甲醇气相脱水制二甲醚新技术

甲醇气相脱水制二甲醚新技术
甲醇气相脱水制二甲醚新技术

二甲醚测定方法

应用:近期,社会上部分液化石油气充装单位在液化石油气中掺混二甲醚销售,液化石油气中掺混二甲醚,即损害了消费者的经济利益同时对消费者人身财产安全构成隐患。二甲醚又叫甲醚,虽可燃烧但热值低于液化石油气,对装气钢瓶的橡胶密封圈有溶胀作用。长期充装掺杂二甲醚的液化石油气可能导致钢瓶阀门漏气,产生爆炸等安全隐患。为此相关部门建立和推进实施3项监管制度:一是进货验收制度。液化石油气批发、充装单位必须对购进的液化石油气中是否含有二甲醚进行检验,对产品质量控制。二是产品购销台账制度。二甲醚生产企业要建立产品销售台账,如实记录销量和流向;液化石油气批发、充装单位及二甲醚批发单位要建立产品购销台账,如实记录每一批产品的进货来源、数量、销售渠道。液化气销售企业想知道购进的液化气各组分百分含量是多少?液化气中有没有二甲醚?有多少二甲醚?液化气中想掺混二甲醚,掺混后含量是多少?购进的液化气中的二甲醚纯度是多少吗?作为液化气销售企业,如果这些都不知道的话,不仅会在经济、信誉上受损失,而且会给客户带来严重的安全隐患,同时如果被质量检查部门发现还会受到严厉的处罚。 要求液化石油气充装站对每一批次都要做二甲醚含量测定。 为了广大人民群众的生命财产安全,为了保护液化石油气用户的权益经济利益不受侵害,同时确保世博会期间的安全确保用户人身财产安全,遵照国家质检总局《关于气瓶充装有关问题的通知》精神,严格执行《气瓶安全监察规程》的规程,对辖区内液化石油气充装站严格要求,必须做到对每一批次液化气都要做到及时测定。这就要求各液化气充装单位必须配置气相色谱仪,做到实时监测。质监局也要发挥检查监督管理作用,不定期对各充装站抽样检测,对违反规定的单位,要严肃查处。 液化气中二甲醚检测专用气相色谱仪成套配置 方法原理 液化石油气分析包括液化气组分分析和液化气中二甲醚检测分析,用上海灵华仪器有限公司生产的,带有热导检测器的液化气专用气相色谱仪,可以很方便地作出各组分百分含量。 仪器及配件 1.气相色谱:GC-9890A+热导检测器(TCD) 气源:高纯氢气,氢气纯度≥99.995%(氢气发生器) 2.数据处理:SD-2020色谱工作站 3.进样器:六通进样阀,定量管1ml 4.色谱柱:液化气中二甲醚分析专用柱 5.取样: 2L的双阀采样袋 液化气中二甲醚分析谱图:

乙醇气相脱水制乙烯动力学实验精选文档

乙醇气相脱水制乙烯动 力学实验精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

一、实验目的 1、巩固所学的有关动力学方面的知识; 2、掌握获得的反应动力学数据的方法和手段; 3、学会动力学数据的处理方法,根据动力学方程求出相应的参数值; 4、熟悉内循环式无梯度反应器的特点以及其他有关设备的特点以及其它有关设备的使用方法,提高自己的实验技能。 二、实验原理 乙醇脱水属于平等反应。既可以进行分子内脱水成乙烯,又可以分子间脱水生成乙醚。一般而言,较高的温度有利于生成乙烯,而较低的温度则有利于生成乙醚。 三、实验装置及流程 1.实验装置 图7-1 反应器装置图 装置由三部分组成: 第一部分是有微量进料泵,氢气钢瓶,汽化器和取样六通阀组成的系统; 第二部分是反应系统,它是由一台内循环式无梯度反应器,温度控制器和显示仪表组成;

第三部分是取样和分析系统,包括六通阀,产品收集器和在线气相色谱信。 2.实验流程如下图所示: 内循环无梯度反应色谱实验装置流程示意图 K3-进气旁路调节阀;K2-阀箱产物流量调节;K3-气液分离后尾气调节;J-进液排放三通阀;1-气体钢瓶;2-稳压阀;3-转子流量计;4-过滤器;5-质量流量计;6-缓冲器;7-压力传感器;8-预热器;9-预热炉;10-反应器;11-反应炉;12-马达;13-恒温箱;14-气液分离器;15-调压阀;16-皂膜流量计;17-加料泵 12 图7-2 内循环无梯度反应色谱实验装置流程示意图 3.试剂和催化剂:无水乙醇,优级纯;分子筛催化剂,60~80目,重0.4克。 四、实验步骤 1、打开H 2钢瓶使柱前压达到0.5kg/cm 2确认色谱检测中截气通过后启动色谱,柱 温110℃,汽化室130℃,检测室温达到120℃,待温度稳定后,打开导热池——微电流放大器开关,桥电流至100mA ; 2、在色谱仪升温的同时,开启阀恒温箱加热器升温至110℃,开启保温加热器升温 至160℃; 3、打开反应器温度控制开关,升温,同时向反应器冷却水夹套通冷却水。

液化石油气中掺杂二甲醚的危害

液化石油气中掺杂二甲醚的危害 二甲醚,又称甲醚,在燃烧时不产生破坏环境的气体,能便宜地大量生产,被期望成为21世纪的清洁能源之一,在工业、农业、医疗等广泛应用中从来就没有问题,但在通往民用燃料的道路上,却是一波三折,其起因竟然是

源于钢瓶阀门上的一块橡胶垫片。 2007年,山东省质监局、山东省建设厅、山东省公安厅联合出台文件,批准临沂久泰能源二甲醚作为民用燃气。同年8月,建设部发布行业产品标准《城镇燃气用二甲醚》。事实上,这两个政策仅仅说明二甲醚可作民用燃料,没有说明怎么用。在南方气价较高

的广东、重庆、福建、海南等地,二甲醚借机流入液化石油气市场,被掺混于民用液化石油气中,最高掺混比例高达80%。由于二甲醚是带氧燃料,会使液化石油气钢瓶角阀中的橡胶垫片氧化。根据2008年年初国家燃气用具质量检验中心的试验结果显示,随着掺混二甲醚含量的加大,钢瓶阀橡胶密封圈的外

形尺寸会逐渐收缩,其密封性能降低。 2008年3月,国家质检总局下发《关于气瓶充装有关问题的通知》(质检特函[2008]17号)。通知明确要求:不得在民用液化石油气中掺入二甲醚后充入液化石油气钢瓶,或在焊接气瓶中擅自加入不明化学添加剂;对气瓶钢印标记和盛装气体性质的一致性进行

确认,对经过改装的气瓶,一律不得使用;对存在向液化石油气钢瓶中掺入二甲醚和焊接气瓶中加入不明化学添加剂等气瓶改装行为的充装单位要按照《气瓶安全监察规定》规定查处。 在诸多标准中,二甲醚作为民用燃料的标准迟迟未出台。根据国家能源局公开的资料显示,全国现已有800多万

吨二甲醚年生产能力,实际产量200多万吨。二甲醚在掺烧领域的应用,已占到国内二甲醚需求总量的90%左右,也就是说国内生产的二甲醚有九成是通过灰色途径流入民用市场。 近年来,在民用液化石油气中掺入二甲醚后,充入液化石油气钢瓶引发阀门漏气,已是不争的事实。2010年年

焦炉气制甲醇工艺

焦炉气的精制是以炼焦剩余的焦炉气为生产原料,经化工产品回收(焦炉气的粗制);再经压缩后(2.55MPa),进入脱硫转化工段,脱硫采用NHD湿法脱硫和干法精脱硫技术,总硫脱至0.1×10-6,转化采用烃类部分氧化催化技术;制得合格的甲醇合成新鲜气(又称精制气),送去压缩工段合成气压缩机,最后进入甲醇合成塔制得甲醇。 第1章焦炉气成分分析 1.1典型焦炉气的组成 焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力0.105MPa(a)(煤气柜压力)。 1.2焦炉气的回收利用 焦炉气是良好的合成氨、合成甲醇及制氢的原料。根据焦炉气组成特点,除H 2 、CO、 CO 2 为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。另一部分为对甲醇合成无用的物质(对甲醇合成而言为惰 性组分),如CH 4、N 2 等。惰性气体含量过高,不仅对甲醇合成无益,而且会增加合成气体 的功耗,从而降低有效成分的利用率。 第2章焦炉气的精制 2.1硫的脱除及加氢净化 焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害

焦炉工艺流程

炼焦工艺 现代焦炭生产过程分为洗煤、配煤、炼焦和产品处理等工序。 1.洗煤 原煤在炼焦之前,先进行洗选。目的是降低煤中所含的灰分和去除其他杂质。 2.配煤 将各种结焦性能不同的煤按一定比例配合炼焦。 目的是在保证焦炭质量的前提下,扩大炼焦用煤的使用范围,合理地利用国家资源,并尽可能地多得到一些化工产品。 3.炼焦 将配合好的煤装入炼焦炉的炭化室,在隔绝空气的条件下通过两侧燃烧室加热干馏,经过一定时间,最后形成焦炭。 4.炼焦的产品处理 将炉内推出的红热焦炭送去熄焦塔熄火,然后进行破碎、筛分、分级、获得不同粒度的焦炭产品,分别送往高炉及烧结等用户。 熄焦方法有干法和湿法两种。

湿法熄焦是把红热焦炭运至熄焦塔,用高压水喷淋60~90s。 干法熄焦是将红热的焦炭放入熄焦室内,用惰性气体循环回收焦炭的物理热,时间为2~4h。 在炼焦过程中还会产生炼焦煤气及多种化学产品。焦炉煤气是烧结、炼焦、炼铁、炼钢和轧钢生产的主要燃料。 炼焦工艺主要设备 1、焦炉简介: 现代焦炉炉体由炭化室、燃烧室和蓄热室三个主要部分构成。一般,炭化室宽0.4~0.5m、长10~17m、高4~7.5m,顶部设有加煤孔和煤气上升管(在机侧或焦侧),两端用炉门封闭。燃烧室在炭化室两侧,由许多立火道构成。蓄热室位于炉体下部,分空气蓄热室和贫煤气蓄热室。 焦炉系统中常用的控制设备:PLC、变频器、组态软件、电动机、断路器、接触器、按钮、温度仪表等等。 2、捣固焦炉简介: 捣固焦泛指采用捣固炼焦技术在捣固焦专用炉型内生产出的焦炭,这种专用炉型即捣固焦炉。捣固炼焦技术是一种可根据焦炭的不同用途,配入较多的高挥发分煤及弱粘结性煤,在装煤推焦车的煤箱内用捣固机将已配合好的煤捣实后,从焦炉机侧推入炭化室内进行高温干馏的炼焦技术。

乙醇气相脱水制乙烯动力学

序号:40 化工专业实验报告 实验名称:乙醇气相脱水制乙烯动力学实验学院:化学工程学院 专业:化学工程与工艺 班级:化工095班 姓名:何小龙 学号:09402010541 指导教师:杨春风 日期:2012年3月22日

一.实验目的 1. 巩固所学有关反应动力学方面的知识; 2. 掌握获得反应动力学数据的手段和方法; 3. 学会动力学数据的处理方法,根据动力学方程求出相应的参数值; 4. 熟悉内循环式无剃度反应器的特点及其它有关设备的使用方法,提高实验技能。 二.实验原理及原理图 乙醇脱水属于平行反应,既可以进行分子内脱水生成乙烯,又可以进行分子间脱水生成乙醚。一般而言,较高的温度有利于生成乙烯,而较低的温度有利于生成乙醚。乙醇在分子筛催化剂作用下的脱水过程可描述成: 2C2H5OH→C2H5OC2H5+H2O C2H5OH→C2H4+H2O 三.实验装置、流程及试剂 1. 装置 本实验装置由三部分构成: 第一部分是由微量进料泵、氢气钢瓶、汽化器和取样六通阀组成的进料系统。 第二部分是反应系统,它是由一台内循环式无剃度反应器、温度控制器和显示仪表组成。反应器的结构如图1所示。 1-直流电机;2-磁钢固定片;3-磁钢; 4-上法兰;5-磁钢;6-磁钢固定片;7-轴承; 8-密封垫片;9-冷却水夹套;10-反应器上部; 11-轴承;12-密封垫片;13-密封垫片; 14-反应器下部;15-旋转轴;16-反应器外壁; 17-旋转叶片;18-催化剂及固定框;19-加热 电炉;20-热电偶套管;21-进气口;22-出气口 图1无梯度反应器结构图 第三部分是取样和分析系统。包括取样六通阀、产品收集器和在线气相色谱仪。 整套实验装置安装在一个实验柜中,操作方便。

液化二甲醚钢瓶对密封材料的选择

液化二甲醚钢瓶对密封材料的选择 摘要:根据化学中的相似相溶原理和橡胶溶胀性原理,分析液化石油气钢瓶掺入液化二甲醚后钢瓶阀门漏气的原因,提出了新研制的液化二甲醚钢瓶对橡胶密封材料选用的原则和要求。 引言 我国化工行业标准 HG/T3934-2007《二甲醚》在第8章“安全”中有如下警示:“二甲醚对部分橡胶具有一定的溶胀性。” 1. 从液化石油气钢瓶阀门漏气说起 几年来在民用液化石油气中掺入二甲醚后充入液化石油气钢瓶引发阀门漏气的现象已是不争的事实。由于二甲醚对橡胶有特殊要求,一般用于装液化气的钢瓶瓶阀橡胶密封圈会被二甲醚腐蚀,从而导致泄漏。如果液化石油气气泄漏,后果不堪设想。根据2008初国家燃气用具质量检验中心的试验结果,随着掺混二甲醚含量的加大,瓶阀橡胶密封圈的外形尺寸在逐渐收缩,其密封性能降低,容易产生漏气现象。 2. 相似相溶原理 液化石油气钢瓶在我国使用已有40多年历史,40多年从来未发生过阀门大量漏气的现象。为何多年来液化石油气与液化石油气瓶阀相安无事,而近年来液化石油气钢瓶阀门漏气现象对却有所增多呢?从物质的相似相溶原理说起。 相似相溶原理是指结构相似的物质比较容易相溶,可以理解为“极性分子易溶于极性溶剂中,非极性分子易溶于非极性溶剂中。”由于极性分子间的电性作用,使得极性分子组成的溶质易溶于极性分子组成的溶剂,难溶于非极性分子组成的溶剂;非极性分子组成的溶质易溶于非极性分子组成的溶剂,难溶于极性分子组成的溶剂。 液化石油气主要成分是丙烷和丁烷,“烷”类具有稳定的分子结构。以丙烷为 例,丙烷分子式C 3H 8 ,分子结构:C原子以sp3杂化轨道成键,丙烷分子具有高度对 称结构,所以,丙烷是非极性的分子。 目前,液化石油气瓶阀的密封材料多数是采用丁晴橡胶,丁晴橡胶是丙烯晴和丁二烯的共聚物,它的极性强且随着丙烯晴含量的增大而增加。根据相似相溶原理,丙烷分子与丁晴橡胶分子的极性不相似,所以,丁晴橡胶与液化石油气不相溶,因而多年来液化石油气与液化石油气瓶阀相安无事。 丁晴橡胶具有强极性,液化二甲醚是一种极性的有机溶剂,根据相似相溶原理,丁晴橡胶易溶于液体二甲醚。 根据相似相溶原理,就不难理解在液化石油气钢瓶参入液化二甲醚后,钢瓶阀门的丁晴橡胶密封圈易溶解于液化二甲醚而失效,所以,新启用的液化石油气钢瓶或原有液化石油气钢瓶掺入液化二甲醚后不久就会出现阀门漏气的情况。 3. 橡胶的溶胀性 根据有机化学的知识,有机溶剂可以亲和高分子有机物,但是有的高分子有机物是不容易溶解的,他们会吸附溶剂分子而使体积膨胀;亲水性的高分子物质也会吸收水分子而体积膨胀,这就是所谓极性物质的溶胀性。溶胀性也可从相似相溶原理得到解释,它们在接触时或在一定压力、温度下会具有互溶作用,但和分子间的

合成气制甲醇(精品)

合成气制甲醇(精品) 合成气制甲醇( 合成气可以由煤、焦炉煤气、天然气等生产) 一、甲醇合成工艺技术 合成甲醇工艺技术概况: 自从1923年德国BASF公司首次用一氧化碳在高温下用锌铬催化剂实现了甲醇 合成工业化之后,甲醇的工业化合成便得以迅速发展。当前,合成法甲醇生产几乎 成为目前世界上生产甲醇的唯一方法。半个多世纪以来,随着甲醇工业的迅速发 展,合成甲醇的技术也得以迅速改进。目前世界上合成甲醇的方法主要有以下几种: 1、高压法(19.6~29.4 MPa) 这是最初生产甲醇的方法,采用锌铬催化剂,反应温度为360~400?,压力 19.6~29.4Mpa。随着脱硫技术的发展,高压法也在逐步采用活性高的铜系催化剂, 以改善合成条件,达到提高效率和增产甲醇的效果。高压法虽然有70多年的历 史,但是,由于原料及动力消耗大,反应温度高,投资大,成本高等问题,其发展 长期以来处于停滞状态。 2、低压法(5.0~8.0 MPa) 这是20世纪60年代后期发展起来的甲醇合成技术。低压法基于高活性的铜 系催化剂。铜系催化剂活性明显高于锌铬催化剂,反应温度低(240~270?),在较低 的压力下获得较高的甲醇收率,而且选择性好,减少了副作用,改善了甲醇质量, 降低了原材料的消耗。此外,由于压力低,不仅动力消耗比高压法降低很多,而且 工艺设备的制造也比高压法容易,投资得以降低,总之低压法比高压法有显著的优 越性。 3、中压法(9.8~12.0 MPa)

随着甲醇单系列规模的大型化(目前已有日产2000吨的装置甚至更大单系列的装置),如采用低压法,势必导致工艺管道和设备非常庞大,因此在低压法的基础上,适当提高合成压力,即成为中压法。中压法仍采用与低压法相同的铜系催化剂,反应温度也与低压法相同,因此它具有与低压法相似的优点,但由于提高了合成压力,相应的动力消耗略有增加。目前,世界上新建或扩建的甲醇装置几乎都采用低压法或中压法,其中尤以低压法为最多。英国I.C.I公司和德国Lurgi公司是低压甲醇合成技术的代表,这两种低压法的差别主要在甲醇合成反应器及反应热回收的形式有所不同。目前世界上合成甲醇主要采用低压法工艺技术,它是大型甲醇装置的发展主流。甲醇合成系统包括合成气压缩(等压合成除外)、甲醇合成热量回收、甲醇精馏等工序,其核心设备是甲醇合成塔。有多种形式的合成塔在工业化装置中应用,经实际验证都是成熟可靠的。但在选择中要精心比较。二、甲醇精制 甲醇精制目前工业上采用的有两塔流程和三塔流程,两塔流程已能生产优质的工业品甲醇,但从节能降耗角度出发,选择三塔流程是较好的。三塔流程将以往的主精馏塔分为加压精馏塔和常压精馏塔,将加压精馏塔塔顶出来的甲醇蒸汽作为常压精馏塔的热源,降低了蒸汽消耗。通常情况下可降低能耗30%,但投资略有增加试析甲醇行业未来发展方向 甲醇是一种重要的有机化工原料,应用广泛,可以用来生产甲醛、合成橡胶、甲胺、对苯二甲酸二甲脂、甲基丙烯酸甲脂、氯甲烷、醋酸、甲基叔丁基醚等一系列有机化工产品,而且还可以加入汽油掺烧或代替汽油作为动力燃料以及用来合成甲醇蛋白。随着当今世界石油资源的日益减少和甲醇单位成本的降低,用甲醇作为新的石化原料来源已经成为一种趋势。尽管目前全球甲醇生产能力相对过剩,并且不排除由于某种原因而引起甲醇市场的波动,但是对于有着丰富的煤、石油、天然

探讨焦炉煤气制作甲醇的工艺技术

探讨焦炉煤气制作甲醇的工艺技术 摘要:随着钢铁工业的快速发展,尤其是在焦煤燃料等的需求逐渐增大,出现了一系列的环境与经济社会发展的问题。如果一味的追求焦炭产能的无序扩张,在追求产量的增长,这样,就会导致环境的进一步恶化,特别是在以牺牲自然环境为前提的焦炭发展,给人们的生活健康带来了一定的影响。因此,在全面思考如何解决大量的焦炉煤气燃烧放散的存在问题基础上,通过对技术层面的研究,将这些焦炉煤气化为一种有效的物质,既环保又能促进经济的循环进步,将是有着重要的现实意义。本文从焦炉煤气的利用途径来分析,对其中的组成和杂质含量进一步分析,从而提出焦炉煤气制甲醇的工艺技术,实现甲醇合成与精馏工艺技术,更好的促进经济社会的快速发展。 关键词:焦炉煤气制作甲醇合成工艺技术 合成甲醇是一个多相催化反应的过程,通过各种选择性的限制还有合成压力、温度、气组等因素的影响,在合成甲醇之外,还会伴随有烃、高碳醇、醛等一些产物,因此,全面形成合成甲醇的技术参数,分离和闪蒸出的气体大部分送合成气压缩工段与新鲜合成气混合加压后进入合成塔循环反应,提升催化剂的活性和选择性工艺的操作水平。 1、简述焦炉煤气的利用途径 1.1 分析焦炉煤气的组成与杂质含量 从当前焦炉煤气的构成成分来看,主要集中组成部分就是如H2、CO、CH4、CO2等,在具体的应用中,由于炼焦过程中,配比和工艺参数的不同,在焦炉煤气的组成上也会有一定的变化,可以通过下面的表格进行分析探讨。一般焦炉煤气的组成见(表1),杂质含量见(表2)。 1.2 概述焦炉煤气的综合利用途径 焦炉煤气作为一种很好的气体燃料,同时也是一种最有效的化工原料气,在通过采取进化的措施之后,可以作为一种最佳的燃气,应用到制作甲醇、合成甲醇类等各种需要,还能作用于工业生产,譬如合成氨、提取氢气等,并能用在发电行业中,尤其是在合成甲醇的价值上,能体现出更高的效果和附加值,能收取很好的经济效益。有研究显示,如果能将放散的350×108m3焦炉煤气全用于制造甲醇,可产出1600万吨的甲醇,从而有效缓解石油供应不足的现状,实现经济效益的全面发展和带动作用。 2、探讨焦炉煤气制甲醇的工艺技术 2.1 焦炉煤气制甲醇的工艺流程 在焦炉煤气制作甲醇的工艺技术掌握上,可以采取有效地流程,通过将焦化厂经过各种预处理的焦炉煤气送进储气罐缓冲稳压、压缩增压,接着进行加氢转化精脱硫,使其总硫体积分数≤0.1×10-6,此即焦炉煤气的净化;在此基础上,采取补炭的方式,具体的操作就是,就是应用煤炭制气,采取压缩、脱硫、脱碳等措施,形成碳多氢少的水煤气,并注入到原材料的配比中,实现调整原材料中碳与氢的比例,制成比例符合甲醇需求的合成气,这是合成甲醇的工艺第一步[1];通过将合成气压缩后增压送入甲醇合成塔参与化学合成反应,制作出粗甲醇,这样,就可以通过采取进一步的技术应用,在对粗甲醇进行精馏之后,制成与煤基清洁能源和用途广泛的有机化工原料精甲醇,在这个全过程中,充分把握焦炉煤气技术应用中的关键点,就是净化和转化,这是最关键的技术应用,直接影响着甲醇合成的成功率。

乙醇气相脱水制乙烯动力学实验

一、实验目的 1、巩固所学的有关动力学方面的知识; 2、掌握获得的反应动力学数据的方法和手段; 3、学会动力学数据的处理方法,根据动力学方程求出相应的参数值; 4、熟悉内循环式无梯度反应器的特点以及其他有关设备的特点以及其它有关设备的使用方法,提高自己的实验技能。 二、实验原理 乙醇脱水属于平等反应。既可以进行分子内脱水成乙烯,又可以分子间脱水生成乙醚。一般而言,较高的温度有利于生成乙烯,而较低的温度则有利于生成乙醚。 三、实验装置及流程 1.实验装置 图7-1 反应器装置图 装置由三部分组成: 第一部分是有微量进料泵,氢气钢瓶,汽化器和取样六通阀组成的系统; 第二部分是反应系统,它是由一台内循环式无梯度反应器,温度控制器和显示仪表组成; 第三部分是取样和分析系统,包括六通阀,产品收集器和在线气相色谱信。 2.实验流程如下图所示:

内循环无梯度反应色谱实验装置流程示意图K3-进气旁路调节阀;K2-阀箱产物流量调节;K3-气液分离后尾气调节;J-进液排放三通阀; 1-气体钢瓶;2-稳压阀;3-转子流量计;4-过滤器;5-质量流量计;6-缓冲器; 7-压力传感器;8-预热器;9-预热炉;10-反应器;11-反应炉;12-马达; 13-恒温箱;14-气液分离器;15-调压阀;16-皂膜流量计;17-加料泵12 图7-2 内循环无梯度反应色谱实验装置流程示意图 3.试剂和催化剂:无水乙醇,优级纯;分子筛催化剂,60~80目,重克。 四、实验步骤 1、打开H 2钢瓶使柱前压达到0.5kg/cm 2确认色谱检测中截气通过后启动色谱,柱温 110℃,汽化室130℃,检测室温达到120℃,待温度稳定后,打开导热池——微 电流放大器开关,桥电流至100mA ; 2、在色谱仪升温的同时,开启阀恒温箱加热器升温至110℃,开启保温加热器升温 至160℃; 3、打开反应器温度控制开关,升温,同时向反应器冷却水夹套通冷却水。 4、打开微量泵,以小流量向气化器内通原料乙醇; 5、用阀箱内旋转六通阀取样分析尾气组成,记录色谱处理的浓度值; 6、在200~380℃之间选择四个温度,改变三次进料速度,测定各种条件下的数据。 五、数据处理

二甲醚燃烧效率分析

二甲醚燃烧效率分析 二甲醚用作燃料替代液化石油气被市场看好,被誉为“二十一世纪的新能源”。究其主要原因,一方面在于能源价格飙升下二甲醚的价格优势,而另一方面则是其燃烧效率高和燃烧产物排放洁净的显著特点。 将清洁能源二甲醚用作替代能源,是我国抑制高油价影响的重要措施之一。二甲醚的主要性质与液化石油气相类似,可以替代液化石油气用作城镇燃气。二甲醚自身含氧,具有燃烧效率高的特点,从二甲醚的燃烧机理研究中发现,同等热量条件下,与天然气、液化石油气等相比,二甲醚燃烧效率提高5%左右,推广应用前景十分广阔。 1.二甲醚的特性 二甲醚(DME)分子式为C2H60,分子量46.07,二甲醚是一种比较惰性的非腐蚀性有机物,其主要的理化性质见表1。在常温、常压下二甲醚是一种无色易燃有轻微醚香味的气体,在空气中的允许浓度为400×10-6。它具有与液化石油气(LPG)相似的特性。二甲醚具有一般醚类的性质,二甲醚对金属无腐蚀性,不刺激人体皮肤,不致癌,对大气臭氧层无破坏作用,在对流层中易于降解,长期暴露于空气中,不会形成过氧化物。所以,二甲醚是一种优良的绿色化工产品。 在同等温度条件下,二甲醚的饱和蒸气压低于液化石油气,其存储、运输、使用等均比液化石油气安全。二甲醚在空气中的爆炸下限比液化石油气高一倍,因此,在使用过程中,二甲醚作为燃料比液化石油气安全。虽然二甲醚的热值比液化石油气低,但由于二甲醚自身含氧,在燃烧过程中所需空气量远低于液化石油气,从而使得二甲醚的预混气热值和理论燃烧温度都高于液化石油气。 二甲醚具有优良的混溶性,可以同大多数极性和非极性的有机溶剂混溶,例如汽油、四氯化碳、丙酮、氯苯和乙酸乙酯。较易溶于丁

天然气转化合成甲醇的工艺

天然气转化合成甲醇的工艺综述 2015-6-24 专业:化工12-3班 学号: 学生姓名:劳慧 指导教师:刘峥

一.前言 (1) 二.主体部分 (2) 1. 天然气合成甲醇的原理 (2) 2. 高压法合成甲醇的原理及工艺流程 (2) 3. 低压法合成甲醇的原理及工艺流程 (3) 4. 中压法合成甲醇的原理及流程 (4) 5. 三者的比较 (4) 6. 以天然气合成甲醇的优势和现状 (6) 7. 其他原料合成甲醇与天然气合成甲醇的比较 (6) 三.结论部分 (8) 1. 对天然气合成甲醇的认识和了解 (8) 2. 对天然气转化合成甲醇提出我的观点和见解 (8) 四.参考文献 (8)

天然气转化合成甲醇的工艺 一.前言 20世纪60年代,石油和天然气作为一次能源与煤炭一起成为主要能源。与此同时,以石油和天然气为原料的化学工业也迅猛发展起来。与石油不同的是,天然气的成分主要是低分子量的烷烃。因此,天然气化工在发展中逐步成为一个体系。天然气是储量十分丰富的资源和能源,同时也是主要的温室气体之一,合理地利用天然气不仅关系到未来的资源配置和能源利用,而且也是可持续发展的重要战略发展方向之一。 天然气可以合成多种化工原料产品,比如生产合成氨还有甲醇,其中甲醇是最重要的。甲醇是一种重要的基础化工产品和化工原料,主要用于生产甲醛。醋酸、甲苯胺、氯甲烷、乙二醇及各种酸的酯类和维尼纶等,并在很多工业部门中广泛用作溶剂。甲醇在气田开发中用作防冻剂,添在汽油中可提高汽油的辛烷值,甲醇还可直接用作燃料用于发动机。 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料。天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行。由天然气制合成气进而合成甲醇是制甲醇产品一条重要的工艺路线。

焦炉气制甲醇工艺

焦炉气制甲醇工艺(总8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第1章焦炉气成分分析 1.1典型焦炉气的组成 焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力0.105MPa(a)(煤气柜压力)。 1.2焦炉气的回收利用 焦炉气是良好的合成氨、合成甲醇及制氢的原料。根据焦炉气组成特点,除H2、CO、CO2为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。另一部分为对甲醇合成无用的物质(对甲醇合成而言为惰性组分),如CH4、N2等。惰性气体含量过高,不仅对甲醇合成无益,而且会增加合成气体的功耗,从而降低有效成分的利用率。 第2章焦炉气的精制 2.1硫的脱除及加氢净化 焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害 的物质脱除到甲醇合成催化剂所要求的精度。这是因为甲醇合成催化剂对硫化物的要求要高于转化催化剂。甲醇合成催化剂要求总硫<0.1×10-6,转化催化剂要求总硫<0.×10-6。第二就是要减少惰性组分的含量。脱除“毒物”的方法,根据系统选择工艺方案的不同而有所差别。而降低惰性气体的组分含量主要是采用将烃类部分氧化催化转化的方法,使其转化为甲醇合成有用的CO和H2,同时达到降低合成气中惰性组分的目的。 2.1.1无机硫的脱除 焦炉气中硫质量浓度高达6g/m3,氰化物质量浓度约为1.5g/m3。在焦炉气净化工艺中设有脱硫、脱氰、蒸苯、焦油电捕捉等一系列净化装置,除为了减轻硫化氢和氰化物对后续装置的腐

实验3乙醇气相脱水制乙烯宏观反应速率的测定题库

验三简易内循环无梯度反应(乙醇气相脱水制乙烯宏观反应速率的测定) 验目的 .巩固所学有关反应动力学方面的知识。 .掌握测取宏观反应动力学数据的手段和方法。 .学会实验数据的处理方法,并能根据动力学方程求出相关的动力学参数值。 .了解内循环式无梯度反应器的特点及其使用方法。 验原理 反学动力学描述了化学反应速率与各种因素如浓度、温度、压力、催化剂等之间的定量关系。动力学在反应过程开发和反应器设计过要的作用。它也是反应工程学科的重要组成部分。 气固相催化反应是一个多步骤的反应,它包括以下七个步骤: .反应物分子由气流主体向催化剂的外表面扩散(外扩散); .反应物分子由催化剂外表面向催化剂微孔内表面扩散(内扩散); .反应物分子在催化剂微孔内表面上被吸附(表面吸附); .吸附的反应物分子在催化剂的表面上发生化学反应,转化成产物分子(表面反应); .产物分子从催化剂的内表面上脱附下来(表面脱附); .脱附下来的产物分子从微孔内表面向催化剂外表面扩散(内扩散); .产物分子从催化剂的外表面向气流主体扩散。 这七个步骤可分为物理过程和化学过程。其中步骤1、2、6、7为物理扩散过程,步骤3、4、5为化学过程。在化学过程中,步骤3、为化学吸附和化学脱附过程,步骤4为表面化学反应过程。整个反应的总速率取决于这7个步骤中阻力最大的一步,该步骤称为反步骤。如果步骤1或7为控制步骤,称反应为外扩散控制反应;如果步骤2或6为控制步骤,称反应为内扩散控制反应;如果步骤任何一步为控制步骤,称反应过程为反应控制或动力学控制。在考虑以上所有步骤的影响的反应速率为为宏观反应速率,在消除了括热量传递和质量传递)的影响的理想情况下,测得的化学反应的反应速率为相应反应的本征反应速率。 在实际反应过程中,由于固体催化剂一般都具有很大的内表面,反应物质通过扩散达到催化剂内部的不同深度进行反应,因而导致常梯度和温度梯度,而这个浓度梯度和温度梯度对催化反应影响一般很大,因此需要了解催化剂颗粒内表面的浓度和温度梯度,即内

二甲醚分析

液化气中二甲醚谱图出峰顺序 气相色谱仪简介液化气分析包括液化气组分分析和液化气中二甲醚,甲醇分析,不包括炔烃,用带有热导检测器的气相色谱仪,由色谱柱将试样中各组分分离,面积归一法或校正面积归一法,外标法定量各组分百分含量。 液化气中二甲醚分析仪器及材料 1.气相色谱: 热导检测器(TCD) 气源:氢气作载气,氢气纯度

≥99.9%(氢气发生器) 2.数据处理:N2000工作站及电脑 3.进样器:双六通阀,定量管1ml 4.色谱柱:¢3*6米液化气中二甲醚分析柱5.取样器:采样袋2L 液化气中二甲醚分析气相色谱仪主要特点: 1、全新集成数字电子电路,控制精度高,性能稳定可靠,温控精度可达0.01℃. 2、独特的进样口设计解决进样歧视;双柱补偿功能不仅解决升温带来的程序漂移,而且减去背景噪音的影响,可以得到更低的最小的检测限。 3、全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.仪器技术指标、性能,检测器灵敏度可与HP5890相媲美! 4、可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、 顶空进样器、热解析进样器、甲烷转化炉. 5、柱箱容积大,智能后开门系统无级可变进出风量,

缩短了程序升/降温后系统稳定平衡时间;加热炉系统:(温度范围)环境温度7℃~400℃.三阶程序升温,升温速率0-50℃/min;增量0.1℃/min可以由用户重新校正炉温,并随意设定最高温度。由用户决定加热炉温度平衡时间

煤制甲醇工艺原理

第一章:甲醇生产工艺原理 第一节:甲醇的物理化学性质、用途 甲醇是一种有机化学产品。1661年英国化学家波义耳最早从干馏木材中发现了甲醇。所以也叫木醇。1922年,德国BASF公司用化学方法合成了甲醇。1923年建成年产300吨的甲醇生产装置。采用锌铬催化剂,在高压条件下生产甲醇,所以也叫高压法甲醇。到1966年,英国帝国化学工业(I.C.I)研究出了铜基催化剂,开发出了低压合成工艺,1971年,德国鲁奇公司(Lurgi)也开发出了低压合成甲醇工艺,以后,世界上甲醇生产工艺基本上采用低压合成工艺。 从1975年以后,世界上甲醇生产规模越来越大,甲醇装置单套生产能力达到20万吨/年,到90年代,单套生产能力达到60-80万吨/年,目前已达到100万吨/年的水平。 1.甲醇的物理化学性质 在常态下,甲醇是无色透明的液体,有轻微的酒香;有良好的溶解性,与水、乙醇互溶,在汽油中有较大的溶解度;易燃易爆;有毒性,人摄入20-30ml,会导致失明;摄入50-60ml,会致死。 甲醇分子式:CH3OH,分子量:32 结构式: H H-C-OH H 沸点:64.4-64.8℃; 冰点:-97.68℃;比重0.791;

爆炸极限:6.0%-36.5%;闪点:16℃; 2.甲醇的主要用途。 甲醇的化学性质很活泼。可进行氧化、脂化、羰基化、胺化、脱水反应。甲醇是一种重要的基本有机化工原料。是碳一化学的基础。用甲醇可以生产上百种化工产品。典型的有:甲醛、聚甲醛、醋酸、甲胺、甲基叔丁基醚(MTBE)、甲基丙烯酸甲脂(MMA)、聚乙烯醇、碳酸二甲脂、硫酸二甲脂、对苯二甲酸二甲脂(DMT)、二甲脂甲酰胺(DMF)、二甲醚、乙烯、丙烯及苯,等等。还是一种重要的能源,可直接做燃料、做甲醇燃料电池、甲醇汽油、还可以分解制氢和一氧化碳。2008年,全球甲醇产量达到4500万吨。我国甲醇产量1000多万吨。 第二节:甲醇生产工艺原理 1.合成气的制造与生产甲醇的主要原料 合成气(含有CO、CO2、H2的气体)在一定压力(5—10MPa)、温度230-280℃)和催化剂的条件下反应生成甲醇,合成反应如下:CO+2H2=CH3OH+Q CO2+3H2=CH3OH+H2O+Q 1.1生产甲醇的主要原料 含有CO、CO2、H2的气体叫合成气。能生产合成气的原料就是生产甲醇的原料。主要有:

焦炉气制甲醇

焦炉气制甲醇 焦炉煤气制甲醇的工艺技术研究2008-06-05 14:49 吴创明(新奥集团股份有限公司,河北廊坊065001) 近年来,随着钢铁工业对焦炭的巨大需求而高速发展起来的炼焦产业,在焦炭产能无序扩张、产量大幅度增长的同时,大量副产的焦炉煤气导致了焦炭产区的环境急剧恶化,不少单一炼焦的**焦化企业“只焦不化”,将大量的焦炉煤气采取点天灯的方式燃烧放散,既严重污染环境,又造成资源浪费。作为贫油、缺气的能源需求大国,如何充分、合理地利用大量点天灯的焦炉煤气,对建设资源节源型社会,实现经济可持续发展具有重要意义。1 焦炉煤气的利用途径1.1 焦炉煤气的组成与杂质含量焦炉煤气的主要组分为H2、CO、CH4、CO2等,随着炼焦配比和操作工艺参数的不同,焦炉煤气的组成略有变化。一般焦炉煤气的组成见表1,杂质含量见表2。表1 焦炉煤气的组成 组分 H2 CO CO2 CH4 CmHn N2 O2 ,(V) 54.0,59.0 5.0,8.0 2.0,4.0 23.0,27.0 2.0,3.0 3.0,6.0 0.2,0.4 表2 焦炉煤气中的杂质含量(mg/m3)名称焦油苯萘硫化氢 COS 二硫化碳 氨噻吩类 杂质含量微量 2000,5000 300 100 100 80,100 300 20,50 1.2 焦炉煤气的综合利用途径焦炉煤气是很好的气体燃料和宝贵的化工原料气,净化后的焦炉煤气除用作城市燃气外,还可用于制造甲醇、合成氨、提取氢气和发电,其中以制造甲醇的附加值最高,经济效益最好。若将全国每年放散的 350×108 m3焦炉煤气全用于制造甲醇,可产甲醇1 600万吨,可大大缓解我国石油供应的紧张局面,从而带动经济高速发展。2 焦炉煤气制甲醇的工艺技术2.1 焦炉煤气制甲醇的工艺流程 2004年底,世界上第一套8万t/ a焦炉煤气制甲醇项目在云南曲靖建成投产以来,目前国内已有近10套焦炉煤气制甲醇装置已投入

乙醇气相脱水制乙烯

实验 乙醇气相脱水制乙烯 反应动力学描述了化学反应速度与各种因素(如浓度、温度、压力、催化剂等)之间的定量关系。动力学在反应过程开发和反应器设计过程中起着重要的作用。它也是反应工程学科的重要组成部分。 在实验室中,乙醇脱水是制备纯净乙烯的最简单方法。常用的催化剂有: 浓硫酸 液相反应,反应温度约170℃。 三氧化二铝 气-固相反应,反应温度约360℃。 分子筛催化剂 气-固相反应,反应温度约为300℃。 (一)实验目的 1.巩固所学有关反应动力学方面的知识。 2.掌握获得反应动力学数据的手段和方法。 3.学会实验数据的处理方法,并能根据动力学方程求出相关的动力学参数值。 (二)实验原理 乙醇脱水属于平行反应。既可以进行分子内脱水生成乙烯,又可以进行分于间脱水生成乙醚。一殷而言,较高的温度有利于生成乙烯,而较低的温度有利于生成乙醚。因此,对于乙醇脱水这样一个复合反应,随着反应条件的变化,脱水过程的机理也会有所不同。借鉴前人在这方而所做的工作,将乙醇在三氧化二铝催化剂作用下的脱水过程描述成: 25222C H OH CH CH H O →=+ 气固相催化反应是一个多步骤的反应,它包括以下七个步骤: 1. 反应物分子由气流主体向催化剂的外表面扩散(外扩散); 2. 反应物分子由催化剂外表面向催化剂微孔内表面扩散(内扩散); 3. 反应物分子在催化剂微孔内表面上被吸附(表面吸附); 4. 吸附的反应物分子在催化剂的表面上发生化学反应,转化成产物分子(表面反应); 5. 产物分子从催化剂的内表面上脱附下来(表面脱附); 6. 脱附下来的产物分子从微孔内表面向催化剂外表面扩散(内扩散);

【精品】液化石油气中掺混二甲醚气相色谱仪检测方案

液化石油气中掺混二甲醚气相色谱仪检测方案 二甲醚是一种新型能源。但这种燃料热值低于液化石油气,对液化石油气钢瓶的橡胶密封圈有强烈的溶胀作用和腐蚀性.长期充装掺杂二甲醚的液化石油气可能导致钢瓶阀门漏气,产生安全隐患,二甲醚对中枢神经系统有抑制作用,吸入后可引起麻醉、窒息感,大量或长期吸入对健康危害很大。需要使用特殊的钢瓶和灶具。把二甲醚掺杂到石油液化气钢瓶里,存在极大的安全隐患。 国家质检总局发布《关于气瓶充装有关问题的通知〔质检特函〔2008〕17号〕》,要求气瓶必须专瓶专用,严禁在民用液化气中掺入二甲醚后,充入液化气瓶.2011年6月29日国家质检总局等四部门印发《联合开展液化石油气掺混二甲醚问题专项整治行动方案》〔国质检执联〔2010〕349号〕的紧急通知中对液化石油气中二甲醚的检测。依据相关标准,我公司推出的〈液化石油气中掺混二甲醚气相色谱仪成套检测方案〉在我国很多地区成功使用,并得到相关领导与专家好评肯定及推广,效果良好。 适用范围:1、对燃气组分定性、定量全分析。 2、对燃气中二甲醚定性、定量分析. 3、对燃气中C1~C5所关注的单组份定性定量分析. 仪器配置方案:

序 号 仪器名称规格及说明数量价格(元)1 TP-2060气相色谱仪主机+TCD(热导检测器)+双填充系统+六通阀进样系统 1套27500 2 专用分析柱液化气中二甲醚分析柱 3 液化气柱10M液化气柱 4 专用色谱工作站双通道工作站(自备电脑、打印机)报告二甲醚含量数据 5 高纯氢气发生器TP-3030型,产气量300ml/min,气体纯度99.999%,用途:载气 6 二甲醚标准气体定性、定量燃气中二甲醚含量(含瓶、表、气) 7 操作手册简介操作规程及注意事项 优惠成交价(元):贰万柒仟伍佰元整(含普票)RMB:27500。00元 配套方案组图:

二甲醚生产工艺流程

合成气制二甲醚工艺 目前合成气合成二甲醚的生产工艺主要有两步法和一步法两种,两步法是经过甲醇合成和甲醇脱水两步过程得到DME,一步法是合成气直接生产DME,新开发的工艺有二氧化碳加氢合成二甲醚和生物质间接液化制取二甲醚。 1、两步法制二甲醚 两步法制二甲醚是以合成气为原料由低压法制得甲醇后,甲醇再经脱水制得DME,其主要过程如图1所示: 图1两步法合成二甲醚流程简图 其中甲醇脱水制二甲醚的方法又包括液相甲醇脱水法和气相甲醇脱水法液相甲醇脱水是将甲醇与浓硫酸混合加热使甲醇脱水得到二甲醚,浓硫酸起到催化剂的作用该工艺具有反应温度低,原料转化率和二甲醚的选择性高的优点,但是产品后处理比较困难,而且浓硫酸的存在使设备腐蚀严重,并且产生大量的废液,带来很大的环境污染,限制了此工艺的发展"目前国内仅有武汉硫酸厂和山东久泰化工科技有限公司开发此工艺。 在液相脱水制DME基础上,为了避免液体酸作为甲醇脱水剂时产生的设备腐蚀问题,美孚公司和意大利的ESSO公司开发了以固体酸为催化剂的甲醇气相脱水技术,气相甲醇脱水法的基本原理是将甲醇蒸汽通过固体酸催化剂脱水生成二甲醚,目前常用的催化剂主要有沸石、氧化铝、二氧化硅/氧化铝、阳离子交换树脂等,由于甲醇脱水反应是放热反应,因此维持适宜的反应温浙江大学博士学位论文合成气合成二甲醚和乙二醇研究综述度是气相甲醇脱水法的关键,两步法制二甲醚的反应条件温和,副反应少,二甲醚的选择性和产品的纯度高,但是由于需要从合成气开始生产甲醇,导致合成气的转化率低,生产流程长,并且需要经过甲醇分离精制过程,使得整个工艺的成本增加,即使购买成品甲醇直接脱水制得二甲醚,也容易受到甲醇价格的影响,而使成本难以控制。 2、一步法制二甲醚 合成气直接制二甲醚被称为“一步法”,一步法合成二甲醚由甲醇合成和甲醇脱水两个过程组成,同时还存在水汽变换反应,由于受到热力学的限制,甲醇合成反应的单程转化率一般较低,而由合成气一步法合成二甲醚,采用具有合成甲醇和甲醇脱水两种功能的复合催化剂,由于催化剂的协同效应,反应系统内各个反应相互祸合,生成的甲醇不断转化为二甲醚,合成甲醇不再受热力学的限制,与传统的经甲醇合成和甲醇脱水两步得到DME两步法,相比,一步法具有流程短、操作压力低、设备规模小、单程转化率高等优点,经济上更加合理,但缺点在于二甲醚的选择性低,产物的纯度不高。 目前国内外一步法合成二甲醚的反应工艺主要包括固定床工艺和浆态床工艺两大类:(1)固定床工艺 该工艺采用固定床作为合成二甲醚的反应器,合成反应在固体催化剂表面进行,在此工艺中,若采用贫氢合成气为原料气,催化剂表面会很快积碳,因此须使用富氢合成气为原料气,固定床一步法制取二甲醚的优点是具有较高的CO转化率,该方法具有简单高效的优点,但由于二甲醚合成反应是强放热反应,反应所产生的热量如果无法及时移走,致使催化剂床层局部区域产生热点,进而导致催化剂铜晶粒长大,从而导致催化剂活性降低甚至失去活性,同时,在目前所使用的催化剂上,具有催化甲醇合成的功能团和具有催化甲醇脱水功能的酸

相关文档
最新文档