全球生物医用材料市场分析

全球生物医用材料市场分析
全球生物医用材料市场分析

全球生物医用材料市场分析

一、市场规模

生物材料是一门新兴的多学科交叉融合的前沿科学。自20世纪90年代后期以来,世界生物材料科学和技术迅速发展,全球的生物医用材料和医疗器械市场以每年13%的速度快速增长。即使在当今全球经济低迷的大环境下,生物材料和医疗器械仍是少数几个保持高增长的朝阳产业之一,充分体现了生物材料具有强大的生命力和广阔的发展前景。

近年来,世界生物材料市场发展势头更为迅猛,其发展态势可与信息、汽车产业在世界经济中的地位相比。根据1988年美国国家健康统计中心调查,美国已有1100万人(不包括齿科材料)植入了一件以上的生物医用材料,全球达3000万人以上,1995年世界生物医用材料市场已达200亿美元。中国科学院在2002年《高技术发展报告》中披露,1990年至1995年,世界生物医用材料市场以每年大于20%的速度增长。2000年,全球医疗器械市场已达1650亿美元,其中生物医学材料及制品约占40%至50%,发展到2005年,全球生物材料市场已超过2300亿美元。

生物医学材料在2010年的全球市场规模达3209亿美元,年增长率为10.8%。就市场需求面而言,主要市场增长动能来自于欧、美、日等国家老年人口数目提升及慢性疾病问题逐渐增加,对于人工关节等骨科应用及心脏支架等心血管应用的需求持续攀升,预期未来市场将仍维持稳定成长趋势。同时由于全球生医材料的应用领域的扩展、产品技术的改良和人们对生物材料产品接受度的逐渐提升,也是促使生物材料市场需求和提升市场规模的主要推动力。

近20年来,全球生物医用材料和制品持续增长,美国、西欧、日本仍然占据绝对领先优势。中投顾问发布的《2017-2021年中国生物医用材料行业投资分析及前景预测报告》数据显示:2015年,美国、欧盟、中国、日本销售收入占全球医疗器械市场之比分别为39%、28%、12%和11%。

图表主要国家生物医用材料销售收入占全球医疗器械市场比重

中投顾问·让投资更安全经营更稳健

中投顾问·让投资更安全 经营更稳健

第2页

数据来源:中投顾问产业研究中心

二、市场竞争格局

发达国家的中小企业主要从事新产品、新技术研发,通过向大公司转让技术或被大公司兼并维持生存。大规模产品生产及市场运作基本上由大公司进行。不同于我国医疗器械企业“多、小、散”,发达国家医疗器械产业已形成“寡头”统治的局面,全球市场也呈现类似的格局。

全球生物医用材料市场集中度较高,强生、美敦力、贝朗等跨国公司控制了主要市场。

生物医用材料产业发展现状及思考

生物医用材料产业发展现状及思考生物医用材料是用于诊断、治疗、修复或替换人体组织或器官或增进其功能的一类高技术新材料,与人类的健康息息相关。随着经济发展水平提高,大健康概念日趋升温,加之当代材料科学与技术、细胞生物学和分子生物学的进展在分子水平上深化了材料与机体间相互作用的认识,当代生物医用材料产业已经成为快速发展的高科技新兴产业。 一、生物医用材料及其产业概述生物医用材料又称为生物材料,其传统领域主要包括支持运动功能人工器官(骨科植入物、人工骨、人工关节、人工假肢等),血液循环功能人工器官(人工血管、人工心脏瓣膜等)整形美容功能人工器官、感觉功能人工器官(人工晶体、人工耳蜗等)等,新型领域主要包括分子诊断、3D 打印等。 生物医用材料的特征主要包括:安全性、耐老化、亲和性,及物理和力学性质稳定、易于加工成型、价格适当。同时,便于消毒灭菌、无毒无热源,不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。其产业特征包括:低原材料消耗、低能耗、低环境污染、高技术附加值,高投入、高风险、高收益、知识与技术密集。 二、生物医用材料及其产业发展现状 (一)市场分析

2016 年全球生物医用材料市场规模为709 亿美元,预计2021 年将达到1491.7 亿美元,2016 ~2021 年的复合年增长率为16% 。骨科植入材料和心血管材料是生物医用材料市场占比最高的两个细分领域,其中骨科植入材料占据了全球生物医用材料市场的头把交椅,市场占有率为37.5% 。心血管材料占据生物医用材料市场的36.1% 。其他的主要细分领域还包括牙科材料、血液净化材料、生物再生材料和医用耗材。 (二)竞争态势全球生物医用材料和制品持续增长,美国、欧盟、日本仍然占据绝对领先优势。2015 年,在全球医疗器械生产和消费方面,美国、欧盟、日本的市场占比分别为41% 、31% 和14% 。 美国的生物医用材料产业集聚于技术资源丰富的硅谷、128 号公路科技园、北卡罗来纳研究三角园,以及临床资源丰富的明尼阿波利斯及克利夫兰医学中心等;德国聚集于巴州艾尔格兰、图林根州等地区;日本聚集于筑波、神奈川、九州科技园等。 图1 :主要国家生物医用材料销售收入占全球医疗器械市场比例分析 中国和印度拥有最多的人口,且其医疗保健系统正在发展 当中尚未成熟,因此在医学发展和临床巨大需求的驱动下最具

生物医用材料详解

2011–2012学年第2学期 生物医用材料期末论文 题目:壳聚糖生物材料的研究进展姓名:黄清优 学号: 20090413310072 专业: 09材料科学与工程 学院:材料与化工学院 任课教师:曹阳王江唐敏 完成日期: 2012年6月7日

壳聚糖生物材料的研究进展 黄清优 (海南大学材料科学与工程专业海口570228) 摘要:壳聚糖作为一种新型天然生物材料,越来越成为国内外研究热点。本文对近年来壳聚糖改性方面的研究进展及其在生物医学方面的应用进行了综述,并对壳聚糖的发展趋势进行了展望。 关键词:壳聚糖;化学改性;应用;生物材料 The Research Progress of Chitosan Biomaterial Qingyou Huang (Department of Material Science and Engineering Hainan University Haikou 570228) Abstract: Chitosan, as a kind of novel natural biomaterials, increasingly becomes a research pot at home and abroad. This paper summarized the progress in chemical modification of chitosan,and application of it in biomedical fields recently. At last, the developing trend of chitosan was predicted. Keywords: chitosan; chemical modification; application; biomaterial 1前言 壳聚糖是一种新型的天然生物医用材料。虾、蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保、经济可持续发展的角度来考虑,壳聚糖作为一种天然的材料,不仅无毒、无污染,而且还具有很好的生物降解性和相容性。因此非常有必要加大对壳聚糖的研究,以开发更多的产品[1,2]。 由于壳聚糖安全性良好,且具有可降性和组织相容性,在医药领域具有很高的应用价值。但壳聚糖存在水溶性、稳定性、力学性能差等缺点,在一定程度上使其应用受到很大限制。对壳聚糖进行化学改性,可改善其物理、化学性质,拓宽了壳聚糖及其衍生物的应用领域,是近几年壳聚糖研究的热点之一。文章综述了近几年壳聚糖化学改性方面的研究进展,及其在生物医用方面的应用[2,3]。

生物医用材料探究进展

医用羟基磷灰石的研究进展 摘要: 羟基磷灰石(HA)是人体骨、牙无机组成的主要成分,组成生物体骨、牙组织的磷灰石晶体为纳米级、低结晶度、非化学当量和被多种离子的置换的针状纳米微晶.纳米羟基磷灰石由于与生物硬组织结构成分相似,以及在结构上的可模拟性,在生物医用材料研究中占据着重要的地位,并以各种应用形式出现在各类医学研究中。 羟基磷灰石[Calo(P04)6(0H)2】(hydroxyapatite,HAp)是一种生物活性材料,具有独特的生物相容性,是人体和动物骨骼、牙齿的主要无机成分【I】,基于HAp良好的生物活性以及生物相容性,使其成为理想的硬组织替代材料,广泛应用于硬组织修复、药物载体和抗肿瘤活性的研究。 关键词:羟基磷灰石;特性;医用功能 前言: 生物材料是生命科学和材料科学的交叉边缘学科,成为现代医学和材料科学的匿要领域之一.预计生物材料的发展将成为21世纪国际经济的主要支柱产业之一。 生物医学材料的历史与人类的历电一样漫长,最初人们用木、金属、动物牙齿作为牙齿种植修复的材料.到19世纪,金、镀、锦等开始用T-口腔修复中,而陶瓷作为骨种植材料具有意义的研究是smitll在20世纪印年代开始的。70年代玻璃陶瓷、羟基磷灰石等进入n舱临床以后,把口腔种植修复推向丁新阶段,特别是80年代以来各种复合材料的H}现,使几腔种植的临床应用更加广泛。 纳米羟基磷灰石是人体骨、牙无机组成的主要成分,具有骨引导作用,在较短的时间内能与骨坚固结合,结合了生物材料和纳米材料的优点,临床已广泛应用,在生物医用材料中也占据着重要的地位. 羟基磷灰石(HA)具有骨引导作用,在较短的时间内能与骨坚固结合,临床已广泛应用.生物体内天然羟基磷灰石以纳米晶体的形式存在,为65~80 nm的针状结晶体.根据“纳米效应”理论,单位质量的纳米级粒子的表面积明显大于微米级粒子,使得处于粒子表面的原子数目明显增加,提高了粒子的活性,十分有利于组织的结合.目前人工合成的纳米羟基磷灰石直径在1—100 nm之间,钙磷比值约为1.67,因而与人骨的结构和成分很相似,是一种理想的组织植入材料.然而以羟基磷灰石作为骨植入材料因强度偏低,尤其是脆性太大尚难直接应用于人体承载部位。 正文: 羟基磷灰石概念: 羟基磷灰石制备方法:1.高温分解法2.煅烧磷酸钙法3.干法合成4.湿法合成:

医学细胞生物学期末复习资料

医学细胞生物学期末复习资料 第一章绪论 一、A型题 1. 世界上第一个在显微镜下看到活细胞的人是 A. Robert Hooke B、Leeuwenhoek C、Mendel D、Golgi E、Brown 2. 生命活动的基本结构和功能单位是 A、细胞核 B、细胞膜 C、细胞器 D、细胞质 E、细胞 3. 被誉为十九世纪自然科学三大发现之一的是 A、中心法则 B、基因学说 C、半保留复制 D、细胞学说 E、DNA双螺旋结构模型 4. 细胞学说的提出者是 A、Robert Hooke和Leeuwenhoek; B、Crick和Watson; C、Schleiden和Schwann; D、Sichold和Virchow; E、以上都不是 二、X型题 1. 当今细胞生物学的发展热点集中在_______等方面 A、细胞信号转导 B、细胞增殖及细胞周期的调控 C、细胞的生长及分化 D、干细胞及其应用 E、细胞的衰老及死亡 2. ______促使细胞学发展为分子细胞生物学 A、细胞显微结构的研究 B、细胞超微结构的研究 C、细胞工程学的发展 D、分子生物学的发展 E、克隆技术的发展 三、判断题 1. 细胞生物学是研究细胞基本结构的科学。 2. 细胞的亚显微结构是指在光学显微镜下观察到的结构。 3. 细胞是生命体的结构和生命活动的基本单位。 4. 英国学者Robert Hooke第一次观察到活细胞有机体。 5. 细胞学说、进化论、遗传学的基本定律被列为19世纪自然科学的“三大发现”。 四、填空题 ?细胞生物学是从细胞的显微、亚显微和分子三个水平对细胞的各种生命活动开展研究的学科。?1838年,施莱登和施旺提出了细胞学说,认为细胞? ?是一切动植物的基本单位。 ?1858年德国病理学家魏尔肖提出一切细胞只能来自原来的细胞的观点,通常被认为是对细胞学说的一个重要补充。 第二章细胞的起源及进化 一、A型题 1. 由非细胞原始生命演化为细胞生物的转变中首先出现的是 A、细胞膜; B、细胞核; C、细胞器; D、核仁; E、内质网 2. 在分类学上,病毒属于 A、原核细胞 B、真核细胞 C、多种细胞生物 D、共生生物 E、非细胞结构生物 3. 目前发现的最小的细胞是 A、细菌 B、双线菌 C、支原体 D、绿藻 E、立克次氏体 4. 原核细胞和真核细胞都具有的细胞器是 A、中心体; B、线粒体; C、核糖体; D、高尔基复合体; E、溶酶体 5. 一个原核细胞的染色体含有 A、一条DNA并及RNA、组蛋白结合在一起; B、一条DNA及组蛋白结合在一起; C、一条DNA不及RNA、组蛋白结合在一起; D、一条以上裸露的DNA; E、一条以上裸露的DNA及RNA结合在一起 6. 关于真核细胞,下列哪项叙述有误 A、有真正的细胞核; B、体积一般比原核细胞大; C、有多条DNA分子并及组蛋白结合构成染色质; D、遗传信息的转录及翻译同时进行; E、膜性细胞器发达 7. 下面那种生物体属于真核细胞 A、酵母 B、蓝藻 C、病毒 D、类病毒 E、支原体 8. 下列哪种细胞属于原核生物 A、精子细胞 B、红细胞 C、细菌细胞 D、裂殖酵母 E、绿藻 9. 原核细胞的mRNA转录及蛋白质翻译 A、同时进行; B、均在细胞核中进行; C、分别在细胞核和细胞质中进行;

关于生物医用材料的分析

关于生物医用材料的分析 自动化41 2140504024 张吉仲 人与动物的最根本的区别就是人类可以使用工具,那么工具从何而来,必是由材料制成的,可见材料同工具一样,在人类的发展史上占据和举重若轻的作用。从早期的石器时代,到青铜器,铁器,再到纸的出现,各种金属材料的大量使用,最后到如今的纳米技术,信息材料,材料的发展不可谓不快,而材料的发展也从一定程度上反映出了人类社会,正向着更高层次发展着。 公元前4000到5000年,当人类刚刚出现在这个星球上时,还是主要使用由木头石头骨头等简单材料制成的简单的工具,在如今开来,这些工具是如此简陋和落后,但正是因为这些工具,人类才走上了正确的发展之路,才开创了对材料的应用与研究,对美好生活的向往,激励着人们寻找新的材料。于是便有了陶器,各种陶器不仅开启了人类的新石器时代,还给人们的生活带来了便利,更在历史上留下了重要的刻印。炭加热铜得到青铜,于是由产生了青铜器,作为历史上的第一种合金,它的历史地位不可谓不高,人类由青铜制出了鼎,编钟等有代表性的青铜器。而随着开采铁和炼铁技术的高速发展,铁器时代随之而来,作为地面上含量最多的金属,铁的发现也是社会发展必然的结果,铁器伴随人类发展经历了相当长的时间,即使在今天,铁器的使用仍然十分广泛地存在在人类社会中。而进入十九世纪以来,各种新型材料如雨后春笋般出现,1824年英国第一次制造出了现代意义上的水泥材料,开创了水泥时代,水泥开始广泛应用到人类的生活中,各种楼房和桥梁的建设都离不来水泥材料。随后的钢铁材料的出现更是具有跨时代的意义,我想世界上没有那个国家能够离开钢铁材料,每一个国家都会大炼钢铁,促进钢铁材料的发展,就意味着工业的飞速发展。而如今,我们迎来了新材料时代,包括铝合金,钛材料,计算机材料,电子管,晶体管,集成电路,信息材料,航天与汽车材料在内的一系列新型材料,而其中最重要的我认为当属生物医用材料。 什么是生物医用材料呢?生物医用材料是用来对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的材料,这是百度百科给予的权威答案。生物医用材料是用来对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的材料。它是研究人工器官和医疗器械的基础,已成为当代材料学科的重要分支,尤其是随着生物技术的蓬勃发展和重大突破,生物医用材料已成为各国科学家竞相进行研究和开发的热点。其特点十分突出:用于与生命系统接触和发生互相作用的,并能对细胞组织器官进行诊断治疗、替换修复和诱导再生的一类特殊的功能材料。生物材料是材料科学领域中正在发展的多种学科相互交叉渗透的领域,其研究领域内容涉及材料科学、生命科学、化学、生物学、解剖学、病理学、临床医学、药物学等学科,同事还涉及工程技术和管理学科的范畴。 为什么说它重要,众所周知,生命对于人来说最为重要,且最为宝贵,没有健康的身体,任何财富和事业都是徒劳,而生物材料正是可以挽救和维持成千上万患者生命的一种学科,它可以再生新的器官,新的组织,这听起来像是天方夜谭,但随着医学材料的发展,这些都将成为现实。生物材料的发展具有悠久的历史,其开端还要追溯到公元前5000年的埃及,古老的埃及人用黄金修复牙齿,标志着生物材料的产生,而近代的生物材料的开端是在1588年用黄金版修复颚骨,从那之后,各种生物材料开始兴起,从一开始单一的黄金材料,到后来各种金属,天然橡胶以及硫酸钙等无机物。而到了现代,生物材料更多的是不锈钢,合金等材料,人们曾经成功地用不锈钢应用于骨科和口腔科治疗,用合金制作了接骨板和骨钉等固定器械。从20世纪60年代以后,生物陶瓷应用,伴随的还有医用的高分子材料,制作人工心脏瓣膜,人工血管,人工骨,手术缝合等。生物医用材料是研制人工器官以及一些重要

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

最新医学微生物复习资料

1、细菌以微米()为单位。按其外形主要有球菌、杆菌和螺旋菌三大类。 2、细胞壁、细胞膜、细胞质和核质等各种细菌都有,是细菌的基本结构;荚膜、鞭毛、菌 毛、芽胞仅某些细菌具有,为其特殊结构。 3、细菌细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制,这种细胞壁受 损的细菌在高渗环境下仍可存活者称为细菌细胞壁缺陷型。又称细菌L型。 4、质粒是染色体外的遗传物质,存在于细胞质中。 5、根据功能不同,菌毛可分为普通菌毛和性菌毛两类。 6、某些细菌在一定的环境条件下,胞质脱水浓缩,在菌体内部形成一个圆形或卵圆形小体, 是细菌的休眠形式,称为芽孢。产生芽孢的细菌都是G+菌。 7、革兰氏染色:原理:(1)革兰阳性菌细胞壁结构较致密,肽聚糖层厚,脂质含量少,乙 醇不易透入;而格兰阴性菌细胞壁结构较疏松,肽聚糖层少,脂质含量多,乙醇易渗入。 (2)革兰阳性菌的等电点低(pI2~3),革兰阴性菌等电点较高(pI4~5),在相同pH条件下,革兰阳性菌所带负电荷比革兰阴性菌多,与带正电荷的结晶紫染料结合较牢固且不易脱色。(3)革兰阳性菌细胞内含有大量核糖核酸镁盐,可与结晶紫和碘牢固地结合成大分子复合物,不易被乙醇脱色;而革兰阴性菌细胞内含极少量的核糖核酸镁盐,吸附染料量少,形成的复合物分子也较小,故易被乙醇脱色。 方法:(1)初染:将结晶紫染液加于制好的涂片上,染色1min,用细流水冲洗,甩去积水。 (2)媒染:加卢戈碘液作用1min,用细流水冲洗,甩去积水。(3)脱色:滴加95%酒精数滴,摇动玻片数秒钟,使均匀脱色,然后斜持玻片,再滴加酒精,直到流下的酒精无色为止(约30s),用细流水冲洗,甩去积水。(4)复染:加稀释石炭酸复红染10s,用细流水冲洗,甩去积水。 结果:G+菌:紫色G—菌:红色 8、根据细菌所利用的能源和碳源的不同,将细菌分为自养菌和异养菌两大营养类型。 9、某些细菌生长所必需的但自身又不能合成,必须由外界供给的物质称为生长因子。 10、营养物质进入菌体内的方式有被动扩散和主动转运系统。 11、根据细菌代谢时对分子氧的需要与否,可以分为四类:专性需氧菌、微需氧菌、兼性厌 氧菌、专性厌氧菌。 12、研究细菌的生物学性状(形态染色、生化反应、药物敏感试验等)应选用对数期的细菌。 13、各种细菌所具有的酶不完全相同,对营养物质的分解能力亦不一致,因而其代谢产物有 别。根据此特点,利用生物化学方法来鉴别不同细菌称为细菌的生化反应试验。 14、吲哚(I)、甲基红(M)、VP(V)、枸橼酸盐利用(C)四种试验常用于鉴定肠道杆菌, 合称为IMViC试验。 15、热原质或称致热源,是细菌合成的一种注入人体或动物体内能引起发热反映的物质。 16、外毒素是多数革兰阳性菌和少数革兰阴性菌在生长繁殖过程中释放到菌体外的蛋白质; 内毒素是革兰阴性菌细胞壁的脂多糖,当菌体死亡崩裂后游离出来,外毒素毒性强于内毒素。 17、某些微生物代谢过程中产生的一类能抑制或杀死某些其他微生物或肿瘤细胞的物质称为 抗生素。某些菌株产生的一类具有抗菌作用的蛋白质称为细菌素。 18、在培养基中加入某种化学物质,使之抑制某些细菌生长,而有利于另一些细菌生长,从 而将后者从混杂的标本中分离出来,这种培养基称为选择培养基。 19、鉴别培养基是用于培养和区分不同细菌种类的培养基。 20、可根据培养基的物理状态的不同分为液体、固体和半固体培养基三大类。 21、将标本或培养物划线接种在固体培养基的表面,因划线的分散作用,使许多原混杂的细 菌在固体培养基表面上散开,称为分离培养。单个细菌分裂繁殖成一堆肉眼可见的细菌

全球生物医用材料市场分析

全球生物医用材料市场分析 一、市场规模 生物材料是一门新兴的多学科交叉融合的前沿科学。自20世纪90年代后期以来,世界生物材料科学和技术迅速发展,全球的生物医用材料和医疗器械市场以每年13%的速度快速增长。即使在当今全球经济低迷的大环境下,生物材料和医疗器械仍是少数几个保持高增长的朝阳产业之一,充分体现了生物材料具有强大的生命力和广阔的发展前景。 近年来,世界生物材料市场发展势头更为迅猛,其发展态势可与信息、汽车产业在世界经济中的地位相比。根据1988年美国国家健康统计中心调查,美国已有1100万人(不包括齿科材料)植入了一件以上的生物医用材料,全球达3000万人以上,1995年世界生物医用材料市场已达200亿美元。中国科学院在2002年《高技术发展报告》中披露,1990年至1995年,世界生物医用材料市场以每年大于20%的速度增长。2000年,全球医疗器械市场已达1650亿美元,其中生物医学材料及制品约占40%至50%,发展到2005年,全球生物材料市场已超过2300亿美元。 生物医学材料在2010年的全球市场规模达3209亿美元,年增长率为10.8%。就市场需求面而言,主要市场增长动能来自于欧、美、日等国家老年人口数目提升及慢性疾病问题逐渐增加,对于人工关节等骨科应用及心脏支架等心血管应用的需求持续攀升,预期未来市场将仍维持稳定成长趋势。同时由于全球生医材料的应用领域的扩展、产品技术的改良和人们对生物材料产品接受度的逐渐提升,也是促使生物材料市场需求和提升市场规模的主要推动力。 近20年来,全球生物医用材料和制品持续增长,美国、西欧、日本仍然占据绝对领先优势。中投顾问发布的《2017-2021年中国生物医用材料行业投资分析及前景预测报告》数据显示:2015年,美国、欧盟、中国、日本销售收入占全球医疗器械市场之比分别为39%、28%、12%和11%。 图表主要国家生物医用材料销售收入占全球医疗器械市场比重 中投顾问·让投资更安全经营更稳健

纳米生物医用材料的进展研究样本

生物医用材料的研究进展 生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料, 它是研究人工器官和医疗器械的基础, 己成为材料学科的重要分支, 特别是随着生物技术的莲勃发展和重大突破, 生物材料己成为各国科学家竞相进行研究和开发的热点。研究动态 迄今为止 ,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。当前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料, 具体体现在以下几个方面: 1. 提高生物医用材料的组织相容性 途径不外乎有两种, 一是使用天然高分子材料, 例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表示; 二是在材料表面固定有生理功能的物质, 如多肽、酶和细胞生长因子等, 这些物质充当邻近细胞、基质的配基或受体 ,使材料表面形成一个能与生物活体相适应的过渡层。 2. 生物医用材料的可降解化 组织工程领域研究中 ,一般应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。其中组织工程材料除了具备一定的机械性能外, 还需具有生物相容性和可降解性。 英国科学家创造了一种可降解淀粉基聚合物支架。以玉米淀粉为基本材料, 分别加入乙烯基乙烯醇和醋酸纤维素 ,再分别对应加入不同比例的发泡剂 (主要为羧酸 ), 注塑成型后就能够获得支撑组织再生的可降解支架。 3. 生物医用材料的生物功能化和生物智能化 利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面 ,经过表面修饰构建新一代的分子生物材料 ,来引发我们所需的特异生物反应 ,抑制非特异性反应。例如将一种名叫玻璃粘连蛋白 (VN)的物质固定到钛表面, 发现固定VN的骨结合界面上有相对多的蛋白存在。4.开发新型医用合金材料

医学生物学复习资料

医学生物学解答题 (一)蛋白质的结构单位是什么?它的结构特点是什么? 氨基酸每个氨基酸的α-碳上连接一个羧基,一个氨基,一个氢原子和一个侧链R基团。20种氨基酸结构的差别就在于它们的R基团结构的不同。 (四)蛋白质的空间结构包括哪几级结构?在哪级结构上表现出生物学活性? 一二三四级结构;三级结构 (六)蛋白质的变构与变性?蛋白质的变性在医学上有何重要用途? 变构:在生物体内复杂多变的环境中,某些代谢中间物或变构剂能是蛋白质的构象发生轻微变化,从而使其生物活性发生改变,使其更有效地完成生理功能。这种通过蛋白质构象变化而实现调节功能的现象,称为变构或变构调节。 变性:蛋白质分子受到某些物理因素,如高温、高压、紫外线照射等,或化学因素,如强酸、强碱、有机溶剂等的影响时,空间结构发生破坏,理化性质改变,生物活性丧失,这一过程称为蛋白质的变性。 变性作用:当在保存蛋白质制剂,如酶、血清、疫苗时,需要低温保存,以防止蛋白质的变性,而当用高压、高温、紫外线照射等方法消毒杀菌时,可使病原微生物的蛋白质变性。(七)酶的化学本质及特性是什么? 酶的化学本质:大多数由蛋白质组成(少数为RNA)。 酶的特性:1、高效性:酶的催化效率比无机催化剂更高,使得反应速率更快;2、专一性:一种酶只能催化一种或一类底物,如蛋白酶只能催化蛋白质水解成多肽;3、多样性:酶的种类很多,大约有4000多种;4、温和性:是指酶所催化的化学反应一般是在较温和的条件下进行的。5、活性可调节性:包括抑制剂和激活剂调节、反馈抑制调节、共价修饰调节和变构调节等。 6.有些酶的催化性与辅因子有关。7.易变性,由于大多数酶是蛋白质,因而会被高温、强酸、强碱等破坏。 (八)核酸的基本结构单位是什么?磷酸、戊糖、碱基是如何构成核苷酸的? 核酸的基本结构单位是核苷酸。核苷中戊糖5’位碳上的羟基(—OH)和磷酸上的氢(—H)结合,脱掉一分子的水,形成的化合物,称为核苷酸,即单核苷酸,其连接键为磷酸酯键。(九)什么是3,-5,磷酸二酯键?什么是多核苷酸的5,端和3,端? 是由前一个核苷酸戊糖3’碳位上的羟基与后一个核苷酸戊糖5’碳位磷酸上的氢结合,在核酸聚合酶的催化下,脱掉一分子连接而成。 在戊糖5’碳位上油磷酸基游离者,称为5’端,即首段。而戊糖3碳位上油羟基游离者,称为3端,即尾端。 (十三)DNA的功能? DNA是遗传物质,是遗传信息的载体。在遗传信息的传递过程中,DNA分子要进行自我复制,然后经过细胞分裂,将遗传信息传给子代细胞,并且在子代细胞中,DNA分子中的遗传信息经过转录、翻译,才能表达出相应的遗传性状。:1.DNA的半保留复制。2.DNA的转录。 (十四) RNA的种类有哪些?它们的结构特点和功能? tRNA(转运RNA), rRNA(核糖体RNA), mRNA(信使RNA)。还有核酶和微小RNA等。功能:mRNA 从细胞核内的DNA分子上转录出遗传信息。并带到细胞质的核糖体上,作为合成蛋白质的模板。 tRNA 是识别被激活的氨基酸,合成氨酰-tRNA复合体,并借自身的反密码子与mRNA上的密码子‘咬合’,将携带的氨基酸运输到核糖体,供合成蛋白质需要。

我国生物医用材料现状

我国生物医用材料现状 我国是生物医用材料和器械的需求大国,医疗保健服务人口基数大,医疗费用近十年平均增长率近20%,远远高于同期国民经济增长率,已逐渐成为社会和公民的沉重负担。因此,利用现代高科技,加速生物材料及制品的开发,解除千百万患者的痛苦,提高生活及健康水平,无疑是非常有意义的,也是社会发展的呼唤。生物材料及制品投入产出比高,经济效益十分显著,易于形成科技经济一体化发展,并可带动相关产业的改造。加速生物材料科技经济一体化发展,对于我国参与世界经济发展竞争具有重要意义。 但我国生物医用材料产业基础薄弱,生物医用材料及器械产品单一,技术落后,科研与产业脱节,70-80%要依靠进口。目前,植入体内的技术含量高的生物医用材料产品约80%为进口产品。常用的生物医用材料产品约20%为进口产品,2002年进口产品约100亿元人民币,此外还有大量的医用级原材料大多需要进口。同时,我国材料加工工艺差距较大,基础研究水平不高,这些都直接制约了新技术和新材料的开发和应用,加之资金及合作单位等原因造成生物医用材料科研成果难于产业化。在我国,药品和医疗器械产值的比例约为10:2.5,远远落后于国际上的比例(10:7);而我国在世界生物材料及制品市场中所占份额不足3%。这意味着我国生物材料产业今后将直接面临着世界市场的竞争、限制和压力。 近年来随着国内高新技术发展,医疗器械产业的面貌变化很大。在2002年材料类医疗器械产值约300亿人民币,目前每年以10-15%的速度递增,预计到2010年可达600亿人民币,2020年可达1500亿元人民币。随着我国经济的发展,特别是广大农村和西部地区的生活水平提高,对生物医用材料需求可能会大于这些预测产值。十几亿人口医疗保健需求的巨大压力与我国生物材料、医疗器械及制药工业的薄弱基础形成了尖锐矛盾。这对于我国的经济、社会发展来说,既是难得的机遇.又是一个巨大的挑战。 目前,我国已取得了一批具有自主知识产权的技术项目,并逐步形成了生物医用材料的研发机构和团队。涉及到生物医用材料的学会及协会组织有中国生物医学工程学会生物医用材料分会、中国人工器官学会、北京生物医学工程学会、上海市生物医学工程学会生物医用材料专业委员会、四川省生物医学工程学会、重庆市生物医学工程学会、中国生物复合材料学会和中国生物化学与分子生物学会等。目前,国家已经建立与生物医用材料相关的各类国家重点实验室及研究中心十余家(见表1)。中国科学院系统的金属所、硅酸盐所、化学所、大连化物所、长春应化所和成都有机所都有专门从事生物医用材料研发的团队和学术带头人;同时在北京、天津,上海、广州、武汉、成都、西安也已逐步形成了基于各地区主要大学和研究机构的生物医用材料研发团队和学术带头人。已取得具有自主知识产权的技术项目有:羟基磷灰石涂层技术、聚乳酸及可吸收骨固定和修复材料、胶原和羟基磷灰石复合骨修复材料、自固化磷酸钙材料、介入支架材料、纳米类骨磷灰石晶体与聚酰胺仿生复合生物活性材料、氧化钛和氮化钛涂层技术、免疫隔离微囊材料、壳聚糖防粘连材料、海藻酸钠血管栓塞材料。 表1 国内主要研究机构及重点研究方向 机构名称重点研究方向

《生物医用材料》课程教学大纲

《生物医用材料》课程教学大纲 课程编号:BFMA2004 课程类别:专业基础课 授课对象:材化部生物功能材料专业大学三年级本科生 开课学期:春季 学分:3 学分/54 学时 主讲教师:孟凤华教授 指定教材:巴迪?D.拉特纳等编著、顾忠伟等译校的《生物材料料学:医用材料导论(原书第2版中文版)》,2011。 教学目的: 生物医用材料学是生物医学科学中的最新分支学科,是生物、医学、化学和材料科学交叉形成的边缘学科。生物医用材料学是生物医学工程学的四大支柱之一,因此生物医用材料学是生物医学工程系本科学生必不可少的的一门专业课程。生物医学材料学是多门学科相互借鉴结合、相互交叉渗透、突破旧有学科的狭小范围而开创的一门新学科。本课程较系统的介绍生物医用材料学的基本概念,主要内容,研究现状及发展趋势,力求对生物医用材料学领域所涉及的材料学、化学、生物学、医学的有关知识进行较详细的介绍。以《生物医学材料学》为主要讲授内容,并结合科研和本学科发展最新动态,补充讲授纳米药物输送、组织工程等新内容。通过本课程的学习,使学生对生物医用材料学科的内容和知识有一个全面的了解,开拓知识面,为今后的深造和科研打下基础。 概述 课时:共1课时 教学内容: 序言 生物材料科学:多学科奋进的科学 生物材料的发展历史 第1部分材料科学与工程 第1章材料性质 课时:共2课时 教学内容: 1.1 引言 1.2 材料的本体性质 1.3 有限元分析 1.4 材料的表面性质和表征 1.5 水在生物材料中的作用 思考题: 1、简述影响材料的本体性质及测定方法。 2、简述材料的表面性质及常用的表面分析方法。 3、水在生物材料中起什么作用? 第2章医用材料的种类 课时:共12课时 教学内容:

生物医用纺织材料及其器件研究进展

生物医用纺织材料及其器件研究进展 生物医用纺织材料是生物医用材料的重要组成部分,是以纤维为基础、纺织技术为依托、医疗应用为目的的医用材料,用于临床诊断、治疗、修复、替换以及人体的保健与防护。生物医用纺织材料是纺织与材料、生物、医学及其他相关基础学科深度交叉融合产生的一类医用材料,其产品是医疗器械的一个重要组成部分,由各级食品药品监督部门监管。与服用和家用纺织品相比,生物医用纺织品研发流程长,产品审批手续复杂,故新产品注册上市所需时间更长。 生物医用纺织材料按来源分类可分为生物医用金属纤维( 如不锈钢丝缝合线) 、生物医用无机非金属纤维( 如氧化铝纤维) 和生物医用高分子纤维。其中,以高分子纤维居多。生物医用高分子纤维包括: 1) 天然高分子基生物医用纤维,含纤维状的天然物质直接分离、精制而成的天然纤维和用天然高分子为原料经化学和机械加工制成的纤维,如纤维素及其衍生物纤维( 氧化纤维素) 、甲壳素及其衍生物纤维、蚕丝和骨胶原纤维等; 2) 合成高分子基生物医用纤维,如聚酯、聚酰胺、聚烯烃、聚丙烯腈、聚四氟乙烯、聚丙烯、聚乳酸纤维等。 生物医用纺织材料纤维的主要成型方法有: 干法纺丝、湿法纺丝、熔融纺丝、干湿纺丝、乳液纺丝、凝胶纺丝等。不同的纺丝方法可获得不同的截面形态和直径尺度的纤维。截面形态包括圆形、三角、核壳及中空型等。根据不同的成型方法可获得从纳米级到毫米级的不同纤维尺度。熔融和湿法纺丝的纤维直径与大多数动植物细胞尺度相近,而静电纺丝纤维更接近于病毒的尺度。 生物医用纤维可经纺织手段制备成一维(线状)、二维(平面) 或三维(管状)纺织品。其手段主要是指机织、针织、编织、非织、静电纺及复合成型方法。实际研发过程中,常常根据医疗产品的需求,可选择1种或数种纺织手段来进行成型。生物医用纺织品具有规则的多孔结构且连续贯穿,表面拓扑形貌规则且易控,厚度可在1 × 102~ 1 × 107nm范围内调节。通过不同的纺织手段获得的纺织品,其力学性能各具特色且调节范围大。 生物医用纺织材料在临床上具有广泛的用途,可独立或参与制成人体器官或组织的替代物,不同的产品具有不同的医学功能。1) 支持运动功能: 人工关节、人工骨、人工肌腱等; 2) 血液循环功能: 人工心脏瓣膜、人工血管等; 3) 呼吸功能: 人工肺、人工气管、人工喉等; 4) 血液净化功能: 人工肾、人工肝等; 5) 消化功能:人工食管、人工胆管、人工肠等;6) 泌尿功能: 人工输尿管、人工尿道等; 7) 生殖

医学微生物期末考试

登陆QQ邮箱,对比重点是否有出路 1、败血症:病原菌侵入血流,并在其中生长繁殖,同时,产生毒素,引起严重中毒症状。 2、病原微生物:对人类和动物、植物具有致病性的微生物称病原微生物。 3、潜伏感染:宿主与致病菌在相互作用过程中暂时处于平衡状态,病菌潜伏在病灶内或某些特殊组织中,一般不出现在血液、分泌物或排泄物中,一旦机体抵抗力下降,潜伏致病菌大量繁殖,即可使疾病复发。 4、菌群失调:是指在原微生境或其他有菌微生境内正常微生物群发生的定量和定性的异常变化。这种变化主要是量的变化,故也称比例失调。 5、消毒:杀灭物体上的病原微生物,但不一定能杀死芽胞的方法 6、无菌操作:防止微生物进入人体或其他物体的操作方法。 7、条件致病微生物:某些微生物在正常情况下不致病,但在正常菌群当其菌群失调、定位转移、宿主转换或宿主抵抗力的严重降低时,可引起疾病,称条件致病菌。 8、显性感染:当机体抗感染的免疫力较弱,或侵入的致病菌数 量较多、毒力较强,以致机体的组织细胞受到不同程度的损害,生理功能也发生改变,并出现一系列的临床症状和体症。 9、菌落:单个细菌经培养后分裂繁殖成的一堆肉眼可见的细菌集团 10、毒血症:致病菌侵入宿主体内后,只在机体局部生长繁殖,病菌不进入 血循环,但其产生的外毒素入血。外毒素经血到达易感的组织和细胞,引起特殊的毒性症状。 11、半数感染量:表示在规定时间内,通过指定感染途径,使一定体重或年龄的某种动物半数感染所需最小细菌数或毒素量。 12、灭菌:杀灭物体上所有微生物,包括病原微生物、非病原微生物和芽胞的方法。 13、微生物:自然界中一些个体微小、结构简单、肉眼直接看不到 的微小生物。 14、CPE:即致细胞病变效应,是指病毒感染引起的、光学显微镜下可见的受感染组织细胞的形态学改变。 15、侵袭力:是指致病菌突破机体的防御功能,在体内定居、繁殖和扩散的能力。 与细菌的表面结构和产生的胞外酶有关 16、肥达试验:系用已知的伤寒杆菌O、H抗原和甲、乙型副伤寒杆菌的H抗原,与不同稀释度的待检血清作定量凝集试验,根据抗体的含量和动态变化以辅助临床诊断伤寒、副伤寒的一种血清学试验。 17、菌群失调症:是指在原微生境或其他有菌微生境内正常微生物群发生的定量和定性的异常变化。这种变化主要是量的变化,故也称比例失调。 18、结核菌素试验:属于迟发型超敏反应,用结核菌素试剂做皮肤试验,感染过结核分枝杆菌或接种过卡介苗者一般都出现阳性反应 19、慢发病毒感染:病毒或致病因子感染后,经过很长的潜伏期,有的可达数年或数十年之久,以后出现慢性进行性疾病,直至死亡。如HIV的艾滋病和麻疹病毒的亚急性脑。。 20、溶原性转换:是指当噬菌体感染细菌时,宿主菌染色体中获得了噬菌体的DNA片段,使其成为溶原状态时而使细菌获得新的性状。 1、简述破伤风梭菌的致病机制及防治原则。 感染条件:伤口需形成厌氧微环境,伤口窄而深(如刺伤),伴有泥土或异物感染;大面积创伤、烧伤,坏死组织多,局部组织缺血;同时有需氧菌或兼性厌氧菌混合感染。

医用金属材料的研究进展

医用金属材料的研究进展 姓名:因 学号: 专业:材料

摘要:介绍了医用金属材料目前的研究现状、性能和应用,指出了医用金属材料 应用中目前存在的主要问题,阐述了近年来生物医用金属材料的新进展1。Medical metal materials with high strength toughness, fatigue resistance, easy processing and forming excellent properties become clinical dosage biggest and wide application of biomedical materials. 关键词:医用金属种类应用研究进展 一生物医用金属材料的简介 生物医用材料是指能够植入生物体或与生物组织相结合的材料,可用于诊断、治疗,以及替换生物机体中的组织、器官或增进其功能。生物医用金属材料是用作生物医用材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料2。这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料。该类材料的应用非常广泛,遍及硬组织、软组织、人工器官和外科辅助器材等各个方面。除了要求它具有良好的力学性能及相关的物理性质外,优良的抗生理腐蚀性和生物相容性也是其必须具备的条件。医用金属材料应用中的主要问题是由于生理环境的腐蚀而造成的金属离子向周围组织扩散及植入材料自身性质的退变,前者可能导致毒副作用,后者常常导致植入的失败。已经用于临床的医用金属材料主要有纯金属钛、钽、铌、锆等、不锈钢、钴基合金和钛基合金等3。 二生物医用金属材料的特性 2.1材料毒性 生物医用金属材料的毒性主要来自金属表面离子或原子因腐蚀或磨损进入周围生物组织,由此作用于细胞,抑制酶的活性,组织酶的扩散和破坏溶酶体。具体可表现为与体内物质生成有毒化合物。并且金属离子进入组织液,会引起水肿、栓塞、感染和肿瘤等。一般才用的降毒方法包括合金化、提高耐蚀性、提高光洁度、表面涂层等4。 2.2生理腐蚀性 生物医用金属材料的生理腐蚀性是决定材料植入后成败的关键,其产物对生物机体的影响决定植入器件的使用寿命。 2.3力学性能 生物医用金属材料需要有足够的强度与塑性。一般说来,对人工髋关节金属材料的要求是:屈服强度>450Mpa;抗拉强度>800Mpa;疲劳强度>400Mpa;延伸率>8%。通常材料的弹性模量大于骨的弹性模量,由此会使得材料与骨应变不同,界面处发生的相对位移造成界面松动;除此产生应力屏蔽,引起骨组织的功能退化或吸收8。 2.4耐磨性 耐磨性影响植入摩擦器件的寿命;以及可能产生有害的金属微粒或微屑,导致周围组织的炎性、毒性反应。可通过提高硬度,表面处理等方法进行改善。 三医用金属材料的种类

2019年生物医用材料市场分析报告

2019年生物医用材料市场分析 报告

正文目录 1.生物医用材料行业快速发展 (4) 1.1.生物医用材料行业规模加速扩大 (4) 1.2.透明质酸应用领域愈发广泛 (5) 1.2.1.透明质酸宝藏逐渐被挖掘 (6) 1.2.2.透明质酸主流提取方式 (7) 1.2.3.透明质酸应用领域广泛 (8) 2.医疗美容服务行业蓬勃发展 (9) 2.1.非手术类医美项目占比逐渐提升 (9) 2.2.我国是全球增速最快的医美市场之一 (10) 2.3.透明质酸生产商处于医美产业链上游 (12) 3.医美透明质酸市场空间大 (12) 3.1.交联技术释放透明质酸魅力 (13) 3.2.玻尿酸成为拉动医药级HA增长的主要动力 (15) 3.2.1.透明质酸原料市场规模稳步提升 (15) 3.2.2.玻尿酸拉动医药级HA市场增长 (16) 3.3.医药级HA竞争格局良好 (17) 3.3.1.医美玻尿酸原料国内企业占优 (17) 3.3.2.骨科玻璃酸钠注射液国产主导 (18) 3.3.3.眼科透明质酸国产化明显 (18) 3.3.4.防粘连医用透明质酸钠昊海独大 (19) 4.主要相关企业登陆科创板 (19) 5.配置建议 (22) 6.风险提示 (23)

1.生物医用材料行业快速发展 1.1.生物医用材料行业规模加速扩大 生物医用材料是医疗器械的重要组成部分,是一类用于诊断、治疗、修复和替代人体组织、器官或增进其功能的新型高技术材料。在众多生物医用材料中,生物医用高分子材料发展最早、应用最广泛、用量最多,其按照来源可以分为天然高分子材料和合成高分子材料,按照性质又可分为非降解型材料和可生物降解材料。医用透明质酸钠、医用几丁糖等属于生物医用高分子材料中天然、可降解的生物医用材料。天然可生物降解的高分子生物医用材料功能多样、机体相容性好,以及易于改性、杂化等,加上其能在水存在的环境下被酸、碱、酶或微生物促进而降解,因而被广泛地用于药物载体、修复材料和体内植入器件材料等。 图表1:生物医用材料组成体系 目前,我国生物医用材料产业仍处于起步阶段,其发展模式以资源消耗、廉价劳动力等物质要素驱动型为主,产品技术结构以低端产品为主,高端生物医用材料市场国产产品占有率不足30%。国内常用生物医用材料产品主要为低值一次性产品(如一次性注射器、输液器、采血器、血袋等)、敷料、缝合线(针)等;而技术含量较高的植入性生物医用材料则较为薄弱,主要依赖进口。 近年来,全球高新技术生物材料及制品产业形成并蓬勃发展,2016年全球生物医用材料市场规模已达1709亿美元,预计2020年市场规模将突破3000亿美元。我国生物医用材料产业起步于20世纪80年代初期,2016年国内生物医用材料市场规模达1730亿元,2010-2016年CAGR达到17.13%,预计2020年其市场规模将达到4000亿元,2016-2020年CAGR将达到23.31%。

相关文档
最新文档