ansoftmaxwell静态磁场参数化操作

ansoftmaxwell静态磁场参数化操作
ansoftmaxwell静态磁场参数化操作

Ansoft Maxwell静态磁场参数化操作第一步、新建一个3D Design,点击下图蓝色图标

第二部、定义求解类型,默认为静磁场求解器

第三步、绘制几何模型

第四步、定义材料

第五步、添加电流激励,选中绘制的电流截面,右击Excitations——Assign——Current,在Value中设定安匝数,可将电流设成变量以便进行参数化计算,如下图将其设为I,匝数为60,并勾选Standed

第六步、添加求解参数,选中几何模型衔铁,右击Parameters,选择Force,求解完后即在可Result中查看衔铁所受电磁力

第七步、添加求解设置,右击Analysis,选择Add Solution Setup,默认设置即可,直接确定

第八步、设置参数化求解,右击Optimetrics——Add——Parametric,弹出下面对话框(图2),点Add,之后在弹出的对话框中(图3),Variable选中要进行参数化计算的变量,如电流,并在下面设置变量范围和步长,然后点Add——OK。返回上一界面图2,重复刚才操作,完成其他变量的添加,如气隙。之后点击图2中的Table,可查看所有会计算的参数组合形式。

图1

图2

图3第九步、检查模型

第十步、计算,查看结果

磁性材料基本参数详解

磁性材料基本参数详解 磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。 自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。 铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。 锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。它是以氧化铁、氧化锌为主要成分的复合氧化物。其工作频率在1kHz 至10MHz 之间。主要用着开关电源的主变压器用磁芯. 。 随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。使用频率可达100KHZ ,甚至更高。但最适合于10KHZ 以下使用。 磁场强度H : 磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。 它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。 均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示; 使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N I H 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。 在磁芯中,加正弦波电流,可用有效磁路长度Le 来计算磁场强度: 1 奥斯特= 80 安/ 米 磁通密度,磁极化强度,磁化强度 在磁性材料中,加强磁场H 时,引起磁通密度变化,其表现为: B= ц o H+J= ц o (H+M) B 为磁通密度( 磁感应强度) ,J 称磁极化强度,M 称磁化强度,ц o 为真空磁导率,其值为4 π× 10 ˉ 7 亨利/ 米(H/m ) B 、J 单位为特斯拉,H 、M 单位为A/m, 1 特斯拉=10000 高斯(Gs ) 在磁芯中可用有效面积Ae 来计算磁通密度:

异构多核处理器的任务调度算法

异构多核处理器的任务调度算法 蒋建春;汪同庆 【期刊名称】《计算机工程与应用》 【年(卷),期】2009(045)033 【摘要】在研究Min-min、Max-min算法和Sufferage算法基础上,针对异构多核处理器的特点,提出一种任务静态调度算法--自适应分段Sufferage算法(Adaptive Segmented Sufferage,ASS).该算法以最早完成时间和负载均衡为目标进行任务分配,先将任务分配分成两个阶段:在第一个阶段以最少完成时间作为分配原则进行分配,选择单位时间内节省时间最多的任务先分配;在第二个阶段以负载均衡为分配原则进行分配,选择执行时间大的任务先分配.然后选取不同调节参数,对任务进行多次重新分配,以最小的最大完成时间为最后分配结果,实现自适应调节.通过实验验证,该算法在实现最少完成时间的前提下能很好地达到负载均衡.%After studying the Min-min,Max-min and Sufferage algorithms,this paper presents an Adaptive Segmented Sufferage (ASS) algorithm that can be applied to heterogeneous multi-core processors system,and the goal is to assign optimally tasks to different cores to get the minimal Earliest Finish Time(EFT) and optimal load balancing.At first,the algorithm divides the allo-cating process into two phases:The first phase,the tasks whose saving time is maximum have priority to be selected to a core in the minimal execution time tasks set on the principle of the minimal EFT;the second phase,as the principle of load balancing, the tasks,which have the maximum execution time in the

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换

磁法标本磁参数计算公式修改意见

关于地面高精度磁测规范磁性标本参数计算公式修 改意见 刘国栋1,王富群2 1河南省地矿局第二地质勘查院,许昌(461000) 2河南省地矿局第二地质勘查院许昌(461000) E-mail :liuuodong1985@https://www.360docs.net/doc/1e13954442.html, 摘 要:本文主要阐述磁性标本的磁参数计算公式的理论推导及其单位换算,指出中华人民共和国地质矿产行业规范《地面高精度磁测技术规程》DZ/T 0071—93中给出的磁参数计算公式的不合理性,提出关于该公式修改意见。 关键词:磁参数计算公式 高斯 第一位置 第二位置 1.引言 我院在按照中华人民共和国地质矿产行业标准《地面高精度磁测技术规程》DZ/T 0071—93中规定的第一高斯位置法进行内蒙古标本磁参数测量并计算时碰到磁化率单位问题。 引用中华人民共和国地质矿产行业规范《地面高精度磁测技术规程》DZ/T 0071—93中附录C 的磁化率和剩磁计算公式[1]: 高斯第一位置磁化率: 3-6345612000051---1043222n n n n n n r n n n SI T V χπ?++?+??????=?++??? ? ? ???????????(κ) (1) 式中:r ——标本中心到探头中心的距离; V ——标本体积; 0T ——当地总磁场值; 高斯第一位置剩磁: 3-351 10/2r r I A m V =? (2) 用以上两个公式进行计算:按照该规范附录C 中叙述, r 选取单位cm ,V 选取单位cm 3,0T 与i n 选取单位nT ;计算结果χ值与现实不符,比实际小了约105倍,r I 值与现实相符。 重新选取单位:r 选取单位m ,V 选取单位m3,0T 与i n 选取单位T ;计算结果χ值与现实不符,比实际小了约105倍,r I 值与现实也不符,比实际小了约109倍。 由(1)式单位换算可以看出,r 3与V 的单位相消,0T 与i n 的单位相消,也就是说这四个参数的单位选择不会影响计算结果。 同理:(2)式中,3 r 与V 的单位相消,i n 的单位单独存在,影响到计算结果。 综上所述,个人认为是(1)式在推到中出现了错误,(2)式正确,i n 的单位应为nT 。 2.公式推导 约束条件: 高斯第一位置: 212n n +,432n n +,65 2n n + 0n ≥ 高斯第二位置:212n n +,432n n +,65 2 n n + 0n ≤ 2.1 高斯第一位置 根据磁偶极子模型,可得到标本在高斯第一位置产生磁场感应强度B 的大小[2]:

一种改进的实时混合任务调度算法

一种改进的实时混合任务调度算法 谢建平1,阮幼林1,2 1武汉理工大学信息工程学院,武汉(430070) 2南京大学计算机软件新技术国家重点实验室,南京(210093) E-mail:xjp_1997@https://www.360docs.net/doc/1e13954442.html, 摘要:文章提出了结合TBS(总带宽服务器法)算法和DMS(时限单调算法)算法的实时混合任务的调度算法,该方法能保证周期任务满足时限的要求,还能缩短非周期任务的响应时间。基于TBS服务器思想将非周期任务转换成有时限要求的硬实时任务,然后基于DMS 调度周期任务和非周期任务。由于是使用静态的DMS算法,不仅可以减小任务的切换开销,而且对系统的瞬时过载有一定的适应性。 关键词:实时系统;任务调度;时限单调算法;总带宽服务器算法 1. 概述 随着计算机技术的飞速发展与普及,实时系统已经成为人们生产和生活中不可或缺的组成部分。实时系统具有及时响应、高可靠性、专用性、少人工干预等特征[1],被广泛应用于工业控制、信息通讯、网络传输、媒体处理、军事等领域。实时系统的正确性不仅依赖于计算的逻辑结果,还取决于获得计算结果的时间的正确性。在航空航天、电信、制造、国防等领域,对实时系统有着强烈的应用需求。 由于实时系统的应用面非常广,所以实时系统的分类方法很多。通常按照系统中任务的周期性或者任务对截止期限的要求进行划分。实时任务按照周期性划分可以分为周期实时任务(periodic task)和非周期实时任务(aperiodic task);按照对截止期限的要求可以分为硬实时任务和软实时任务[1]。 本文提出了结合TBS(总带宽服务器法)算法[5]和DMS(时限单调算法)[6]算法的实时混合任务的调度算法,该方法能保证周期任务满足时限的要求,还能缩短非周期任务的响应时间。算法将非周期任务赋予一个假想的时限,然后整个实时系统采用DMS算法调度。由于是使用静态的DMS算法,不仅可以减小任务的切换开销,而且对系统的瞬时过载有一定的适应性。 2. 实时系统的任务调度 由于实时调度是保障实时系统满足时间约束的重要手段,所以一直是实时计算研究领域中倍受关注的热点问题。调度的实质是资源的分配,包括处理器和其他运算、交互、存储资源,调度就是来用来将这些资源合理地分配给各个实时任务的一种方法。 根据调度顺序产生的时机和方式可以分为静态调度和动态调度[1]。若调度算法是在编译的时候就做出决定从就绪任务队列中选择哪个任务来运行的,则这样的调度是静态的。这类调度算法假设系统中实时任务的特性(如:截止期,WCET等)是事先知道的。它脱机地进行可调度性分析,并产生一个调度表。静态调度算法的优点是运行开销小,可预测性强。但是,由于静态调度算法一旦做出调度决定后在运行期间就不能再改变了,所以它的灵活性较差。 如果调度器是在运行期间才决定选择哪个就绪任务来运行的,则这类调度被称为动态调度。动态调度算法能够对变化的环境做出反应,因此,这类调度算法比较灵活,适合于任务不断生成,且在任务生成前其特性并不清楚的动态实时系统。但是,动态调度算法的可预测性差且运行开销较前者大。

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

永磁同步伺服电动机的磁场分析与参数计算

ISSN 100020054CN 1122223 N 清华大学学报(自然科学版)JT singhua U niv (Sci &Tech ),2004年第44卷第10期 2004,V o l .44,N o .106 36 131721320   永磁同步伺服电动机的磁场分析与参数计算 陶 果, 邱阿瑞, 柴建云, 肖 曦 (清华大学电机工程与应用电子技术系,北京100084) 收稿日期:2003208218 作者简介:陶果(19792),男(汉),安徽,博士研究生。 通讯联系人:邱阿瑞,教授,E 2m ail :qiuar @m ail .tsinghua .edu .cn 摘 要:为了更有效地对永磁同步伺服电动机进行设计和分析,需准确进行电机的磁场分析和参数计算。该文以一台定子为集中绕组、槽 极比为9 6、转子磁极为径向充磁圆筒形磁极等结构特点的永磁三相同步伺服电动机为例,分析了其磁场的分布情况,给出了电机的磁场分布图;对用电磁场数值计算来求解电机的空载反电动势进行了研究和分析;同时对如何求解电机的定子绕组电感进行了研究。计算结果与实验所测的结果吻合较好。该文提出的磁场分析和参数计算方法,对这类结构的永磁伺服电动机的设计和分析具有很好的参考价值。 关键词:永磁同步伺服电动机;磁场分析;电感计算中图分类号:TM 351 文献标识码:A 文章编号:100020054(2004)1021317204 Ana lysis of magnetic f ields i n permanen t magnet synchronous servo m otors TAO Guo ,Q I U A rui ,CHA I J ia nyun ,XI A O Xi (D epart men t of Electr ical Engi neer i ng and Applied Electron ic Technology ,Tsi nghua Un iversity , Be ij i ng 100084,Ch i na ) Abstract :A ccurateanalysis of the m agnetic field param eters is i m po rtant to the design of per m anent m agnet three 2phase synch ronous servo mo to rs .T h is paper describes the analysis of the m agnetic fields in a perm anent m agnet synchronous servo mo to r .T he stato r w indings are concentrated co ils wound around a single too th w ith a slo ts po les rati o of 9 6, w ith cylindrical surface 2mounted po les .T he m agnetic field distributi ons are given w ith a num erical m ethod to calculate the back E M F fo r no load conditi ons .T he stato r inductance w as also analyzed .T he calculated values agree w ell w ith m easured values . Key words :per m anentm agnetsynch ronous servo mo to r;analysis of m agnetic fields;inductance calculati on 近年来,永磁交流伺服系统具有逐步取代传统直流伺服系统的趋势,已成为现代伺服技术重要的 发展方向。正弦波驱动的稀土永磁同步伺服电动机,由于其体积小、效率高、转矩脉动小等优点,在伺服 系统中得到越来越广泛的应用。 在研制设计永磁同步伺服电动机时,在满足电机基本性能的条件下,如何使电机生产制造方便,并尽可能地减少制造成本,是研究与设计人员应当考虑的重要问题。本文以一台额定功率为400W 、额定转速为5000r m in 的小型永磁交流伺服电动机为研究对象,该电机采用了一些特殊的结构形式,如定子绕组采用集中绕组,线圈直接套在定子齿上;槽 极比(即定子槽与极数之比)为9 6;转子磁极采用径向充磁的圆筒形磁极,并直接套装在转轴上。针对这种特殊结构形式的永磁同步伺服电动机进行设计和分析,目前国内还没有成熟的方法。经文献检索国外也少见有此类研究论文发表[1]。 本文将采用电磁场有限元方法来进行电机的磁场分析与参数计算。 1 数学模型的建立 分析永磁同步伺服电动机的电磁场问题,用矢 量磁位A 来表征其磁场比较方便。由于电机磁场结构沿轴向是均匀对称的,因此可采用二维的电磁场分析方法。又因为转子极数与定子槽(齿)数不是整数倍关系,因此,在求解时宜采用整个电机为求解对象。电机的二维电磁场计算模型如图1所示。求解电机磁场的有限元模型及边界条件为[2]: 99x 1Λ9A 9x +99y 1Λ9A 9y =-?, (1)1Λ19A 9n L - 1Λ29A 9n L =J c =H c L ,(2)A A B CD =0. (3) 其中:?为外加电流密度,Λ为材料的导磁率;Λ1、 Λ2分别为永磁体外和内的导磁率,L 为永磁体表面;n 为永磁体表面的外法线,J c =H c 为等效永磁

岩石力学计算题

第2章 岩石物理力学性质 例:某岩样试件,测得密度为1.9kg/cm3,比重为2.69,含水量为29%。试求该岩样的孔隙比、孔隙率、饱和度和干容量。 解:孔隙比:83.019 .1) 29.01(69.21) 1(=-+= -+?= γ ωεd v 孔隙度:%3.45%10083 .0183 .0%1001=?+=?+= v v n εε 饱和度:%9483 .0% 2969.2=?==εωG S r 干容重:)/(47.183 .0169.213cm g d =+=+?= εγ 例 某岩石通过三轴试验,求得其剪切强度c=10MPa ,υ=45°,试计算该岩石的单轴抗压强度和单轴抗拉强度。 解:由 例 大理岩的抗剪强度试验,当σ1n=6MPa, σ2n=10MPa ,τ1n=19.2MPa, τ2n=22MPa 。该岩石作三轴抗压强度试验时,当σa=0,则Rc=100MPa 。求侧压力 σa=6MPa 时,其三轴抗压强度等于多少? 解:(1)计算内摩擦角υ φστtg C n n 11+= (1) φστtg C n n 22+= (2) 联立求解: 021212219.2 0.735106 n n n n tg ττφφσσ--= ==?=-- (2)计算系数K : 7.335sin 135sin 1sin 1sin 10 =-+=-+=φφK (3)计算三轴抗压强度: 0100 3.7612.22C a S S K MPa σ=+=+?= 第3章 岩石本构关系与强度理论 例:已知岩石的应力状态如图,并已知岩石的内聚力为4MPa ,内摩擦角为35°。求: (1)各单元体莫尔应力圆,主应力大小和方向; (2)用莫尔库仑理论判断,岩石是否发生破坏

单调速率调度算法RMS

余蓝涛1 (天津大学精密仪器与光电子工程学院天津 300072 ) 摘要: 嵌入式系统对强大实时处理能力的需求和相对紧张的内存及内核资源的现实,对嵌入式操作系统任务调度提出了较高的要求。因此任务调度的算法的分析,实现和优化,对实现嵌入式系统的实时性有着重大的意义。从算法提出的理论基础出发,深入分析了经典的单调速率调度算法的思想,特点,具体实现并重点评价了该算法的优点和局限性。 关键词:单调速率调度算法实时嵌入式系统 Abstract: The zest for powerful real-time processing of embedded system and the reality of relatively scare memory and kernel resource pave way for the high request for task scheduling. Therefore, the analysis, implementation and optimization of task scheduling algorithm have a vast meaning for the real-time system. Based on theoretical basis of classic rate-monotonic scheduling algorithm, this paper not only analyzes fundamental thought, characteristics, practical implementation of this classic algorithm in depth, but also rate its advantages and disadvantages. Key words: Rate-monotonic Scheduling, Algorithm, Real-time, Embedded System 一,引言 现在嵌入式系统得到高速的发展。它的发展为几乎所有的电子产品注入了新的活力。它在国民经济各领域和我们日常生活中发挥了越来越重要的作用。 嵌入式系统在航天、军事、工控以及家电等方面得到了广泛应用。囿于体积,能耗,价格等方面的约束,嵌入式系统处理器速度比较慢,存储器容量也有限。而传统的操作系统为了取得较高的性能,要求硬件设备具有强大的处理能力,大容量的存储能力以及对网络的支持功能,这使得传统的操作系统难以简单地移植到嵌入式系统中。 这就导致了嵌入式操作系统由于受到系统的限制,往往内存资源都非常的有限,要求操作系统的内核都非常的精炼,对于系统中的资源操作系统内核需要进行统一的分配和调度。 嵌入式操作系统调度策略一直以来都是嵌入式操作系统的研究 中的一个热点。任务调度是嵌入式操作系统内核的关键部分,如何进行任务调度,使得各个任务能在其截止期限内得以完成是嵌入式操作系统的一个重要的研究领域。 二,嵌入式实时操作系统 绝大部分嵌入式系统都是实时系统,而且多是实时多任务系统。所谓“实时”,是指系统的正确性不仅仅依赖于计算的逻辑结果而且依赖于结果产生的时间[1][6]。结果产生的时间就是通常所说的截止期限(deadline),描述系统实时性的指标主要有: a,对紧急事件可预见性的快速响应; 1作者简介:余蓝涛(1991-)江西省人天津大学精密仪器与光电子工程学院测控技术与仪器本科生学号:79

岩石力学参数测试

3.2 侏罗系煤岩层物理力学性质测试 3.2.1试验仪器及原理 本试验采用电子万能压力试验机(图3.24)对侏罗系、石炭系岩石试样进行抗压强度、抗拉强度以及抗剪强度的测定。 (a) 电子万能压力试验机 (b) 单轴抗压强度测试 (c) 抗拉强度测试 (d) 抗剪强度测试 图3.24 岩石力学电子万能压力试验机及试验过程 (1) 岩石抗压强度测定: 单轴抗压强度的测定:将采集的岩块试件放在压力试验机上,按规定的加载速度(0.1mm/min)加载至试件破坏。根据试件破坏时,施加的最大荷载P ,试件横断面A 便可计算出岩石的单轴抗压强度S 0,见式(3.1)。 S 0= P A (3.1) 一般表面单轴抗压强度测定值的分散性比较大,因此,为获得可靠的平均单轴抗压强度值,每组试件的数目至少为3块。 (2) 岩石抗拉强度的测定: 做岩石抗拉试验时,将试件做成圆盘形放在压力机上进行压裂试验,试件受集中荷载的作用,见式(3.2)。

S t = 2P DT π (3.2) 式中:S t ——岩石抗拉强度 MPa ; P ——岩石试件断裂时的最大荷载,KN ; D ——岩石试件直径; T ——岩石试件厚度。 为使抗拉强度值较准确,每种岩石试件数目至少3块。 (3) 岩石抗剪强度测定: 将岩石试件放在两个钢制的倾斜压模之间,然后把夹有试件的压模放在压力实验机上加压。当施加荷载达到某一值时,试件沿预定的剪切面剪断,见式(3.3)。 sin cos n T P A A N P A A τασα? = =? ??? ==?? (3.3) 式中:P ——试件发生剪切破坏时的最大荷载; T ——施加在破坏面上的剪切力; N ——作用在破坏面上的正压力; A ——剪切破坏面的面积; τ——作用在破坏面上的剪应力; n σ——作用在破坏面上的正应力; α——破坏面上的角度。 每组取3块试件,变换不同的破坏角,根据所得的数值,便可在στ-坐标系上画出反映岩石发生剪切破坏的强度曲线。并可求出反映岩石力学性质的另外两个参数:粘聚力c 及内摩察角?。 3.2.2 标准岩样加工 根据需要和所在矿的条件,在晋华宫矿12#煤层2105巷顶板钻取岩样,钻孔长度约22m ,在。根据各段岩心长度统计结果,晋华宫矿顶板岩层的RQD 值为72.4%,围岩质量一般。 岩心取出后,随即贴上标签,用透明保鲜袋包好以防风化,之后装箱,托运到实验室,经切割、打磨、干燥制成标准的岩石试样,岩样制作过程见图3.25。

磁性材料的基本特性16505

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B ~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料; ?合理确定磁芯的几何形状及尺寸;

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

磁场公式

计算两圆柱形磁铁间力的公式 F x =πμ04 M 2R 4 1x +1 x+2t +2 x+t (1) 永久磁铁磁场 B r =μ 4πr [3 μ?r r ?μ](2) 磁偶极子磁场强度计算公式 B m ,r = μ04π||r ||3 [3 m ?r r ?m ](3) r 是单位向量:( x ||r || i + y ||r || j + z ||r || k ) r 是从磁铁位置至场位置的位移矢量 m 是磁铁的磁转矩(0.0,m) 由于只需要关心z 方向的磁场强度 所以由(3)式推导如下 B z =μ04π||r ||[3 m ?z ||r ||k z ||r ||k ?m ](注:任何单位向量的平方均为1,不同单位向量相乘为0) 由于单位向量k =z ||r ||(注:单位向量等于对应轴的坐标值除以所求的点到原点的距离) (注:向量点积计算公式 (axi+ayj+azk).(bxi+byj+bzk)=(axbx+ayby+azb)=|a||b|cos(zita) 其中zita 为向量a 与向量b 的夹角) 所以B z = μ04π||r || 3[3 m z r z r ?m ](4) =μ03m 3 z 2?1 3| r |2 r 2 将(4)式写成圆柱坐标系形式(r,z ) B z (m,γ,z)= μ0 4π(z 2+γ2)32 γ22 γ22 ?m (5) = μ0m 4π(z 2+γ2)3 2 ( 3z 2γ+z ?1)(6) (6)式即为一个磁偶极子的磁感应强度公式

将(4)式写成空间中任意点(x 0,y 0,z 0)处的磁偶极子在空间中(x,y,z)点处B z 的平面直角坐标系形式 B z m ,x ,y ,z ,x 0y 0,z 0 = μ0m 4π 3 z?z 0 2?[(x?x 0)2+(y?y 0)2+(z?z 0)2][(x?x 0)2+(y?y 0)2+(z?z 0)2]5 2 (7) 根据(7)式,计算圆柱形磁铁在空间任意点处磁场强度公式 将圆柱形磁铁看成是无数个磁偶极子的集合,其磁化强度为M ,由公式m=MV 得:dm=MdV B z m ,x ,y ,z ,x 0y 0,z 0 =μ0m 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0 )2+(z ?z 0 )2]5 V 圆柱 = 3 z?z 0 2?[ x?x 0 2+(y?y 0)2+(z?z 0)2][ x?x 0 2+(y?y 0)2+(z?z 0)2]5 2 R 2?y 222dx dy dz R ?R 0?H (8) 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] 5 2 R 2?y 2 ? R 2?y 2 dx =

磁铁牌号及性能参数

能积和矫顽力,可吸起相当于自身重量的640倍的重物。高能量密度的优点使钕铁硼永磁材料在现代工业和电子技术中获得了广泛应用,从而使仪器仪表、电声电机、磁选磁化等设备的小型化、轻量化、薄型化成为可能。 钕铁硼的优点是性能价格比高,具良好的机械特性,易于切削加工;不足之处在于居里温度点低,温度特性差,且易于粉化腐蚀,必须通过调整其化学成分和采取表面处理方法使之得以改进,从而达到实际应用的要求。 钕铁硼的制造采用粉末冶金工艺,将含有一定配比的原材料如:钕、镝、铁、钴、铌、镨、铝、硼铁等通过中频感应熔炼炉冶炼成合金钢锭,然后破碎制成3~5μm 的粉料,并在磁场中压制成型,成型后的生坯在真空烧结炉中烧结致密并回火时效,这样就得到了具有一定磁性能的永磁体毛坯。毛坯经过磨削、钻孔、切片等加工工序后,再经表面处理就得到了用户所需的钕铁硼成品。 表征磁性材料参数分别是: 1、磁能积(BH): 定义:在永磁体的退磁曲线的任意点上磁通密度(B)与对应的磁场强度(H)的乘积。它是表征永 磁材料单位体积对外产生的磁场中总储存能量的一个参数。 单位:兆高·奥(MGOe)或焦/米3(J/m3) 简要说明:退磁曲线上任何一点的B和H的乘积即BH我们称为磁能积,而B×H的最大值称之为最大磁能积,为退磁曲线上的D点。磁能积是衡量磁体所储存能量大小的重要参数之一。在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。 2、剩磁Br: 定义:将铁磁性材料磁化后去除磁场,被磁化的铁磁体上所剩余的磁化强度。 3、矫顽力(Hcb、Hcj) Hcj(内禀矫顽力)使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 Hcb(磁感矫顽力)给磁性材料加反向磁场时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。 4、温度系数 剩磁可逆温度系数αBr:当工作环境温度自室温T0升至温度T1时,钕铁硼的剩磁Br也从B0降至B1;当环境温度恢复至室温时,Br并不能恢复到B0,而只能到B0'。此后当环境温度在

电磁场数值计算方法的发展及应用

电磁场数值计算方法地发展及应用 专业:电气工程 姓名:毛煜杰 学号: 一、电磁场数值计算方法产生和发展地必然性 麦克斯韦尔通过对以往科学家们对电磁现象研究地总结,认为原来地研究工作缺乏严格地数学形式,并认为应把电流地规律与电场和磁场地规律统一起来.为此,他引入了位移电流和涡旋场地概念,于年提出了电磁场普遍规律地数学描述—电磁场基本方程组,即麦克斯韦尔方程组.它定量地刻画了电磁场地转化和电磁波地传播规律.麦克斯韦尔地理论奠定了经典地电磁场理论,揭示了电、磁和光地统一性.资料个人收集整理,勿做商业用途 但是,在电磁场计算地方法中,诸如直接求解场地基本方程—拉普拉斯方程和泊松方程地方法、镜象法、复变函数法以及其它种种解析方法,其应用甚为局限,基本上不能用于求解边界情况复杂地、三维空间地实际问题.至于图解法又欠准确.因此,这些电磁场地计算方法在较复杂地电磁系统地设计计算中,实际上长期未能得到有效地采用.于是,人们开始采用磁路地计算方法,在相当长地时期内它可以说是唯一实用地方法.它地依据是磁系统中磁通绝大部分是沿着以铁磁材料为主体地“路径”—磁路“流通”.这种计算方法与电路地解法极其相似,易于掌握和理解,并得以沿用至今.然而,众所周知,对于磁通是无绝缘体可言地,所以磁路实际上是一种分布参数性质地“路”.为了将磁路逼近实际情况,当磁系统结构复杂、铁磁材料饱和时,其计算十分复杂.资料个人收集整理,勿做商业用途 现代工业地飞速发展使得电器产品地结构越来越复杂,特殊使用场合越来趁多.电机和变压器地单机容量越来越大,现代超导电机和磁流体发电机必须用场地观点和方法去解决设计问题.由于现代物理学地发展,许多高精度地电磁铁、波导管和谐振腔应用到有关设备中,它们不仅要赋与带电粒子能量,并且要有特殊地型场去控制带电粒子地轨迹.这些都对电磁系统地设计和制造提出了新地要求,传统地分析计算方法越来越感到不足,这就促使人们发展经典地电磁场理论,促使人们用场地观点、数值计算地方法进行定量研究.资料个人收集整理,勿做商业用途 电子计算机地出现为数值计算方法地迅速发展创造了必不可少地条件.即使采用“路”地方法来计算,由于计算速度地加快和新地算法地应用,不仅使得计算精度得到了很大地提高,而且使得工程设计人员能从繁重地计算工作中解脱出来.从“场”地计算方面来看,由于很多求解偏微分方程地数值方法,诸如有限差分法、有限元法、积分方程法等等地运用,使得大量工程电磁场问题有可能利用数值计算地方法获得符合工程精度要求地解答,它使电磁系纯地设计计算地面貌焕然一新.电磁场地各种数值计算方法正是在计算机地发展、计算数学地前进和工程实际问题不断地提出地情况下取得一系列进展地.资料个人收集整理,勿做商业用途 二、电磁场数值计算方法地发展历史 电磁场数值计算已发展了许多方法,主要可分为积分法(积分方程法、边界积分法和边界元法)、微分法(有限差分法、有限元法和网络图论法等)及微分积分法地混合法.资料个人收集整理,勿做商业用途 年,利用向量位,采用有限差分法离散,求解了二维非线性磁场问题.随后和用该程序设计了同步加速器磁铁,并把它发展成为软件包.此后,采用有限差分法计算线性和非线性二维场地程序如雨后春笋般地在美国和西欧出现.有限差分法不仅能求解均匀线性媒质中地位场,还能解决非线性媒质中地场;它不仅能求解恒定场和似稳场,还能求解时变场.在边值问题地数位方法中,此法是相当简便地.在计算机存储容量许可地情况下,采取较精细地网格,使离散化模型较精确地逼近真实问题,可以获得足够精度地数值解.但是, 当场城几何特

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数 https://www.360docs.net/doc/1e13954442.html,/来源:日期:2006年04月25日 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类

相关文档
最新文档