清华大学量子力学讲义Lecture14[1]

清华大学量子力学讲义Lecture14[1]
清华大学量子力学讲义Lecture14[1]

3. 系综与密度算符

1)纯系综和混合系综

相同的物理体系构成系综,例如由具有自旋的粒子构成的系综。

一个自旋为1/2的粒子的自旋态(方位角,αβ)

/2/2(,)(,)(,)cos sin 22i i c c e e ααβ

β

χαβαβχαβχχχ-++--+-=+=+,

其中,χχ+-是?z s

的本征态, cos(/2)sin(/2)

i c c e αββ+-=。 如果所有粒子的自旋都取相同方向,则称体系是极化系统,构成的系综是纯系综。

如果粒子的自旋不在同一方向,则构成的系综叫混合系综。例如自旋向上的粒子数占70%,自旋向下的粒子数占30%,体系是部分极化。一个自旋方向完全随机的系综,其自旋向上,向下的几率各有50%,整的表现是相互抵销,自旋为零,完全没极化。

2)系综平均与态密度算符

系统的力学量平均值

?A

A ααα=,

这里态α是固定的,是量子平均。进入任意表象B ,

,'

?''b b A b b A

b b ααα=∑, 对表象的维数求和。

系综平均

[

]A w A ααα=∑

这里w α是体系处于态α的几率,显然满足归一化条件

1w αα

=∑, 是统计平均,求和指标不是对表象的维数,而是对态。例如自旋1/2的粒子构成的系综,自旋表象的维数为2,但不同粒子的自旋态可以有很多取向,求和就是对不同的取向。

[],,','??''''b b b b A w b b A b w b b b A b αααααααα??== ???

∑∑∑。

定义态密度算符

?w αα

ρ

αα=∑, 它在表象B 的矩阵元

'?''bb b w b b αα

ρρ

αα==∑, []()

,'??????''b b b A b b b A b b A b tr A ρ

ρρ==≡∑∑。 这是量子统计力学的基本公式。注意:表象变换不改变矩阵的求迹,上式不依赖于表象的选取。

在连续表象,例如坐标表象,密度算符的矩阵元

*'?''()(')xx x x w x x w x x αααααα

ρρααψψ===∑∑ ,

系综平均

[]()

3????A tr A d x x A x ρρ==? 。 密度矩阵满足归一化条件

,,? 1

b

b

tr w b b w b b w w αααααααα

ρ

ααα

α=====∑∑∑∑完备性条件

态的量子归一化条件

态的统计归一化条件 这里用到了归一化条件1α=和表象的完备性条件1b

b b =∑。

设密度算符?ρ的本征态为θ,

22

?,??ρ

θθθρθρθθθθ=== 对于纯系综,所有系统都取同一个态n ,

21 ,0 ???, ,n w n n n n n n n n n αααρ

ρρ=?=?≠?

====

2, 0,1θθθ==。 如果取表象中的一个基矢与态n 同方向,则纯系综的密度矩阵在该表象为'''bb bn b n n n b ρδδ==,是一个对角矩阵,只有一个矩阵元=1,其它矩阵元=0:

0...1...0ρ?? ? ? ?= ? ? ???

对于完全混合系综,由于取各个态的几率相同,01/w w N α==,N 是状态数,

''111'''bb bb w b b b b N N N

αααραααδ==

==∑∑ 密度矩阵是一个单位矩阵

1...11...1N ρ?? ? ? ?= ? ? ???

。 例题1:完全极化系统的密度矩阵。

假设完全极化态为?z s 的本征态+, ?ρ

=++, 在z s 表象,ρ是一个2X2的矩阵,

1,

0,

0,

0,ρρρρ+++--+--=++++==+++-==-+++==-++-=

1000ρ??= ???

如果完全极化态是?x s

的本征态,x s +=- ?x x s s ρ++=,

在z s 表象,

1/2,

1/2,1/2,1/2,

x x x x x x x x s s s s s s s s ρρρρ+++++++-+

+

-+++--=++==+-==-+==--=

111112ρ??= ???

。 例题2:完全不极化系统的密度矩阵。

11?2, ,22

N ρ

==+++-- 在z s 表象, 1/2, 0, 0, 1/2,ρρρρ+++--+--====

101012ρ??

= ???

, 表明在完全混合系综中密度矩阵是一个单位矩阵。

在完全不极化系综中的平均值显然相互抵销,等于零: []()()1???2

i i i s tr s tr s ρ==, 代入自旋矩阵,,x y z s s s ,有

[]0i s =。

例题3:部分极化系统的密度矩阵。

31?,44x x

s s ρ

++=+++ 在z s 表象, [][]7/8, 1/8, 1/8, 1/8,

/8, 0, 3/8.

x y z s s s ρρρρ+++--+--====??===??

3)系综的演化

态密度算符如何随时间演化?

如果体系的哈密顿量不随时间变化,态的几率分布w α不随时间变化。设

?(),,t w t t αα

ρ

αα=∑, 由态的时间演化

?,,,?,,,i t H t t i t t H t αααα?=??-=?

()

???,,,,?? , i w H

t t t t H t

H ααρααααρ?=-???=-??∑ 这就是密度算符的时间演化。虽然类似于Heisenberg 绘景中力学量的运动方程,只差一个负号,但?ρ

不是力学量算符,而是Schrodinger 绘景中由态构成的算符。

量子力学讲义第二章讲义

第二章 一维势场中的粒子 §2.2 方 势 一、一维运动 当粒子在势场V (x ,y ,z )中运动时,其 Schrodinger 方程为: 22 [(,,)](,,)(,,)2V x y z x y z E x y z m ψψ-?+= 若势可写成: V (x ,y ,z ) = V 1(x ) + V 2(y ) + V 3(z ) 形式, 2212 [()]()()2x d V x X x E X x m dx -+= 2222 [()]()()2y d V y Y y E Y y m dy -+= 2232 [()]()()2z d V z Z z E Z z m dz -+= ψ(x ,y ,z ) = X (x ) Y (y ) Z (z ) ψ1(x ) x y z E E E E =++ 二、一维无限深势阱 0(0)()(0,) x a V x x x a ?<?? 这是定态问题 一维无限深势阱(0~a )的求解 解:(1)列出各势域的 S — 方程 22 2 [()]()()2d V x x E x m dx ψψ-+= 20222 2 2202 22()0202()0I I II II III III d m V E dx d mE dx d m V E dx ψψψψψψ?--=???+=???--=?? 00E V << 0()V →∞ ,令k = )(0>k ,β=方程可简化为:22 2 222 222 000I I II II III III d dx d k dx d dx ψβψψψψβψ?-=????+=???-=??

量子力学讲义I.波函数与Schrodinger方程

I.波函数与Schrodinger方程 1. 经典波有波函数吗?量子波函数与经典波函数有什么异同? 答:波函数就其本义而言不是量子力学特有的概念.任何波都有相应的波图执只是习惯上这一术语通常专用于描 述量子态而不常用于经典波.经典波例如沿轴方向传播的平面单色波,波动动量对和的函数——波函数可写为 ,其复指数形式为,波函数给出了传播方向上时刻在点处的振动 状态。经典波的波函数通常称之为:波的表达式或波运动方程.量子力学中,把德布罗意关系 p =k 及 E =ω代入 上式就得到自由粒子的波函数 ( 自由粒子的波的表达式 ). 经典波与概率狡的唯一共性是叠加相干性。但概率波函数是态函数,而态的叠加与经典波的叠加有着本质的差别.经典波函数描述的是经典波动量对时空变量的函数关系.量子力学中的概率波函数其意义不同于经典物理中的任何物理量.概率波函数虽是态函执但本身不是力学量.态函数给出的也不是物理量间的关系.概率波函数的意义是:由波函效描述微观体系各种力学量的概率分朽.作为一种约定的处理方法,经典波可表为复指数函数形式但只有它的实部才有物理意义.而概率波函数一般应为复函数.非相对论量子力学中,粒子不产生出不泯灭.粒子一定在全空间中出现,导致了概率被函数归一化问题,而经典波则不存征这个问题.概率波函数乘上一常数后,粒子在空间各点出现的相对概率不变.因而,仍描述原来的状态.而经 典波中不同的波幅的波表不同的波动状态,振幅为零的态表示静止态.而量子力学中,振幅处处为零的态表示不存在粒子.另外经典波函数与量子被函数满足各自的、特征不同的波方程. 2 .波函数的物理意义——微观粒子的状态完全由其被函数描述,这里“完全'的含义是什么?波函数归一化的含义又是什么 ? 答:按照波函数的统计解释波函数统计地描述了体系的量子态.如已知单粒子 ( 不考虑自旋 ) 波函数为, 则不仅可确定粒子的位置概率分布,而且如动员等粒子其他力学且的概率分布也均可通过而完全确定.出于量子理论与经典理论不同,它一般只能预言测量的统计结果.而只要已知体系波函数,便可由它获得该体系的一切可能物理信息.从这个意义上着,有关体系的全部信息显然都已包含在波函数中,所以我们此微现粒子的状态完全由其波函数描述,并把波函数称为态函数.非相对论量子力学中粒子不产生、不泯灭.根据波函数的统计解释,在任何时刻,粒子一定在空间出现,所以,在整个空 间中发现粒子是必然事件.概率论中认为必然事件的概率等于 1 .因而,粒子在整个空间中出现的概率即概率密度对 整个空间积分应等于1 .式中积分号下的无限大符号表示对整个空间积分.这个条件称为归一化条件.满足归一化条件的波函数称为归一化波函数.显然,平方可积波函数才可以归一化. 3 .证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证,其中,为几率密度,为几率流

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

清华大学量子力学讲义Lecture14[1]

3. 系综与密度算符 1)纯系综和混合系综 相同的物理体系构成系综,例如由具有自旋的粒子构成的系综。 一个自旋为1/2的粒子的自旋态(方位角,αβ) /2/2(,)(,)(,)cos sin 22i i c c e e ααβ β χαβαβχαβχχχ-++--+-=+=+, 其中,χχ+-是?z s 的本征态, cos(/2)sin(/2) i c c e αββ+-=。 如果所有粒子的自旋都取相同方向,则称体系是极化系统,构成的系综是纯系综。 如果粒子的自旋不在同一方向,则构成的系综叫混合系综。例如自旋向上的粒子数占70%,自旋向下的粒子数占30%,体系是部分极化。一个自旋方向完全随机的系综,其自旋向上,向下的几率各有50%,整的表现是相互抵销,自旋为零,完全没极化。 2)系综平均与态密度算符 系统的力学量平均值 ?A A ααα=, 这里态α是固定的,是量子平均。进入任意表象B , ,' ?''b b A b b A b b ααα=∑, 对表象的维数求和。 系综平均 [ ]A w A ααα=∑ , 这里w α是体系处于态α的几率,显然满足归一化条件 1w αα =∑, 是统计平均,求和指标不是对表象的维数,而是对态。例如自旋1/2的粒子构成的系综,自旋表象的维数为2,但不同粒子的自旋态可以有很多取向,求和就是对不同的取向。

[],,','??''''b b b b A w b b A b w b b b A b αααααααα??== ??? ∑∑∑。 定义态密度算符 ?w αα ρ αα=∑, 它在表象B 的矩阵元 '?''bb b w b b αα ρρ αα==∑, []() ,'??????''b b b A b b b A b b A b tr A ρ ρρ==≡∑∑。 这是量子统计力学的基本公式。注意:表象变换不改变矩阵的求迹,上式不依赖于表象的选取。 在连续表象,例如坐标表象,密度算符的矩阵元 *'?''()(')xx x x w x x w x x αααααα ρρααψψ===∑∑ , 系综平均 []() 3????A tr A d x x A x ρρ==? 。 密度矩阵满足归一化条件 ,,? 1 b b tr w b b w b b w w αααααααα ρ ααα α=====∑∑∑∑完备性条件 态的量子归一化条件 态的统计归一化条件 这里用到了归一化条件1α=和表象的完备性条件1b b b =∑。 设密度算符?ρ的本征态为θ, 22 ?,??ρ θθθρθρθθθθ=== 对于纯系综,所有系统都取同一个态n ,

清华大学《大学物理》习题库试题及答案10量子力学习题解析

10、量子力学 一、选择题 1.已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? 2.在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2 + (C) 0λhc m eRB + (D) 0λhc eRB 2+ 3.用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K 4.在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 5.要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV 6.由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 7.已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV 8.在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和1.9 eV (D) 12.1 eV ,10.2 eV 和3.4 eV 9.若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh 10.如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 11.已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 12.设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 13.波长λ =5000 ?的光沿x 轴正向传播,若光的波长的不确定量?λ =10-3 ?,则利用不 确定关系式h x p x ≥??可得光子的x 坐标的不确定量至少为: (A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm x (A) x (C) x (B) x (D)

量子力学讲义第三章讲义

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-? , 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ? =-? 不对易

证明:(1) ?()x xp x i x ψψ?=-? i x x ψ? =-? (2) ?()x p x i x x ψψ?=-? i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i -= ,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

高等半导体物理讲义

高等半导体物理 课程内容(前置课程: 量子力学,固体物理) 第一章能带理论,半导体中得电子态 第二章半导体中得电输运 第三章半导体中得光学性质 第四章超晶格,量子阱 前言:半导体理论与器件发展史 1926 Bloch 定理 1931 Wilson 固体能带论(里程碑) 1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。 1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。 1958 集成电路问世 1959 赝势概念得提出,使得固体能带得计算大为简化。利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。用赝势方法得到了几乎所有半导体得比较精确得能带结构。1962 半导体激光器发明 1968 硅MOS器件发明及大规模集成电路实现产业化大生产 1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥) * 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究 1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。 1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻 1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应 1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。 1990 英国得Canham首次在室温下观测到多孔硅得可见光光致发光,使人们瞧到了全硅光电子集成技术得新曙光。近年来,各国科学家将选择生成超薄层外延技术与精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新得物理现象与得到更好得器件性能。在器件长度小于电子平均自由程得所谓介观系统中,电子输运不再遵循通常得欧姆定律,电子运动完全由它得波动性质决定。人们发现电子输运得AharonovBohm振荡,电子波得相干振荡以及量子点得库仑阻塞现象等。以上这些新材料、新物理现象得发现产生新得器件设计思想,促进新一代半导体器件得发展。 半导体材料分类: ?元素半导体, Si, Ge IV 族金刚石结构 Purity 10N9, Impurity concentration 1012/cm3 , Dislocation densities <103 /cm3 Size 20 inches (50 cm) in diameter P V 族 S, Te, Se VI 族 ?二元化合物, 1.IIIV族化合物: GaAS系列,闪锌矿结构, 电荷转移 GaAs, 1、47 eV InAs 0、36 eV GaP, 2、23 eV GaSb, 0、68 eV GaN, 3、3 eV BN 4、6 eV AlN 3、8 eV

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

中国科学技术大学量子力学考研内部讲义一(01-06)

量子力学理论处理问题的思路 ① 根据体系的物理条件,写出势能函数,进而写出Schr?dinger 方程; ② 解方程,由边界条件和品优波函数条件确定归一化因子及E n ,求得ψn ; ③ 描绘ψn , ψn *ψn 等图形,讨论其分布特点; ④ 用力学量算符作用于ψn ,求各个对应状态各种力学量的数值,了解体系的性质; ⑤ 联系实际问题,应用所得结果。 有人认为量子力学的知识很零碎,知识点之间好像很孤立,彼此之间联系不是很紧凑,其实不是这样的,我们可以将量子力学分成好几个小模块来学习的,但是每个模块之间都有一定的联系,都相互支持的,比如算符和表象,表面看二者之间好像不相关,实际上在不同的表象中算符的表示是不一样的:在坐标表象中动 量算符?p 和坐标算符?x 之间的关系是?x p i x ?=-?,在动量表象中它们之间的关系为??x x i p ?=?,所以我们在解答一个题目的时候一定要明确所要解决的问题是在哪个表象下,当然一般情况下都是在坐标表象下的。 这里还有一点建议就是经典力学跟量子力学是相对应的,前者是描述宏观领域中物体的运动规律的理论而后者是反映微观粒子的运动规律的理论,所以量子学中的物理量都可以与经典力学中的物理量相对应:薛定谔方程与运动方程;算符与力学量;表象与参考系,所以我们在解答量子力学问题的时候不要单纯的把它当作一个题目来解决,而是分析一个“有趣”的物理现象! 针对中科大历年的硕士研究生入学考试,我们可以将量子力学分为六个模块来系统学习:一、薛定谔方程与波函数;二、力学量算符;三、表象;四、定态问题(一维和三维);五、微扰近似方法;六、自旋,其实前三部分是后三部分的基础,后三部分为具体的研究问题提供方法。所以在以后的学习中我们就从这几部分来学习量子力学,帮助大家将所有的知识系统起来。 第一部分 薛定谔方程与波函数 在经典力学中我们要明确一个物体的运动情况,就需要通过解运动方程得到物体的位移与时间的关系、速度与时间的关系等等,同样的道理,在量子力学中我们要解薛定谔方程,得到粒子的波函数,也就明确了粒子的运动情况,然后再通过对波函数的分析就能得到一系列与之有关的力学量和整个体系的性质。所以说薛定谔方程和波函数是学好量子力学的基础! 一.波函数(基本假设I ) 在坐标表象中,无自旋的粒子或虽有自旋但不考虑自旋运动的粒子的态,用波函数(,)r t ψ表示,2(,)r t d ψτ表示t 时刻粒子处于空间r 处d τ体积元内的几率,即2(,)r t ψ代表粒子的几率密度。 1. 根据波函数的物理意义,波函数(,)r t ψ应具有的性质为: ⑴有限性-在全空间找到粒子的几率2 (,)r t d ψτ?取有限值,即(,)r t ψ是平方可积的; 粒子在全空间出现的几率和等于1,假如2 (,)1r t d ?τ∞≠?,我们找到一个比例系数

第2章-清华大学半导体物理与器件

1 第二章半导体中的电子状态 要求:掌握能带、有效质量和空穴的概念、 常见半导体的能带结构、杂质能级。 纲要 ?半导体中的电子状态和能带的概念?半导体中电子在外力下的运动,有效质量?材料导电性的差别(半导体如何导电)?空穴的概念 ?常见半导体的能带结构(结论性知识)?杂质和缺陷能级

2 其中 布洛赫波为一个被周期函数u k (r )所调制的平面波。电子的空间分布几率|Ψ*Ψ|=|u *u |是晶格的周期函数。 u k (r )反映电子在原胞内的运动。e ik·r 反映电子在整个晶体中的共有化运动(如何理解?)。 §2.1 半导体中的电子状态和能带(复习) 布洛赫波 采用单电子近似,在晶体的周期场中,电子的波函数为布洛赫波函数: (a n 为任意晶格矢) r k i k k e r u r v v v v v v ?=)()(ψ)()(n k k a r u r u v v v v v +=

3 半导体能带的两种处理方法(半导体中的电子介于自由和强束缚之间) 1、近自由电子近似:从自由出发,加束缚条件 2、紧束缚近似:从束缚出发,减弱束缚 ?电子在原胞中不同位置上出现的几率不同(归一化)。 ?电子在不同原胞的对应位置出现的几率相同(几率能否叠加?),真正反映电子的共有化运动。?如何理解电子的宏观运动? 电子的波函数几率和统计力学得到电子空间分布的变化,电子空间分布变化表现为宏观的电子运动。

4 例:Si(金刚石结构)能带的形成(SP 3杂化和电子占据能态情况) 1、能级数目; 2、能级间隔; 3、电子不再是局域的。

5 轨道杂化和电子占据情况:价带完全填满;导带没有电子。

量子力学和经典力学的区别与联系(完整版)

量子力学和经典力学的区别与联系 量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系 三、目录 摘要............................................................ ............ ... ... ...... (1) 关键字.................................................................. ...... ... ... ...... (1) 正文..................................................................... ...... ... ... ...... (3) 一、量子力学及经典力学基本内容及理论...... ............ ... ............ ...... ... (3) 经典力学基本内容及理论........................... ...... ......... ...... (3) 量子力学的基本内容及相关理论.................................... ...... (3) 二、量子力学及经典力学在表述上的区别与联系.................. ...... ... ...... (4)

量子力学主要知识点复习资料全

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量 的整数倍εεεεεn ,,4,3,2,??? 对频率为 的谐振子, 最小能量为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p ==v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(22=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其 中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z ) 2 (,,)x y z ψ(,,) c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ

量子力学和经典力学的区别与联系

量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系

目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 经典力学基本内容及理论 (3) 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 微观粒子和宏观粒子的运动状态的描述 (4) 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6)

量子力学讲义第4章

第四章 量子力学的表述形式 (本章对初学者来讲是难点) 表象:量子力学中态和力学量的具体表示形式。 为了便于理解本章内容,我们先进行一下类比: 矢量(欧几里德空间) 量子力学的态(希尔伯特空间) 基矢),,(321e e e ~三维 本征函数,...),...,,(21n ψψψ~无限维 任意矢展开∑=i i i e A A 任意态展开 ∑=n n n a ψψ ),,(z y x e e e ),...)(),...,(),((21x x x n ψψψ 取不同坐标系 ),,(?θe e e r 取不同表象 ),...)(),...,(),((21p C p C p C n ………. ………. 不同坐标之间可以进行变换 不同表象之间可以进行变换 由此可见,可以类似于矢量A ,将量子力学“几何化”→在矢量空间中建立它的一般形式。 为此,我们将 ① 引进量子力学的矢量空间~希尔伯特空间; ② 给出态和力学量算符在该空间的表示; ③ 建立各种不同表示之间的变换关系。 最后介绍一个典型应用(谐振子的粒子数表象)和量子力学的三种绘景。 4.1希尔伯特空间 狄拉克符号 狄拉克符号“ ”~类比: ),,(z y x A A A 欧氏空间的矢量 A →坐标系中的分量 ),,(?θA A A r ………. )(r ψ →表象下的表示 )(p C ……….

引入狄拉克符号的优点:①运算简洁;②勿需采用具体表象讨论。 一、 希尔伯特空间的矢量 定义:希尔伯特空间是定义在复数域上的、完备的、线性内积空间,并且一般 是无限维的。 1、线性:①c b a =+;②a b λ=。 2、完备性:∑=n n n a a 。 3、内积空间: 引入与右矢空间相互共轭的左矢空间 ∑ ==? +n n n a a a a * ; )(:。 定义内积:==* a b b a 复数,0≥a a 。 1=a a ~归一化;b a b a ,~0=正交; m n n m δ=~正交归一;)(x x x x '-='δ~连续谱的正交归一。 二、 量子体系的态用希尔伯特空间的矢量表示 (此属“符号问题”,仅作简要介绍,主要由学生自己通过练习来熟悉符号) 1、态矢符合线性空间的要求:?λψψψψ=+=21。 2、任意态矢可用一组完备的基矢展开: nm m n n n n f f f a δψ==∑, 。 ∑∑ =→====n n n n m mn n n m n m n f a a a f f a f a ψδψ? 。 3、态可以求内积: ??==dx x x dx x x )(,)(??ψψ ~ 以}{x 为基, 其中 ??ψψx x x x ==)()(。 取ψ的左矢:?=dx x x )(*ψψ,有内积 ????='''='''=dx x x dx x d x x x x x d x x dx x x )()()()()()(***?ψ?ψ?ψ?ψ 上式已利用了连续谱的正交归一性)(x x x x '-='δ。 三、 希尔伯特空间的算符 算符 ψ?F F =: 1、算符对左矢的作用: F b 存在,其意义(定义)为 )()(a F b a F a F ==。

量子力学讲义VI. 含时微扰论与量子跃迁

VI. 含时微扰论与量子跃迁 1.定态微扰问题与量子跃迁问题在研究目标与处理方法上有何不同? 答:定态微扰与量子跃迁,是量子力学中两个不同类型的问题,它们的研究目标与手段都不一样.定态微扰是定态问题,它考虑加入微扰作用之后,如何求出体系总哈密顿量的本征值与本征函数的修正项.其出发点为定态波动方程.量子跃迁问题是考虑体系在微扰作用下,波函数随时间变化的问题,是依据含时波方程 实际计算量子态间跃迁概率的问题.一般说来,这两类问题都需应用近似方法求解. 2.含时微扰在含时情况不同时,对体系产生的效果有何不同? 答:如果微扰作用平缓稳定,则将产生定态扰动效果,如能级与量子态偏移,简并消除等.如果扰动作用是以淮静态 方式加于体系的(即变化极其缓慢),将不会产生跃迁效应.相反,若扰动作用时间不长,则只可能发生跃迁而不会发生定态扰功效应.对于一般情况,两种效应都可能发生.这里,扰动时间长短,或变化快慢,是相对体系本身的所谓特征时间 而言的.如对于原子,其特征时间为(秒)。因此人为施加的宏观扰动都可视为定态扰动·(为体系能级间距所对应的角频率). 3.非相对论量子力学中是如何处理光的吸收和辐射问题的? 答:在通常量子力学(非相对论量子力学)中,处理光的吸收与辐射问题采用的是半经典方法.这种方法将入射光用经典的电磁被来描述,光与原于(主要与原子中的电子)的相互作用也用经典电动力学的方法来表示.例如将量子电磁体系展开为为电偶极矩.电四极矩、磁偶极矩等多极结构.以电磁波与不同近似的多极结构的相互作用为周期件微扰,以便以后使用量子跃迁方法求出相应的跃迁概率与跃迁速率.由于这种方法综合运用了经典电动力学理论与量子跃迁理论,故称之为半经典方法.这类方法在非相对论量子力学中经常应用. 4.用沿正方向传播的右旋圆偏振光照射原子,造成原子中电子的受激跃迁.求选择定则. 解:右旋偏振光中的电场的旋转方向符合右手螺旋法则.因波长远大于原于半径,可以略去电场的空间变化(相当于 只考虑电偶极跃迁).如以表示光波电场的振幅,则电场的时间变化为

量子力学讲义II.力学量与算符

II.力学量与算符 1.量子力学中与力学量有关的基本假设有哪些? 关于力学量及其表示,量子力学有三条基本假定: (1)有关量子体系运动的每一个力学量都可以用一个线性厄密算符来表示. (2)对于该力学量的测量值,必定是相应的线性厄米算符的本征值之一. (3)如果体系处于态,该态可按算符的本征态展开 那么在态中,测量力学量取值的概率正比于展开系数的模的平方. 以上三条假定,共同给出了关于力学量的完整概念. 可见,在量子力学中,力学量与态是相对独立的概念。而力学量算待与其数值也有不同含义.在经典物理中,力学量可由运动状态完全确定,不必引入算符表示.并且,力学量与其数值也是一体的概念. 2. 量子力学为什么要用算符表示力学量 ? 用算符表示力学量,是由于量子体系所固有的波粒二象性所要求的.这正是量子力学处理方法上的基本特点之一.我们知道,表示量子态的波函数是一种概率波.因此,即使在确定的量子态中,也并非各种力学量都有完全确定区而是一般地表现为不同数值的统计分布.这就注定了经典力学量的表示方法 (可由运动状态完全决定)不再适用,因此需要寻求新的表示方法. 我们从力学量平均值的表示式出发,来说明引入算符的必要性.如果体系处于态中,则它的位置平均值为 类似地,它的动量平均位也可表示为

但是要求出第二个积分,必须将表示为的函数.然而这是办不到的.因为按不确定关系的表示是无意义的,因此不能直接在坐标表象中按上式求动量平均值.我们可先在动量表象中求出动量平均值,再转换到坐标表象中去. 利用有 可见,若在坐标表象中计算动量平均值,那么动量矢量恰与算符相当,实际上,任何一个力学量在自身表象(连续谱)中计算其平均值,都与一个特定的算符相当,这就自然地引入了算符表示的概念. 用算符表示力学量的问题还可以从另一角度来说明.我们知道量子力学中,力学与力学量之间的关系,从其数值是否能同时确定来考虑,有相互对易与不对易两种,而经典力学量之间都是对易的,因此经典力学量的表示方法不能适用于量子力学.然而在数学中,算符与算符之间一般并不满足交换律.也就是存在不对易的情形.因此用算符表示力学量是适当的. 3.什么是算符的本征值和本征函数?它们有什么物理意义? 含有算符的方程 称为的本征值方程, 为的一个本征值,而则称为的属于本征值的本征函数. 如果算符代表一个力学量,上述概念物理意义如下: 当体系处于的本征态时,测量的数值是确定的,恒等于,并且根据本章开头列出的假设,当体系处于任意态时,

相关文档
最新文档