术初探-精品

连续波雷达及信号处理技术初探 摘要:连续波雷达,主要就是连续发生电磁波的雷达,可以根据不同发射信号的形式,将其划分成为非调制单频与调频两种类型。在连续波雷达系统实际应用的过程中,应当科学使用信号处理技术开展相关处理工作,在实际观测的过程中,解决收发开关中存在的问题,保证雷达信号接收与发射工作效果。关键词:连续波雷达;信号处理技术;应用措施在使用信号处理技术对连续波雷达进行控制的过程中,应当建立多元化的管理机制,明确各方面工作要求,创新信号处理工作形式,保证能够提升信号处理技术的应用水平,创建专门的管理机制。一、连续波雷达定义与特征分析对于连续波雷达而言,主要是针对电磁波进行连续的发射,根据发射信号形式将其划分成为非调制单频与调频两种类型。在1924年的时候,英国就开始通过连续波课调频测距相关分析,对电离层开展观测工作。且在第二次世界大战的过程中,已经使用连续波雷达开展飞机观测与地面观测工作。然而,在实际使用的过程中,经常会出现收发隔离的现象,难以保证工作效果,因此,使用收发开关对此类问题进行了解决。当前,在使用连续波雷达的过程中,已经能够通过同一天线开展信号接收与发射工作,产生良好的工作效果。在使用连续波雷达发射机设备的过程中,不需要高压的支持,也不会出现打火的现象,能够利用多元化的方式开展信号调制工作,有利于提升信号的发射效率,增强雷达处理效果,因此,在相同体积、重量的雷达设备中,连续波雷达受到广泛关注与重视,应用于世界的各个国家。同时,连续波雷达的体积很小,重量很轻,馈线的损耗最低,使用流程简单,与其他雷达相较可以得知,连续波雷达在接收机方面,所使用的宽带脉冲较窄,有利于抵抗杂波问题,提升电磁干扰的抵抗能力。在应用连续波雷达对距离与速度进行测量的过程中,其测量准确性较高,不会受到其他因素的干扰。对于连续波雷达而言,其特点主要表现为以下几点: (一)发射机的运行功率较低连续波雷达的发射机运行功率很低,有利于应用在侦查工作中。一般情况下,在使用侦查接收机的过程中,可以利用连续波雷达对其进行处理,提升工作效率,加快侦查速度,保证瞬时频率符合相关规定。同时,在使用连续波雷达的过程中,还要使用伪随机码调相方式对其进行处理,减少外界带来的干扰,做好反侦察工作,保证可以符合实际发展需求。(二)接收机的宽带很窄连续波雷达在实际运行的过程中,接收机的宽带很窄,在杂波环境中,能够实行检测工作,提升自身抗干扰能力。且在电磁干扰的环境中,可以提升自身的抗干扰性能,满足实际处理需求[1]。(三)对小目标进行检测连续波雷达设备的使用,可以提升发射机的功率,增加收发天线的收益,且可以减少噪音问题,在一定程度上,能够减少微波损耗问题,更好的对隐身目标进行检测,合理开展雷达探测等工作,提升相关信号的处理效果,满足实际发展需求。二、连续波雷达的相关工作园林分析连续波雷达的运行,需要明确实际工作原理,通常情况下,雷达发射线性三角调频的相关连续性信号,那么,雷达设备的载频就在f0的数值之上,在此过程中,可以将调频宽带设置成为A,将调频间隔设置成为C。在对信号频率与时间进行计算的过程中,应当明确相关原理,创新管理工作形式,对具有代表性的内容进行合理分析,保证可以提升自身分析工作效果。在信号处理工作中,应当重点关注发射信号与目标回波信号,通过合理的计算方式,创建多

雷达系统中的信号处理技术

雷达系统中的信号处理技术 摘要本文介绍了雷达系统及雷达系统信号处理的主要内容,着重介绍与分析了雷达系统信号处理的正交采样、脉冲压缩、MTD和恒虚警检测几种现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,通过MTD来探测动目标,通过恒虚警(CFAR)来实现整个系统对目标的检测。 关键词雷达系统正交采样脉冲压缩MTD 恒虚警检测 1雷达系统概述 雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。雷达的任务就是测量目标的距离、方位和仰角,还包括目标的速度,以及从目标回波中获取更多有关目标的信息。典型的雷达系统如图1,它主要由雷达发射机、天线、雷达接收机、收发转换开关、信号处理机、数据处理机、终端显示等设备组成。 图1雷达系统框图

随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、计算机技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。 雷达发射机产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由雷达接收机接收,然后对雷达回波信号依次进行信号处理、数据处理,就可以获知目标的相关信息。 雷达信号处理的流程如下: 图 2 雷达信号处理流程 2雷达信号处理的主要内容 雷达信号处理是雷达系统的主要组成部分。信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。内容包括雷达信号处理的几个主要部分:正交采样、脉冲压缩、MTD和恒虚警检测。 正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内,直接中频数字正交采样是当代雷达的主要技术之一。脉冲压缩技术在现代雷达系统中得到了广泛的应用。脉冲压缩雷达既能保持窄脉冲雷达的高距离分辨力,又能获得脉冲雷达的高检测力,并且抗干扰能力强。现在,脉冲压缩雷达使用的波形正在从单一的线性调频发展到时间、频率、编码混合调制,在尽可能不增加整机复杂度的条件下实现雷达性能的提升。杂波抑制是雷达需要具备的重要功能之一。动目标指示与检测是通过回波多普勒频移的不同来区分动目标和固定目标,通过设计合理的滤波器(组),就可以把目标号和杂波分开。

现代信号处理

现代信号处理课程设计实验报告 实验课题:现代信号处理 专业班级: 学生姓名: 学生学号: 指导老师: 完成时间:

目录 一.前言-------------------------------------------------2 二.课程设计内容要求及题目-------------------------3 三.设计思想和系统功能结构及功能说明-----------4 四.关键部分的详细描述和介绍,流程图描述关键模块和设计思想--------------------------------------------------7 五.问题分析及心得体会--------------------------20 六.参考文献------------------------------------------21 七.附录:程序源代码清单------------------------21

一、前言 数字滤波在通信、图像编码、语音编码、雷达等许多领域中有着十分广泛的应用。目前,数字信号滤波器的设计在图像处理、数据压缩等方面的应用取得了令人瞩目的进展和成就。它是数字信号处理理论的一部分。数字信号处理主要是研究用数字或符号的序列来表示信号波形,并用数字的方式去处理这些序列,以便估计信号的特征参量,或削弱信号中的多余分量和增强信号中的有用分量。具体来说,凡是用数字方式对信号进行滤波、变换、调制、解调、均衡、增强、压缩、固定、识别、产生等加工处理,都可纳入数字信号处理领域。数字信号处理学科的一项重大进展是关于数字滤波器设计方法的研究。关于数字滤波器,早在上世纪40年代末期就有人讨论设计它的可能性问题,在50年代也有人讨论过数字滤波器,但直到60年代中期,才开始形成关于数字滤波器的一整套完整的正规理论。在这一时期,提出了各种各样的数字滤波器结构,有的以运算误差最小为特点,有的则以运算速度高见长,而有的则二者兼而有之。出现了数字滤波器的各种实现方法,对递归和非递归两类滤波器作了全面的比较,统一了数字滤波器的基本概念和理论。 数字滤波器与模拟滤波器相比,具有精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及能实现模拟滤波器无法进行的特殊滤波等优点。 上学期学习了《数字信号处理》这门课,这学期的课程设计使我更加形象具体的掌握这门课程,并且可以熟练的运用MATLAB进行编程,

雷达数字信号处理解决方案

雷达数字信号处理解决方案 1.背景 数字信号处理是现代通信、雷达和电子对抗设备的重要组成部分。在实际应用中,利用数字信号处理技术对接收数据进行处理,不仅可以实现高精准的目标定位和目标跟踪,还能够将目标识别、目标成像、精确制导、电子对抗等功能进行拓展,实现多种业务的一体化集成。 在现代雷达系统中,随着有源相控阵和数字波束形成(DBF)技术的广泛应用,接收前端存在大量的数据需要并行处理,并需要保证高性能和低延迟的特点。雷达日益复杂的应用环境,让雷达系统具备自适应于探测目标和环境的能力,数字信号处理部分也需要使用多种更加复杂的算法,并且可以做到算法模块化,以及通过软件配置功能模块的参数,实现软件定义的功能。更大的数据处理带宽能够使雷达获得更高的分辨率,更高的工作频率使得雷达可以小型化,能够在更小的平台上安装,这样对于硬件平台实现也有低功耗的要求。 在电子对抗设备中,可以在最短的时间内对多个威胁目标进行快速分析和响应,同样需要数字信号处理的相关算法具备高实时,高动态范围和自适应的特点。如何在宽频噪声的环境中寻找到目标的特征数据,如何在宽带范围内制造虚假目标实现全覆盖,数字信号的处理性能是至关重要的设计因素。 加速云的SC-OPS和SC-VPX产品,针对5G通信和雷达的数字信号处理的要求,结合Intel最新14nm 工艺的Stratix10 FPGA系列,提供了一套完整的硬件和软件相结合的解决方案。SC-OPS产品作为单独的硬件加速卡,通过PCIe插卡的方式实现与主机的通信功能,还可以通过多卡级联的方式实现数字信号的分布式处理方案。SC-VPX产品是由FPGA业务单板、主控板和机箱组成的VPX系统。借助于FPGA可编程的特性,加速云提供了高性能数学加速库FBLAS和FFT的RTL级IP,具有高性能和算法参数可配置的特点实现了多重信号分类(MUSIC)和自适应数字波束形成(ADBF)的核心算法,提高了5G通信和雷达在对抗干扰方面的性能。为了方便客户使用高层语言开发,加速云提供基于FPGA完整的OpenCL异构开发环境,快速实现用户自定义的信号处理加速方案。 图1. 加速云SC-OPS和SC-VPX产品

现代信号处理作业

② 已知 Ωc 、Ωs 和 Ω=Ωp( Ω ≠ -3dB 1.总结学过的滤波器设计方法,用 matlab 仿真例子分析不同设计方法的滤波器 的性能及适应场合。 答: 1.1 模拟低通滤波器的设计方法 1.1.1 Butterworth 滤波器设计步骤: ⑴.确定阶次 N ① 已知 Ωc 、Ωs 和 As 阶数 N 求出 p )的衰减 Ap 求 阶数 N ③ 已知 Ωp 、Ωs 和 Ω=Ωp 的衰减 Ap 和 As 则: (Ω p / Ωc )2N = 10 A p /10 -1, (Ωs / Ωc )2N = 10 A s /10 -1

⑵.用阶次N确定H a(s) 根据公式: H a(s)H a(-s)在左半平面的极点即为H a(s)的极点,因而 1.1.2切比雪夫低通滤波器设计步骤: ⑴.确定技术指标ΩpαpΩsαs 归一化:λp=Ωp/Ωp=1λs=Ωs/Ωp ⑵.根据技术指标求出滤波器阶数N及ε: δ=αp ε2=100.1δ-1 ⑶.求出归一化系统函数 其中极点由下式求出:

、阻带截止频率ω 、阻带最小衰减系数α s 。 或者由 N 和 S 直接查表得 H a ( p ) 2.数字低通滤波器的设计步骤: (1) 确定数字低通滤波器的技术指标:通带截止频率 α p ωp 、通带最大衰减系数 (2)将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: k =1 切比雪夫: λs = Ωs / Ω p ε 2 = 100.1δ -1 δ = α p p

t t t t H a (s )= ∑ t h a (t )= ∑ A i e s i t u (t ) (3)把模拟滤波器变换成数字滤波器,即把模拟滤波器的系数 H (S ) 映射成数 字滤波器的系统函数 H (z ) 。 实现系统传递函数 s 域至 z 域映射有脉冲响应不变法和双线性映射两种方法。 (3.1)脉冲响应不变法。 按照技术要求设计一个模拟低通滤波器,得到模拟低通滤波器的传输函数 H a (s )转换成数字低通滤波器的系统函数 H(z)。 设模拟滤波器的传输函数为 H a (s ),相应的单位冲激响应是 h a ( ), H a (s )=LT[ h a ( )],LT[.]代表拉氏变换,对 h a ( )进行等间隔采样,采样间隔为 T ,得到 h a (nT ) ,将 h(n)= h a (nT ) 作为数字滤波器的单位取样响应,那么数字滤波器的 系统函数 H(z)便是 h(n)的 Z 变换。因此脉冲响应不变法是一种时域上的转换方 法,它是 h(n)在采样点上等于 h a ( )。 设模拟滤波器 H a (s )只有单阶极点,且分母多项式的阶次高于分子多项式的阶次, 将 H a (s )用部分分式表示: N i =1 A i s - s i ,式中 s i 为 H a (s )的单阶极点。 将 H a (s )逆拉氏变换得到 h a ( ): N i =1 ,式中 u(t)是单位阶跃函数。

雷达信号处理和数据处理技术

雷达信号处理和数据处理技术 定价: ¥89.00元金桥价: ¥84.55元节省: ¥4.45元 内容简介 雷达信号处理和数据处理技术是雷达的神经中枢。信号处理通过对雷达回波信号的处理来发现目标和测定目标的坐标和速度等,形成目标点迹,数据处理通过对目标点迹的处理形成目标的航迹供指挥决策使用。 本书的主要内容包括雷达信号的形式、雷达杂波抑制、雷达脉冲压缩、雷达信号检测、雷达抗干扰、雷达目标识别、雷达点迹处理和雷达航迹处理等。 全书共14章,第1章为概论,第2章到第10章为雷达信号处理技术,第11章到第14章为雷达数据处理技术。全部内容既包含处理理论,也包含设计技术。 本书可以帮助雷达工程技术人员和雷达使用人员掌握有关雷达信号处理和数据处理技术,解决有关应用问题;同时还可以作为高等学校电子工程相关专业高年级本科生和研究生的参考用书。 雷达信号处理基础 定价: ¥55.00元金桥价: ¥52.25元节省: ¥2.75元

内容简介 本书译自国际著名雷达信号处理专家Mark A. Richards教授编写的教科书。该书介绍了雷达系统与信号处理的基本理论和方法,主要内容包括:雷达系统导论、雷达信号模型、脉冲雷达信号的采样和量化、雷达波形、多普勒处理、检测基础原理、恒虚警率检测、合成孔径雷达成像技术、波束形成和空-时二维自适应处理导论。书中包含了大量反映雷达信号处理最新研究成果和当前研究热点的补充内容,提供了大量有助于读者深入的示例。该书对基础理论和方法进行了详尽的介绍与深入严谨的论述,是一本雷达信号处理领域中高水平的教科书。 本书适合于从事雷达成像、检测、数据处理及相关信号处理的研究生作为教材使用,也是相关专业研究人员不可多得的一本参考书。Mark A.Richards。博士,佐治亚理工学院(Georgia Institute of Technology)的首席研发工程师和兼职教授。他具有20余年在学术界、工业界及政府部门从事雷达信号处理和嵌入式计算方面研究的经历。他曾被聘为美国国防高级研究计划署项目经理、IEEE 2001年雷达会议的总主席,以及IEEE图像处理和IEEE信号处理期刊的副编辑。Eichards博士长期从事关于雷达信号处理、雷达图像处理及相关学科的研究生教育和职业教育。这本严谨的著作源自于一位该领域令人尊敬的领导者,它提供了其他文献中所没有的关于雷达DSP基础及其应用的详细内容。对于那些不只想从普通雷达系统的书籍中粗略学习信号处理,还想学到更多关于信号模型、波形、干扰抑制、探测,以及诸如SAR和SFAP等高级雷达信号处理主题的人而言,本书是非常合适的。经过多年研究生和职业教育的完善与检验,这本深入介绍雷达DSP技术的书籍,以现有的先进雷达技术为基础,全面讨论了以下几方面的问题,并提供了详尽的例子:多域信号获取和采样、目标和干扰模型、常见雷达波形、干扰抑制技术、检测算法和工具、合成孔径成像和自适应阵列处理基础。 信息传输与正交函数 定价: ¥28.00元金桥价: ¥26.60元节省: ¥1.40元 内容简介 本书叙述了非正弦正交函数理论和以之为基础的信息传输系统,主要内容包括正交函数系、信息传输的基本思想和方法,移动通信与正交函数之间的关系,沃尔什函数的复制生成理论,一般复制生成理论及桥函数的概念,沃尔什函数及桥函数的相关函数的定义及其特性,序率分割制多路传输系统,信息传输系统的统一模型等。 本书可供从事通信、遥控、遥测和雷达工作的技术人员、科研人员以及高等院校师生参考。 DSP开发应用技术

相关文档
最新文档