高中物理稳恒电流专题训练答案

高中物理稳恒电流专题训练答案
高中物理稳恒电流专题训练答案

高中物理稳恒电流专题训练答案

一、稳恒电流专项训练

1.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.

(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);

电压表V(量程3V,内阻约10Ω);

电阻0R(阻值约20 kΩ);

滑动变阻器R(最大阻值50Ω,额定电流1 A);

电池组E(电动势3V,内阻不计);

开关S及导线若干.

【答案】(1)1.880(1.878~1.882均正确)

(2)

【解析】

(1)首先读出固定刻度1.5 mm

再读出可动刻度38. 0×0. 01 mm="0.380" mm

金属丝直径为(1.5+0.380) mm="1.880" mm.

(注意半刻度线是否漏出;可动刻度需要估读)

(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于

0V A 0

100,0.5R R

R R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.

2.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电动机的电阻R 0=1.0Ω,电阻R 1=1.5Ω.电动机正常工作时,电压表的示数U 1=3.0V ,求:

(1)电源释放的电功率;

(2)电动机消耗的电功率.将电能转化为机械能的功率; 【答案】(1)20W (2)12W 8W . 【解析】 【分析】

(1)通过电阻两端的电压求出电路中的电流I ,电源的总功率为P=EI ,即可求得; (2)由U 内=Ir 可求得电源内阻分得电压,电动机两端的电压为U=E-U 1-U 内,电动机消耗的功率为P 电=UI ;电动机将电能转化为机械能的功率为P 机=P 电-I 2R 0. 【详解】

(1)电动机正常工作时,总电流为:I=1

U R

I=

3.0

1.5

A=2 A , 电源释放的电功率为:P=EI =10×2 W=20 W ; (2)电动机两端的电压为: U= E ﹣Ir ﹣U 1 则U =(10﹣2×0.5﹣3.0)V=6 V ;

电动机消耗的电功率为: P 电=UI=6×2 W=12 W ; 电动机消耗的热功率为: P 热=I 2R 0 =22×1.0 W=4 W ;

电动机将电能转化为机械能的功率,据能量守恒为:P 机=P 电﹣P 热 P 机=(12﹣4)W=8 W ;

【点睛】

对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.

3.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.

(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.

(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;

b.请推导该电源对外电路能够输出的最大电功率及条件.

(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.

【答案】(1)U–I图象如图所示:

图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流

(2)a如图所示:

b.

2 4 E r

(3)见解析

【解析】

(1)U–I图像如图所示,

其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流

(2)a.如图所示

b.电源输出的电功率:

2

22

2

()

2

E E

P I R R

r

R r

R r

R

===

+

++

当外电路电阻R=r时,电源输出的电功率最大,为

2

max

=

4

E

P

r

(3)电动势定义式:

W

E

q

=非静电力

根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即

22

W I rt I Rt Irq IRq

=+=+

E Ir IR U U

=+=+

本题答案是:(1)U–I图像如图所示,

其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a .如图所示

当外电路电阻R =r 时,电源输出的电功率最大,为2

max =4E P r

(3)E U U =+外内

点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.

4.在如图所示的电路中,电源内阻r =0.5Ω,当开关S 闭合后电路正常工作,电压表的读数U =2.8V ,电流表的读数I =0.4A 。若所使用的电压表和电流表均为理想电表。求: ①电阻R 的阻值; ②电源的内电压U 内; ③电源的电动势E 。

【答案】①7Ω;②0.2V ;③3V 【解析】 【详解】

①由欧姆定律U IR =得

2.8Ω7Ω0.4

U R I =

==

电阻R 的阻值为7Ω。 ②电源的内电压为

0.40.50.2V U Ir ==?=内

电源的内电压为0.2V 。 ③根据闭合电路欧姆定律有

2.8V 0.40.5V 3V E U Ir =+=+?=

即电源的电动势为3V 。

5.在图所示的电路中,电源电压U 恒定不变,当S 闭合时R 1消耗的电功率为9W ,当S 断开时R 1消耗的电功率为4W ,求:

(1)电阻R 1与R 2的比值是多大?

(2)S 断开时,电阻R 2消耗的电功率是多少? (3)S 闭合与断开时,流过电阻R 1的电流之比是多少? 【答案】2∶1,2W ,3∶2 【解析】 【分析】 【详解】

(1)当S 闭合时R 1消耗的电功率为9W,则:

2

11

9W U P R =

= 当S 断开时R 1消耗的电功率为4W ,则:

21112

'(

)4W U

P R R R =+= 解得:

12:2:1R R =

(2)S 断开时 R 1和R 2串联,根据公式2P I R =,功率之比等于阻值之比,所以:

1122':':2:1P P R R ==

又因为1'4W P =,所以,S 断开时,电阻R 2消耗的电功率:

22'W P =

(3)S 闭合时:

1

U

I R =

S 断开时:

12

'U

R I R +=

所以:

1212

'3R R I R I +==

6.如图所示的电路中,电阻R 1=6 Ω,R 2=3 Ω.S 断开时,电流表示数为0.9 A ;S 闭合时,电流表示数为0.8 A ,设电流表为理想电表,则电源电动势E =________V ,内电阻r =

________Ω.

【答案】E=5.76V r=0.4Ω 【解析】

根据闭合电路欧姆定律,两种状态,列两个方程,组成方程组,就可求解. 当S 断开时

(1)

当S 闭合时

(2)

由(1)、(2)式联立,解得 E=5.76V r=0.4Ω

7.一根粗细均匀的金属导线,两端加上恒定电压10 V 时,通过金属导线的电流为2 A ,求:

①金属导线电阻;

②金属导线在10 s 内产生的热量. 【答案】(1)5 Ω (2)200 J

【解析】试题分析:根据欧姆定律和焦耳定律即可解题。 (1)根据欧姆定律: 10

52

U R I =

=Ω=Ω。 (2)产生的热量为: 2

Q I Rt =,代入数据得: 200Q J = 点睛:本题主要考查了欧姆定律和焦耳定律,此题为基础题。

8.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计

的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.

(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?

(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?

(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)

【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L

+ 【解析】 【详解】

(1)金属棒ab 在磁场中恰好保持静止,由BIL=mg

E

I R r

=

+ 得 EBL

R r mg

=

- (2)由 220

B L v

mg R =

得 0

22

mgR v B L =

由动量定理,得mgt BILt mv -= 其中0

BLs

q It R ==

得4422

22

0B L s m gR t mgR B L +=

(3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t

????=====???? mg-BIL=ma 得22

mg

a m CB L =

+=常数

所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的. v 22-v 2=2as

根据能量转化与守恒得 2

2211()2

2

E mgs mv mv ?=--

解得:22

22

mgsCB L E m cB L

?=+ 【点睛】

本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.

9.电动自行车是目前一种较为时尚的代步工具,某厂生产的一种电动自行车,设计质量(包括人)为m =90kg ,动力电源选用能量存储量为“36V 、15Ah”(即输出电压恒为36V ,工作电流与工作时间的乘积为15Ah )的蓄电池(不计内阻),所用电源的额定输出功率P

=180W ,由于电动机发热造成的损耗(其他损耗不计),自行车的效率为η=80%,如果

自行车在平直公路上行驶时所受阻力跟行驶速率和自行车对地面的压力的乘积成正比,即F f =kmgv ,其中g 取10m/s 2,k =5.0×10﹣3s?m ﹣1.求:

(1)该自行车保持额定功率行驶的最长时间和自行车电动机的内阻; (2)自行车在平直的公路上能达到的最大速度;

(3)有人设想改用太阳能电池给该车供电,其他条件不变,已知太阳辐射的总功率P 0=4×1026W ,太阳到地球的距离r =1.5×1011m ,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.则此设想所需的太阳能电池板的最小面积。

【答案】(1)2h , 1.44Ω。(2

)。(3)101m 2 【解析】 【详解】

(1)根据公式:P =IU ,I =5A ,再根据电池容量可得:t Q

I

==2h 。 P 热=P 电﹣80%P =I 2r 解得内阻为:r =1.44Ω。

(2)经分析可知,当自行车以最大功率行驶且达匀速时速度最大,因此有: F 牵=kmgv m 而 F 牵m

P v η=

联立代入数据可得:v m =

m/s 。

(3)当阳光垂直电池板入射时,所需电池板面积最小,设其为S ,由题意得:

()02

130%15%4P S r π-??=P

解得所需的太阳能电池板的最小面积为:

S 20

370%15%r P P 电

π=?。

代入数据解得:S ≈101m 2。

10.如图所示,在两光滑平行金属导轨之间存在方向垂直纸面向里的匀强磁场,磁感应强度大小为B ,导轨的间距为L ,电阻不计.金属棒垂直于导轨放置,质量为m ,重力和电阻可忽略不计.现在导轨左端接入一个电阻为R 的定值电阻,给金属棒施加一个水平向右的恒力F ,经过时0t 后金属棒达到最大速度.

()1金属棒的最大速度max v 是多少?

()2求金属棒从静止达到最大速度的过程中.通过电阻R 的电荷量q ;

()3如图乙所示,若将电阻换成一个电容大小为C 的电容器(认为电容器充放电可瞬间完成

).求金属棒由静止开始经过时间t 后,电容器所带的电荷量Q .

【答案】()221FR B L ;()0332Ft FmR BL B L -;()22

3FCBLt m CB L +. 【解析】 【分析】

(1)当速度最大时,导体棒受拉力与安培力平衡,根据平衡条件、安培力公式、切割公式列式后联立求解即可;(2)根据法律的电磁感应定律列式求解平均感应电动势、根据欧姆定律列式求解平均电流、再根据电流定义求解电荷量;(3)根据牛顿第二定律和电流的定义式,得到金属棒的加速度表达式,再分析其运动情况.由法拉第电磁感应定律求解MN 棒产生的感应电动势,得到电容器的电压,从而求出电容器的电量. 【详解】

(1)当安培力与外力相等时,加速度为零,物体速度达到最大,即F=BIL=22max

B L v R

由此可得金属棒的最大速度:v max =

22

FR

B L (2)由动量定律可得:(F-F )t 0=mv max

其中:F =220

x

Rt B L

解得金属棒从静止达到最大速度的过程中运动的距离:x=022Ft R B L -2

44FmR B L

通过电阻R 的电荷量:q=

BLx R =0Ft BL -33

FmR

B L

(3)设导体棒运动加速度为a ,某时装金属棒的速度为v 1,经过n t 金属体的速度为v 2,导体棒中流过的电流(充电电流)为I ,则:F-BIL=ma 电流:I=

Q t V V =C E

t

V V 其中:n E=BLv 2-BLv 1=BL n v ,a=v

t

n n 联立各式得:a=

22F

m CB L

+ 因此,导体棒向右做匀加速直线运动.由于所有电阻均忽略,平行板电容器两板间电压U 与导体棒切割磁感线产生的感应电动势E 相等,电容器的电荷量:Q=CBLat=22

FCBLt

m CB L +

答:(1)金属棒的最大速度max v 是

22

FR

B L ; (2)金属棒从静止达到最大速度的过程中,通过电阻R 的电荷量q 为033

Ft FmR

BL B L -; (3)金属棒由静止开始经过时间t 后,电容器所带的电荷量Q 为22

FCBLt

m CB L +.

【点睛】

解决本题的关键有两个:一是抓住电流的定义式,结合牛顿第二定律分析金属棒的加速度.二是运用微元法,求解金属棒的位移,其切入口是加速度的定义式.

11.有“200V 、40W ”灯泡40盏,并联于电源两端,这时路端电压,当关掉20

盏,则路端电压升为

试求:

(1)电源电动势,内阻多大?

(2)若使电灯正常发光还应关掉多少盏灯? 【答案】(1)210V ;10(2)15盏 【解析】

试题分析:(1)电灯的电阻

40盏灯并联的总电阻:R 1=R D /40=25; 20盏灯并联的总电阻:R 2=R D /20=50; 根据欧姆定律可得:

解得E=210V ,r=10 (2)根据欧姆定律可得:

,解得:

=200,

,解得n=5,

所以要关15盏。

考点:全电路欧姆定律。

12.如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量

m=0.1㎏的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面,当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω,不计一切摩擦,g=10m/s2,求:

(1)导体棒所达到的稳定速度是多少?

(2)导体棒从静止到达稳定速度的时间是多少?

【答案】(1)m/s (2)s

【解析】

(1)导体棒匀速运动时,绳拉力T,有T-mg-F=0(2分),

其中F=BIL,I=ε/R, ε=BLv,(3分)

此时电动机输出功率与拉力功率应相等,

即Tv=UI/-I/2r(2分),

(U、I/、r是电动机的电压、电流和电阻),化简并代入数据得v=2m/s(1分).

(2)从开始达匀速运动时间为t,此过程由能量守恒定律,

UI/t-I/2rt=mgh+mv2+Q(4分),

代入数据得t=1s(2分).

13.为了检查双线电缆CE、FD中的一根导线由于绝缘皮损坏而通地的某处,可以使用如图所示电路。用导线将AC、BD、EF连接,AB为一粗细均匀的长L AB=100厘米的电阻丝,接触器H可以在AB上滑动。当K1闭合移动接触器,如果当接触器H和B端距离L1=41厘米时,电流表G中没有电流通过。试求电缆损坏处离检查地点的距离(即图中DP的长度X)。其中电缆CE=DF=L=7.8千米,AC、BD和EF段的电阻略去不计。

【答案】6.396km

【解析】

【试题分析】由图得出等效电路图,再根据串并联电路规律及电阻定律进行分析,联立可求得电缆损坏处离检查地点的距离.

等效电路图如图所示:

电流表示数为零,则点H和点P的电势相等。

由得,

由以上各式得:X=6.396km

【点睛】本题难点在于能否正确作出等效电路图,并明确表头电流为零的意义是两端的电势相等.

14.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计.磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量

m=1kg、电阻r=1Ω.两金属导轨的上端连接右端电路,灯泡电阻R L=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g=10m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:

(1)金属棒下滑的最大速度v m ;

(2)金属棒由静止开始下滑2s 0的过程中整个电路产生的电热Q .

【答案】(1)30m/s (2)50J 【解析】

解:(1)由题意知,金属棒匀速下滑时速度最大,设最大速度为v m ,则有:mgsinθ=F 安 又 F 安=BIL ,即得 mgsinθ=BIL…① ab 棒产生的感应电动势为 E=BLv m …② 通过ab 的感应电流为 I=…③ 回路的总电阻为 R=r+R 1+

…④

联解代入数据得:v m =30m/s…⑤ (2)由能量守恒定律有:mg?2s 0sinθ=Q+…⑥

联解代入数据得:Q=50J…⑦

答:(1)金属棒下滑的最大速度v m 是30m/s .

(2)金属棒由静止开始下滑2s 0的过程中整个电路产生的电热Q 是50J .

【点评】本题对综合应用电路知识、电磁感应知识和数学知识的能力要求较高,但是常规题,要得全分.

15.如图所示,两足够长的平行光滑的金属导轨MN 、PQ 相距为1L =m ,导轨平面与水平面夹角30α=?,导轨电阻不计,磁感应强度为12T B =的匀强磁场垂直导轨平面向上,长为1L =m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为12m =kg 、电阻为11R =Ω,两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为0.5d =m ,定值电阻为

23R =Ω,现闭合开关S 并将金属棒由静止释放,取10g =m/s 2,求:

(1)金属棒下滑的最大速度为多大?

(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率υ为多少?

(3)当金属棒稳定下滑时,在水平放置的平行金属板间加一垂直于纸面向里的匀强磁场

,在下板的右端且非常靠近下板的位置处有一质量为4

110q -=-?kg 、所带电荷

量为

C 的液滴以初速度υ水平向左射入两板间,该液滴可视为质点,要使带

电粒子能从金属板间射出,初速度υ应满足什么条件? 【答案】(1)10m/s (2)100W (3)v≤0.25m/s 或v≥0.5m/s

【解析】试题分析:(1)当金属棒匀速下滑时速度最大,设最大速度v m ,则有

1sin m g F α=安

F 安=B 1IL

112

m

B Lv I R R =

+

所以()

112221

sin m m g R R v B L

α+=

代入数据解得:v m =10m/s

(2)金属棒匀速下滑时,动能不变,重力势能减小,此过程中重力势能转化为电能,重力做功的功率等于整个电路消耗的电功率P=m 1gsinαv m =100W (或)

(3)金属棒下滑稳定时,两板间电压U=IR 2=15V 因为液滴在两板间有2U

m g q

d

=所以该液滴在两平行金属板间做匀速圆周运动 当液滴恰从上板左端边缘射出时: 21

12m v r d B q

== 所以v 1=0.5m/s 当液滴恰从上板右侧边缘射出时: 22

222m v d r B q

=

= 所以v 2=0.25m/s 初速度v 应满足的条件是:v≤0.25m/s 或v≥0.5m/s

考点:法拉第电磁感应定律;物体的平衡;带电粒子在匀强磁场中的运动.

视频

高中物理竞赛训练题:奥赛训练《稳恒电流C》(含答案)

稳恒电流 C 13、电解硝酸银溶液时,在阴极上1分钟内析出67.08毫克银,银的原子量为107.9 ,求电路中的电流。已知法拉第恒量F =9.68×104C/mol 。 14、一铜导线横截面积为4毫升2,20秒内有80库仑的电量通过该导线的某一截面。已知铜内自由电子密度为8.5×1022厘米?3,每个电子的电量为1.6×10?19库仑,求电子的定向移动的平均速率。 15、通常气体是不导电的,为了使之能够导电,首先必须使之;产生持续的自激放电的条件是和;通常气体自激放电现象可分为四大类:、、和,如雷电现象属,霓虹灯光属,高压水银灯发光属。 16、一个电动势为ε、内阻为r的电池给不同的灯泡供电。试证:灯泡电阻R =r时亮度最大,且最大功率P m=ε2/4r 。 17、用万用表的欧姆档测量晶体二极管的正向电阻时,会出现用不同档测出的阻值不相同的情况,试解释这种现象。 18、某金属材料,其内自由电子相继两次碰撞的时间间隔平均值为τ,其单位体积内自由电子个数为n ,设电子电量为e,质量为m ,试推出此导体的电阻率表达式。 19、用戴维南定理判断:当惠斯登电桥中电流计与电源互换位置后的电流计读数关系(自己作图)。视电流计内阻趋于无穷小,电源内阻不计。 20、图示为电位差计测电池内阻的电路图。实际的电位差计在标准电阻RAB上直接刻度的不是阻值,也不是长度,而是各长度所对应的电位差值,RM为被测电池的负载电阻,其值为100Ω。实验开始时,K2打开,K1拨在1处,调节R N使流过R AB的电流准确地达到某标定值,然后将K1拨至2处,滑动C,当检流计指针 指零时,读得UAC= 1.5025V;再闭合K 2 ,滑动C,检流计指针再指零时读得U AC′= 1.4455V,试据以上数据计算电池 内阻r 。

第四章稳恒电流

第四章稳恒电流 第一节电流的稳恒条件和导电规律1。电流强度和电流密度 (1)电流 导体中电荷作定向运动形成电流,方向和大小都不随时间变化的电流叫做稳恒电流。在金属导体中,正离子形成晶格,若大量自由电子在无规则热运动基础上相对晶格作规则的定向移动,便形成电流,自由电子被称为载流子。在电解液中,正、负离子的定向运动形成电流,其载流子是正、负带电离子。像上述两种情况下大量微观带电粒子定向移动所形成的电流叫传导电流。此外,由宏观带电体或带电粒子作宏观定向移动所形成的电流叫运流电流,由变化的电场“产生”的电流叫位移电流。关于位移电流将在本书的第十一章中介绍,本章主要研究传导电流。 形成传导电流的条件是: ①物体中有可移动的电荷,即载流子; ②物体两端有电势差或物体内有电场。例如在金属导体内就有可以自由移动的电荷——自由电子,所以在金属导体的两端加上电压时就可在其内形成电流,因而金属是导电的,称为导体。 导体内电流的形成过程为:当在导体两端加上电压时,与之相伴随而在导体内会产生一电场,其方向沿着电势降落的方向,在电场的作用下,自由电子将逆着电场的方向作规则的定向移动,从而形成电流。习惯上,人们把正电荷在电场作用下规则定向移动的方向规定为电流的方向,因而电流的方向与自由电子移动的方向正好相反,这样在形成电流问题上,可以把负电荷移动形成的电流看作是正电荷沿相反方向移动形成的电流。 (2)电流强度 电流的强弱用电流强度来表示,其定义为:单位时间通过导体任一截面的电量。假定在dt时间内,通过导体截面的电量为dq,用I 表示电流强度,则有 I=dq/dt 其单位是安培(用A表示),1安培=1库仑/秒。电流强度是标量,通常所说的电流方向是指电荷在导体内移动的方向,并非电流是矢量。当I = d q/d t =常数时,即电流强度的大小和方向都不随时间发生变化时,这种电流称为稳恒电流,也叫直流电流;当I随时间发生周期性变化时,称为交变电流;当I随时间作正弦规律的变化时,

高中物理稳恒电流技巧和方法完整版及练习题含解析

高中物理稳恒电流技巧和方法完整版及练习题含解析 一、稳恒电流专项训练 1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。 (1)实验时有两个滑动变阻器可供选择: a、阻值0到200Ω,额定电流 b、阻值0到20Ω,额定电流 本实验应选的滑动变阻器是(填“a”或“b”) (2)正确接线后,测得数据如下表 12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.40 0.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(m A) a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”) b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值) 【答案】(1) a (2) a) P b)

【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。B 电阻的额定电流为 ,加在它上面的最大电压为10V ,所以仪 器不能正常使用,而选择a 。(2)电压表并联在M 与P 之间。因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P 点。 视频 2.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P . 【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】 (1)由部分电路的欧姆定律,可得电阻为:5U R I = =Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】 部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握. 3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m . (1)闭合开关S 稳定后,求电容器所带的电荷量为多少?

高考试题解析物理分项版之专题恒定电流和电路

高中物理学习材料 (灿若寒星**整理制作) 1.(北京)如图所示电路,电源内阻不可忽略。开关S 闭合后,在 变阻器R 0的滑动端向下滑动的过程中, A .电压表与电流表的示数都减小 B .电压表与电流表的小数都增大 C .电压表的示数增大,电流表的示数减小 D .电压表的示数减小,电流表的示数增大 答案:A 解析:变阻器R 0的滑动端向下滑动的过程中,使连入电路中的R 0阻值减小,整个电路的电阻减小,电路中的电流I 增大,路端电压U=E -Ir 减小,即电压表的示数减小,又R 2与R 0并联后再与R 1串联,在R 0减小时,使得R 2两端电压减小,R 2中的电流减小,即电流表示数减小。A 正确,B 、C 、D 错误。 2.(全国)(15分)(注意:在试题卷上答题无效) 如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计。在导轨上端并接2个额定功率均为P 、电阻均为R 的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m 、电阻可忽略不计的金属棒MN 从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g 。求: (1)磁感应强度的大小; (2)灯泡正常发光时导体棒的运动速率。 【解析】 (1)设小灯泡的额定电流为I 0,有 P = I 02 R ① 根据题意,金属棒MN 沿导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN 的电流为 I = 2I 0 ② 此时金属棒MN 所受的重力和安培力相等,下落的速度达到最大值,有 mg = BLI ③ 联立①②③式得式得 A V S R 1 E ,r R 2 R 0 M N a c L b d

大学物理习题解答5第五章稳恒电流

第五章 稳恒电流 本章提要 1.电流强度 · 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。如果在t ?时间内通过导体某一截面的电量为q ?,则通过该截面的电流I 为 q I t ?= ? · 如果电流随时间变化,电流I 的定义式为 t q t q I t d d lim 0= ??=→? 2.电流密度 · 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。根据电流密度的定义,导体中某一点面元d S 的电流密度为 d d I j S ⊥ = · 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即 d j S S =???I 3.欧姆定律 · 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式

R U U I 2 1-= 其中R 为导体的电阻,21U U -为导体两端的电势差 · 欧姆定律的微分形式为 E j σ= 其中ρσ1=为电导率 4.电阻 · 当导体中存在恒定电流时,导体对电流有一定的电阻。导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为 S l R ρ = 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率 5.电动势 · 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。 q A 非= ε · 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为 l E l k ??=d ε

高中物理稳恒电流专项练习

高中物理稳恒电流专项练习 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

第四章习题 稳恒电流的磁场

第四章 稳恒电流的磁场 一、判断题 1、在安培定律的表达式中,若∞→→21021aF r ,则。 2、真空中两个电流元之间的相互作用力满足牛顿第三定律。 3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I 0放在空间任 意一点都不受力,则该空间不存在磁场。 4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示。 5、安培环路定理反映了磁场的有旋性。 6、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B 。 7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。 8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。 9、安培环路定理I l d B C 0μ=?? 中的磁感应强度只是由闭合环路内的电流激发的。 10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。 二、选择题 1、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小 (A )一定相等 (B )一定不相等 (C )不一定相等 (D )A 、B 、C 都不正确 2、半径为R 的圆电流在其环绕的圆内产生的磁场分布是: (A )均匀的 (B )中心处比边缘处强 (C )边缘处比中心处强 (D )距中心1/2处最强。 3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的 (A )磁力相等,最大磁力矩相等 (B )磁力不相等,最大磁力矩相等 (C )磁力相等,最大磁力矩不相等 (D )磁力不相等,最大磁力矩不相等 4、一长方形的通电闭合导线回路,电流强度为I ,其四条边分别为ab 、bc 、cd 、da 如图所示,设4321B B B B 及、、分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是: () () 1 2 1 101111 2 3400 0C C C A B dl I B B dl C B B dl D B B B B dl I μμ?=?=+?=+++?=?? ?? ()()()() 5、两个载流回路,电流分别为121I I I 设电流和单独产生的磁场为1B ,电流2I 单独产生的磁 场为2B ,下列各式中正确的是:

大学物理稳恒磁场习题及答案

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ =v v ,单位是:安培每平方米(A/m 2) 。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S v 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + = 。 4、一磁场的磁感强度为 (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ??v v ?=____μ0I __; 对环路b :d B l ??v v ?=___0____; 对环路c :d B l ??v v ? =__2μ0I __。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B v 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2?r 2B B.??r 2B C. 0 D. 无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. B. C. D. ( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外 C .方向在环形分路所在平面内,且指向a D .为零

高中物理稳恒电流试题(有答案和解析)

高中物理稳恒电流试题(有答案和解析) 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

大学物理习题稳恒磁场

稳恒磁场 一、选择题 1. 一圆电流在其环绕的平面内各点的磁感应强度 B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。 2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中 321O ,O ,O 处的磁感应强度为 B B B 123,,,则 【 】 (A) B B B 123==; (B) 0B 0B B 321≠== ; (C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠= 3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】 (A) 若?=?L 0l d B ,则必定L 上 B 处处为零 (B) 若?=?L 0l d B , 则必定L 不包围电流 (C) 若?=?L 0l d B , 则L 所包围电流的代数和为零 (D) 回路L 上各点的 B 仅与所包围的电流有关。 4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受 的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2 (C) 4 (D) 1/4 5. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】 (2) 选择题

(A) 2/IB Na 32, (B) 4/IB Na 32, (C) 60sin IB Na 32, (D) 0 6. 一带电粒子以速度 v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半 径变为2R ,磁场B 应变为: 【 】 B 2 2) D (B 2 1 ) C (B 2)B (B 2) A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两 条轨 迹 可 以 判 断 【 】 (A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。 8. 从电子枪同时射出两电子,初速分别为v 和2v ,方向如图所示, 经均匀磁场偏转后, 先回到出发点的是: 【 】 (A) 同时到达 (B) 初速为v 的电子 (C) 初速为2v 的电子 9. 有一电荷q 在均匀磁场中运动,下列哪种说法是正确的? (A )只要速度大小相同,所受的洛仑兹力就相同; (B )如果电荷q 改变为q -,速度v 反向,则受力的大小方向均不变; (C )已知v 、B 、F 中任意两个量的方向,就能判断第三个量的方向; (D )质量为m 的运动电荷,受到洛仑兹力作用后,其动能和动量均不变。 10. 设如图所示的两导线中的电流1I 、2I 均为5A ,根据安培环路定律判断下列表达式中错 误的是( ) (A )?=?a A l d H 5 ; (B )?=?c l d H 0 ; a b c ?? (7)选择题(8) 选择题

高中物理稳恒电流题20套(带答案)

高中物理稳恒电流题20套(带答案) 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

高中物理稳恒电流专题训练答案

高中物理稳恒电流专题训练答案 一、稳恒电流专项训练 1.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm. (2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω); 电压表V(量程3V,内阻约10Ω); 电阻0R(阻值约20 kΩ); 滑动变阻器R(最大阻值50Ω,额定电流1 A); 电池组E(电动势3V,内阻不计); 开关S及导线若干. 【答案】(1)1.880(1.878~1.882均正确) (2) 【解析】 (1)首先读出固定刻度1.5 mm 再读出可动刻度38. 0×0. 01 mm="0.380" mm 金属丝直径为(1.5+0.380) mm="1.880" mm.

(注意半刻度线是否漏出;可动刻度需要估读) (2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于 0V A 0 100,0.5R R R R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可. 2.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电动机的电阻R 0=1.0Ω,电阻R 1=1.5Ω.电动机正常工作时,电压表的示数U 1=3.0V ,求: (1)电源释放的电功率; (2)电动机消耗的电功率.将电能转化为机械能的功率; 【答案】(1)20W (2)12W 8W . 【解析】 【分析】 (1)通过电阻两端的电压求出电路中的电流I ,电源的总功率为P=EI ,即可求得; (2)由U 内=Ir 可求得电源内阻分得电压,电动机两端的电压为U=E-U 1-U 内,电动机消耗的功率为P 电=UI ;电动机将电能转化为机械能的功率为P 机=P 电-I 2R 0. 【详解】 (1)电动机正常工作时,总电流为:I=1 U R I= 3.0 1.5 A=2 A , 电源释放的电功率为:P=EI =10×2 W=20 W ; (2)电动机两端的电压为: U= E ﹣Ir ﹣U 1 则U =(10﹣2×0.5﹣3.0)V=6 V ; 电动机消耗的电功率为: P 电=UI=6×2 W=12 W ; 电动机消耗的热功率为: P 热=I 2R 0 =22×1.0 W=4 W ; 电动机将电能转化为机械能的功率,据能量守恒为:P 机=P 电﹣P 热 P 机=(12﹣4)W=8 W ;

高中物理竞赛——稳恒电流习题

高中物理竞赛——稳恒电流习题 一、纯电阻电路的简化和等效 1、等势缩点法 将电路中电势相等的点缩为一点,是电路简化的途径之一。至于哪些点的电势相等,则需要具体问题具体分析—— 【物理情形1】在图8-4甲所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A 、D 缩为一点A 后,成为图8-4乙图 对于图8-4的乙图,求R AB 就容易了。 【答案】R AB = 8 3R 。 【物理情形2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势有什么关系? ☆学员判断…→结论:相等。 因此,将C 、D 缩为一点C 后,电路等效为图8-5乙 对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足2 1R R =4 3R R 的关系, 我们把桥式电路称为“平衡电桥”。

【答案】R AB = 4 15Ω 。 〖相关介绍〗英国物理学家惠斯登曾将图8-5中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻换成待测电阻、将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。 请学员们参照图8-6思考惠斯登电桥测量电阻的原理,并写出R x 的表达式(触头两端的电阻丝长度L AC 和L CB 是可以通过设置好的标尺读出的)。 ☆学员思考、计算… 【答案】R x =AC CB L L R 0 。 【物理情形3】在图8-7甲所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。 【模型分析】在本模型中,我们介绍“对称等势”的思想。当我们将A 、B 两端接入电源,电流从A 流向B 时,相对A 、B 连线对称的点电流流动的情形必然是完全相同的,即:在图8-7乙图中标号为1的点电势彼此相等,标号为2的点电势彼此相等…。将它们缩点后,1点和B 点之间的等效电路如图8-7丙所示。 不难求出,R 1B = 14 5R ,而R AB = 2R 1B 。 【答案】R AB = 75R 。 2、△→Y 型变换 【物理情形】在图8-5甲所示的电路中,将R 1换成2Ω的电阻,其它条件不变,再求A 、B 两端的等效电阻R AB 。 【模型分析】此时的电桥已经不再“平衡”,故不能采取等势缩点法简化电路。这里可以将电路的左边或右边看成△型电路,然后进行△→Y 型变换,具体操作如图8-8所示。 根据前面介绍的定式,有

电磁学课程教学大纲

电磁学 一、说明部分 (一)本课程的性质 电磁学是理科物理类各专业的一门重要基础课。介绍电磁运动的基本现象、基本概念和基本规律,它和后继课程近代物理及物理学教育专业本科段的电动力学和量子力学等有密切的联系。电磁理论对现代科学技术的发展有着里程碑一般的重大意义。(二)本课程的目的 电磁学是普通物理学的重要部分,是高等师范学校物理系的基础课程。通过电磁学的教学,应该使学生: 1.全面系统地掌握电磁运动的基本现象、基本概念和基本规律;具有一定的分析和解决 电磁学问题的能力;为后续课程的学习奠定较为扎实的基础; 2.具有分析、处理和讲授高中物理电磁学部分的能力; 3.了解电磁学发展史上某些重大发现和发明过程中的物理思想和实验方法;了解电磁学 与其它学科的关系;了解电磁学在实际技术中的应用。 (三)本课程的教学内容 包括:静电场、静电场中的导体和电介质、稳恒电流、稳恒磁场、电磁感应、暂态过程、磁介质、麦克斯韦电磁理论。 (四)教学时数 本课程计划教学90学时,其中讲授82学时,习题课8学时。 (五)、教学环节和教学方法 1、由于电磁学实验单独开设,故本课程以讲授为主,教学中可加强课堂演示实验并尽可能用现代化教学手段。 2、注意发挥学生的主观能动作用,要经常指导学生的学习方法。 3、教学中要经常结合中学物理内容,以使学生适应今后的中学物理教学科研工作; 4、教学内容以基本概念、基本规律为主,但要适应教育改革的形势经常补充以下几方面的内容: (1)物理与近代物理有关知识间的联系; (2)重要物理实验的介绍,使学生了解电磁学发展史上一些重大发现和发明过程中的物理思想; (3)介绍电磁学在实际技术中的应用; 5、大纲中标*号的内容只作简单介绍; 二、文本部分 第一章:静电场 教学要点: 理解电荷是物质的一种属性,阐明电荷的量子性及其电荷守恒定律;明确点电荷

物理竞赛课件-奥赛训练稳恒电流A

稳恒电流 A 编号:971017 1、令每段导体的电阻为R ,求R AB。 2、对不平衡的桥式电路,求等效电阻R AB。 3、给无穷网络的一端加上U AB = 10V的电压,求R2消耗的功率。已知奇数号电阻均为5Ω,偶数号电阻均为10Ω。 4、试求平面无穷网络的等效电阻R AB,已知每一小段导体的电阻均为R 。 5、右图电路中,R1 = 40Ω,R2 = R3 = 60Ω,ε1 = 5V ,ε2 = 2V ,电源内阻忽略不计,试求电源ε2的输出功率。 6、右图电路中,ε1 = 20V ,ε2 = 24V ,ε3 = 10V ,R1 = 10Ω,R2 = 3Ω,R3 = 2Ω,R4 = 28Ω,R5 = 17Ω,C1 = C2 = 20μF ,C3 = 10μF ,试求A、B两点的电势、以及三个电容器的的带电量。

稳恒电流A答案与提示 1、等势缩点法。设图中最高节点为C 、最低节点为D ,则U C = U D… 答案:7R/15 。 2、法一:“Δ→Y”变换; 法二:基尔霍夫定律,基尔霍夫方 程两个…解得I1 = 9I/15 ,I2 = 6I/15 , 进而得U AB = 21IR/15 。 答案:1.4R 。 3、先解R AB = R右= 10Ω 答案:2.5W 。 4、电流注入、抽出…叠加法 求U AB表达式。 答案:左图R/2 ;右图R 。 5、设R3的电流为I(方向向 左),用戴维南定理解得I = 0 。 答案:零。 6、设电路正中间节点为P点,接地点为O点,求A、B电势后令U P大于U A而小于U B,则三电容器靠近P点的极板的电性分别是+、?、+ ,据电荷守恒,应有Q1 + Q2 = Q3… 答案:U A = 7V ,U B = 26V ;Q1 = 124μC(A板负电),Q2 = 256μC(B板正电),Q3 = 132μC (O板负电)。

大学物理习题解答5第五章稳恒电流(2)

第四章 静电场 本章提要 1.电荷的基本性质 两种电荷,量子性,电荷首恒,相对论不变性。 2.库仑定律 两个静止的点电荷之间的作用力 1212 22 04kq q q q r r = =F r r πε 其中 922910(N m /C )k =?? 122-1-201 8.8510(C N m )4k -= =??επ 3.电场强度 q = F E 0q 为静止电荷。由 1010 22 04kq q q q r r = =F r r πε 得 11 2204kq q r r = =E r r πε 4.场强的计算 (1)场强叠加原理 电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。 i =∑E E

(2)高斯定理 电通量:在电场强度为E 的某点附近取一个面元,规定S ?=?S n ,θ为E 与n 之间的夹角,通过S ?的电场强度通量定义为 e cos E S ?ψ=?=??v S θ 取积分可得电场中有限大的曲面的电通量 ψd e s S = ???E 高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。即 i 0 1 d s q = ∑?? E S 内 ε 5.典型静电场 (1)均匀带电球面 0=E (球面内) 2 04q r πε= E r (球面外) (2)均匀带电球体 3 04q R πε= E r (球体内) 2 04q r πε=E r (球体外) (3)均匀带电无限长直线场强方向垂直于带电直线,大小为 02E r λ πε= (4)均匀带电无限大平面场强方向垂直于带电平面,大小为 2E σε= 6.电偶极矩 电偶极子在电场中受到的力矩 =?M P E

高中物理稳恒电流模拟试题及解析

高中物理稳恒电流模拟试题及解析 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

高中物理竞赛讲义:恒定电流.

专题十二 恒定电流 【扩展知识】 1.电流 (1)电流的分类 传导电流:电子(离子)在导体中形成的电流。 运流电流:电子(离子)于宏观带电体在空间的机械运动形成的电流。 (2)欧姆定律的微观解释 (3)液体中的电流 (4)气体中的电流 2.非线性元件 (1)晶体二极管的单向导电特性 (2)晶体三极管的放大作用 3.一段含源电路的欧姆定律 在一段含源电路中,顺着电流的流向来看电源是顺接的(参与放电),则经过电源后,电路该点电势升高ε;电源若反接的(被充电的),则经过电源后,该点电势将降低ε。不论电源怎样连接,在电源内阻r 和其他电阻R 上都存在电势降低,降低量为I (R+r )如图则有: b a U Ir Ir IR U =-+---2211εε 4.欧姆表 能直接测量电阻阻值的仪表叫欧姆表,其内部结构如图所示,待测电阻的值由:)(0R r R I R g x ++-=ε 决定,可由表盘上直接读出。在正式测电阻前先要使红、黑表笔短接,即:

中R r R R I g g ε ε =++=0。 如果被测电阻阻值恰好等于R 中,易知回路中电流减半,指针指表盘中央。而表盘最左边刻度对应于∞=2x R ,最右边刻度对应于03=x R ,对任一电阻有R x ,有:x g R R n I I +== 中ε, 则中R n R x )1(-=。 由上式可看出,欧姆表的刻度是不均匀的。 【典型例题】 1、两电解池串联着,一电解池在镀银,一电解池在电解水,在某一段时间内,析出的银是0.5394g ,析出的氧气应该是多少克? 2、用多用电表欧姆档测量晶体二极管的正向电阻时,用100?R 档和用k R 1?档,测量结果不同,这是为什么?用哪档测得的电阻值大?

高中物理稳恒电流技巧小结及练习题及解析

高中物理稳恒电流技巧小结及练习题及解析 一、稳恒电流专项训练 1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】 (1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于 x V A x R R R R >,所以电流表应内接.电路图如图所示. (2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为: 130.4515000.3010R -=Ω=Ω?,2 30.91 1516.70.6010R -=Ω=Ω?,33 1.50 15001.0010R -= Ω=Ω?, 431.791491.71.2010R -= Ω=Ω?,5 3 2.71 15051.8010R -=Ω=Ω?, 故电阻的测量值为1 2345 15035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于 0150010150 R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略). (3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化); (4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关. 本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总

高中物理竞赛辅导讲义-第8篇-稳恒电流

高中物理竞赛辅导讲义 第8篇 稳恒电流 【知识梳理】 一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律) 流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。即∑I =0。 若某复杂电路有n 个节点,但只有(n ?1)个独立的方程式。 2. 基尔霍夫第二定律(回路电压定律) 对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。即∑U =0。 若某复杂电路有m 个独立回路,就可写出m 个独立方程式。 二、等效电源定理 1. 等效电压源定理(戴维宁定理) 两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。 2. 等效电流源定理(诺尔顿定理) 两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。 三、叠加原理 若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。 四、Y?△电路的等效代换 如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系 时完全等效。 1. Y 网络变换为△网络 12 2331 123 R R R R R R R R ++=, 122331 231R R R R R R R R ++= 122331 312 R R R R R R R R ++= 2. △网络变换为Y 网络 12311122331R R R R R R = ++,23122122331R R R R R R =++,3123 3122331 R R R R R R =++

第四章习题 稳恒电流的磁场.

第四章习题稳恒电流的磁场. 第四章稳恒电流的磁场一、判断题1、在安培定律的表达式中,若r21?0,则aF21??。2、真空中两个电流元之间的相互作用力满足牛顿第三定律。意一点都不受力,则该空间不存在磁场。4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用?0nI表示。5、安培环路定理反映了磁场的有旋性。?3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元I0dl放在空间任?6、对于长度为L的载流导线来说,可以直接用安培定理求得空间各点的B。7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。 8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。9、安培环路定理中的磁感应强度只是闭合

环路内的电流激发的。10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。???CB?dl??0I二、选择题1、把一电流元依次放置在无限长的栽流直导线附近的两点A和B,如果A点和B点到导线的距离相等,电流元所受到的磁力大小一定相等一定不相等不一定相等A、B、C 都不正确2、半径为R的圆电流在其环绕的圆内产生的磁场分布是:均匀的中心处比边缘处强边缘处比中心处强距中心1/2处最强。3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的磁力相等,最大磁力矩相等磁力不相等,最大磁力矩相等磁力相等,最大磁力矩不相等磁力不相等,最大磁力矩不相等4、一长方形的通电闭合导线回路,电流强度为I,其四条边分别为ab、bc、cd、da如图所示,设B1、B2、B3及B4分

相关文档
最新文档