液相色谱串联质谱的小知识

液相色谱串联质谱的小知识
液相色谱串联质谱的小知识

一、开机

water 2695/micromass zq4000:

开机步骤

1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机主机建立通讯联系,这个时间大约需要1至2分钟。

2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具体根据液相色谱不同型号来执行,下面以2695为例)。

a.打开脱气机 (Degasser On)。

b.湿灌注(Wet Prime)。

c.Purge Injector。

d.平衡色谱柱。

3.双击桌面上的 MassLynx

4.0图标进入质谱软件。

4.检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过3000小时,请及时更换机械泵油。

5.点击质谱调谐图标(MS Tune)进入质谱调谐窗口。

6.选择菜单“Options –Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真空。几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。

7.点击真空状态图标,检查真空规的状态,以确认真空达到要求。

8. 确认氮气气源输出已经打开,气体输出压力为90 psi。

9.设置源温度(Source Temp)到目标温度。

关机

1.点击质谱调谐图标进入调谐窗口。

2.点击Standby 让MS 进入待机状态时,这时状态灯会由绿变红,这一过程是关质谱高电压的过程。

3.停止液相色谱流速,如果还需要冲洗色谱柱,可以将液相色谱管路从质谱移开到废液瓶。4.等脱溶剂气温度(ESI)或APCI探头温度降到常温,点击气体图标关闭氮气。

5.逆时针方向拧开机械泵上的Gas Ballast 阀,运行20分钟后关闭(镇气)。

a) 对于ESI源,至少每星期做一次。

b) 对于APCI源,每天做一次。

6.再次确认机械泵的Ballast阀是否已经关闭。

7.选择Option / Vent,这时质谱开始泄真空,ZQ 前面板的状态灯“Vacuum”开始闪烁,几分钟后机械泵会停止运行,这时可以关闭质谱电源。

FINNIGEN DECA 开关机及校正流程——

1开机前准备事项

(1)确保质谱总电源开关(白色开关)及主板电源开关(黑色开关)处于关闭状态(O);

(2)检查真空泵油液面,确保泵内油页面处于标定的上下两线之间;

(3)查看离子源洁净程度,ESI源查看喷口是否有固体析出,毛细管口是否完好;APCI喷口是否有积液;

(4)气体压力,打开高纯氮气钢瓶总阀,调节出口压力调至0.65MPa,打开高纯氦气钢瓶总阀,调节出口压力调至0.25Mpa;

(5)检查壳气及辅助气接口连接紧固,松开液相管路与离子源的接口;

(6)开启动力电源,电压稳定,正常;

(7)确保室内温度在18~25度。

二找方法

a、其实做方法不是很难的,先找MS的条件,然后建立MRM连上液相找液质方法就可以了,然后在优化离子源气体流量,以及温度就可以了。

b、首先,我们应该知道被测化合物的结构式,pKa,溶解度等理化性质。

1,根据化合物极性和分子量大小选择离子源,非极性强的化合物可用APCI源,非极性弱的用ESI,此外ESI可形成多电荷离子,适合检测多肽等分子量大的化合物(APCI则不行)。2,根据化合物的酸碱性选择用正离子或负离子:一般碱性化合物用正离子,酸性或中性化合物选择负离子。

正离子条件下:流动相一般加0.01-0.1%的甲酸,

负离子条件下:流动相一般加0.01-0.1%的甲酸铵。

3,离子源和正负条件确定好后即可优化化合物的质谱参数:

建议先搞清楚各个参数是与流速相关还是与分子量相关,与TSQ Quantumn为例:

与流速相关的参数有:Spray voltage,Sheath gas, Aux gas,Capillary temperature 等参数,如果流速在较低范围内变动,这些参数就不用优化,使用厂家的推荐值即可。

与分子量相关的参数有Tube lens offset等参数,这个一般也不建议优化。使用校正表上的值即可。

所以这一步最关键的是找到母离子,如有加合离子建议加大Source CID试试,给一定能量,看看打碎的主要子离子。

注意:如让仪器自动找子离子也能找到,但其优化的碰撞能量一般偏高,一般需要在其基础上减去Source CID的值大小即可

C、如果是简单的定性,对于锥孔电压没什么太苛刻的要求。但是如果是要对样品进行定量,特别是低含量的,要讲究灵敏度,那就我对单个样品直接进样,分别优化毛细管电压和锥孔电压。

三质谱仪

按质量分析器(或者磁场种类)可分为静态仪器和动态仪器,即稳定磁场(单聚焦及双聚焦质谱仪)和变化磁场(飞行时间和四极杆质谱仪)。

MS仪器一般由进样系统、电离源、质量分析器、真空系统和检测系统构成。

1、真空系统

质谱仪中所有部分均要处高度真空的条件下(10-4-10-6Torr或mmHg), 其作用是减少离子碰撞损失。真空度过低,将会引起:

a) 大量氧会烧坏离子源灯丝;

b) 引起其它分子离子反应,使质谱图复杂化;

c) 干扰离子源正常调节;

d) 用作加速离子的几千伏高压会引起放电。

2、进样系统

对进样系统的要求:重复性、不引起真空度降低。

进样方式:

a) 间歇式进样:适于气体、沸点低且易挥发的液体、中等蒸汽压固体。如图所示注入样品(10-100g)---贮样器(0.5L-3L)---抽真空(10-2 Torr)并加热---样品蒸分子(压力陡度)---漏隙---高真空离子源。

b) 直接探针进样:高沸点液体及固体

探针杆通常是一根规格为25cm6mm i.d.,末端有一装样品的黄金杯(坩埚),将探针杆通过真空闭锁系统引入样品,如图所示。

我们试验室用的是ABI 3000质谱仪,主要定量分析生物样品。

LC-MS/MS方法学开发的一般步骤是

首先通过微量注射泵获得母离子和子离子以及DP CE这四个主要参数然后利用梯度程序考察流动相组成(包括有机相的比例,甲酸或缓冲盐的加入量)对质谱响应的影响。

流动相的组成确定后利用FIA优化确定其他参数,主要是气体参数和TEM IS。

一台LC/MS由以下几部分组成:HPLC、离子源接口、离子束聚焦、质量分析器、离子检测器、数据处理、化学工作站。

HPLC就不说了,先说离子源,目前比较好的离子源设计为Agilent的直角喷雾技术,好处:1。去溶剂效果好,耐受液相高流速;2。雾化针零电位,位置免调整,操作安全简便,重现性好;3。离子截取面积大,灵敏度高;4。反吹干燥氮气,有效阻挡中性分子,减少污染并保护真空;5。大口径非加热石英毛细管,离子传输效率高,有利于高灵敏度检测;有效防止样品热降解;调谐稳定,碰撞诱导解离(CID)谱图重现性好;6。铰链设计,不同离子源的切换,简单方便,易于操作。

下面说质量分析器:没有一种质量分析器可以适用于所有领域,目前的质量分析器有:单四极杆质谱、三级串联质谱、离子阱质谱、飞行时间质谱、四极-飞行时间质谱。

离子检测器:电子倍增管(EMT):经质量分析器分离出来的离子首先撞击高能转换打拿极发射二次粒子,正、负离子转换的二次粒子最终均为电子;随后发射的电子进入电子倍增器的弯曲形内壁,撞击管壁涂层,产生更多的二次电子;最后以电信号输出。电子倍增管的放大倍数约为107。

光电倍增管(PMT):经质量分析器分离出来的离子首先撞击倍增管最前端的闪烁晶体发射光子,光子照射光阴极射线管而发射电子,随后发射的电子进入电子倍增管进行信号放大,最终同样以电信号输出。

微通道板(MCP):由一组圆柱形微通道管组成,每个微通道管的作用与电子倍增管类似。当离子进入微通道管时,产生二次电子,反射通过这些微通道管时,不断产生更多的电子。MCP的最大优点在于具有超快的时间响应。如果将几块微通道板用适当的方法叠在一起,放大倍数将达108。

ESI是气相离子化过程,主要包括三个步骤:

1、在喷雾毛细管尖端产生带电液滴;

2、通过溶剂蒸发和雾滴分裂使带电液滴变小,这个过程反复进行;

3、由很小的带电雾滴产生气相离子。

一般情况下,甲醇-水系统已能满足多数样品的分离要求,且流动相粘度小、价格低,是反相色谱最常用的流动相。但Snyder则推荐采用乙腈-水系统做初始实验,因为与甲醇相比,乙腈的溶剂强度较高且粘度较小,并可满足在紫外185~205nm处检测的要求,因此,综合来看,乙腈-水系统要优于甲醇-水系统。

四液质经验

我认为要维护好仪器,首先流速不能过大,液质是不能承载过大流速的;其次电压不要加到极限,尤其是

正负离子转换时要适当调整;最后是做完样一定要及时冲洗和吹扫管路。做液质时跑一针的时间最好不要超过45分钟,否则仪器会很累。

另外我认为API4000定量很准,但是打多级碎片时最好用的是离子阱,因为它能够在一次进样后同时分析多个离子,很方便,而不像四级杆一次只能进行一种离子的多级研究。

1、由于液质的流速较小(ESI一般为0.2ml/min),所以配置样品的溶剂强度不能太大,尽量小于起始比例,否则,会出现保留时间偏移等问题。

2、如果在液相上摸好的条件,注意尤其是流动相的组成要转化成合适LCMS分析的。

3、磷酸盐及其他不挥发缓冲盐在离子源会沉淀并堵塞毛细管等,要更换成可挥发的有机缓冲盐。

4、缓冲盐会导致离子抑制,因此要控制缓冲液的强度,<10mM。

5、去污剂、表面活性剂会有离子抑制现象发生,表面活性剂产生的加合物和离子簇会干扰质谱数据,因此作液质联用仪时,不要使用洗涤剂清洗玻璃器皿等容器,如果一定要用,建议超声清洗多次。

比如分析的样品必须要干净,这样既可以保护色谱柱,也可以防止污染质谱;分析了大量的生物样品后,冲洗系统时,先用高比例的水相冲洗,把源也给洗一下,然后再换用高比例的有机相,这时要把柱后管路从源上拿下来,避免柱中的杂质给冲进质谱

1.前处理:样品一定要干净,不管是为了质谱还是为了保护柱子,生物样品提取的好些,如果直接沉淀,一定要注意,尽量高转速12000rpm以上,低温离心,最好离2次(保险一点),转移样品也要仔细,从中间慢慢吸,有时会有漂浮物,岛津的质谱好像做直接沉淀的源比较容易堵,Waters的好些。

2.2.样品浓度:质谱是灵敏度很高的仪器,进样浓度一定不能太高,1-2ug/ml已经可以啦,太高的浓度对仪器来说比较容易造成残留,而且定量也会不准啦。

3.3.流动相:流动相中尽量加易挥发的盐,尽量不要加表面活性剂之类的,容易离子抑制,如果遇到离子抑制,可以试试把你的样品峰往后推推或者改变提取方法,也可以试试用APCI源。如果你的液相是低压混合的,尽量不要跑梯度,那样很费时间,如果没办法,一针又要走很长时间的话,可以考虑切换,只测样品出峰前后的那段时间,这样可以保护质谱。但是如果你用粗柱子,较高流速的也可以考虑跑梯度,如API4000,但要尽量减小死体积。

4.4.冲洗:冲柱子自然不用说了,低有机相和高有机相分别冲一定时间(各至少半个小时以上吧),柱子保存在高有机相中。做完试验,冲源也是很重要的,也是低有机相和高有机相冲,但是时间可以不用那么长,你可以先冲源再冲柱子,或者两者分开冲,个人觉得分开冲好些,这样柱子上的脏东西就不会进到源里面去啦。冲源的时候气可以关小些。

waters的液质有在线除盐的功能

1、样品必须过0.22um滤膜过滤,不得有颗粒物;

2、上样的溶剂,必须是色谱纯,最好和你的流动相比例一致;

3、反相体系,不允许用正己烷之类极性弱的溶剂溶解样品并上样。

4、水,自然是纯净水了;

5、样品不允许含有金属离子、表面活性剂(不要用洗洁精洗瓶子)、磷酸盐、硼酸盐等不挥发盐;

6、淋洗液缓冲溶剂必须用可挥发的,如乙酸、乙酸铵、氢氧化四丁基铵等,色谱纯级别。

7、样品pH5~7严禁含有无机或有机强酸强碱。

8、六通阀处变三通,最好把没有信号的区域,切换到废液,这样减少源的污染

9、定期振气、清洗离子源,换油、

1.峰漂移的程度与进样体积有关,一般体积越小,对峰漂移的影响越小,缺点是响应也减小。

2.峰漂移与其出锋时间流动相的组成有关,如果出峰时间流动相强度很大影响就很小。

个人观点,仅供参考。

一般气源检查,总压力不能过大,检查泵油位置,查看真空度等,勤冲洗管路。

1.定期震气,更换机械泵油、滤网,必要时仪器除尘等。

2.2.每个项目做完,大约1000个样品后,清洗离子源、样品锥孔、预四级杆等。

3.3.定期对质谱进行期间核查、校准等。

4.仪器状态正常时,以上是最基本的维护。

5.还有一些注意事项:

6.1.每次进完样后,液相和质谱部分都要冲洗干净。

7.2.样品前处理一定要干净。

8.3.非挥发性的盐不能用在质谱中。

9.4.如果遇到放长假,实验室没有人,最最保险的办法就是关机,以免遇到停电的情况。

10.5.质谱所处的工作环境最好要无尘,温、湿度要严格控制。

11.6.样品浓度不能太高,以免污染离子源和四级杆。

12.7.做实验时,经常关注真空、柱压、碰撞气压力等,如遇情况可以及时处理。

13.8.操作人员一定要培训后才能上岗。

一般也就是勤冲洗,特别是测完样品后多冲,离子源多清洗,泵油定期检查、更换,滤网及时更换清洗,其它的也没什么好做的了。

首先流速不能过大,液质是不能承载过大流速的;

其次电压不要加到极限,尤其是正负离子转换时要适当调整;

最后是做完样一定要及时冲洗和吹扫管路。

注意:做液质时跑一针的时间最好不要超过45分钟,否则仪器会很累。

做液质三年了,岛津、waters、ABI和finigan的都摸过,经验谈不上,说点自己的注意点吧。

1.前处理:样品一定要干净,不管是为了质谱还是为了保护柱子,生物样品提取的好些,如果直接沉淀,一定要注意,尽量高转速12000rpm以上,低温离心,最好离2次(保险一点),转移样品也要仔细,从中间慢慢吸,有时会有漂浮物,岛津的质谱好像做直接沉淀的源比较容易堵,Waters的好些。

2.样品浓度:质谱是灵敏度很高的仪器,进样浓度一定不能太高,1-2ug/ml已经可以啦,太高的浓度对仪器来说比较容易造成残留,而且定量也会不准啦。

3.流动相:流动相中尽量加易挥发的盐,尽量不要加表面活性剂之类的,容易离子抑制,如果遇到离子抑制,可以试试把你的样品峰往后推推或者改变提取方法,也可以试试用APCI 源。如果你的液相是低压混合的,尽量不要跑梯度,那样很费时间,如果没办法,一针又要走很长时间的话,可以考虑切换,只测样品出峰前后的那段时间,这样可以保护质谱。但是如果你用粗柱子,较高流速的也可以考虑跑梯度,如API4000,但要尽量减小死体积。

4.冲洗:冲柱子自然不用说了,低有机相和高有机相分别冲一定时间(各至少半个小时以上吧),柱子保存在高有机相中。做完试验,冲源也是很重要的,也是低有机相和高有机相冲,但是时间可以不用那么长,你可以先冲源再冲柱子,或者两者分开冲,个人觉得分开冲好些,这样柱子上的脏东西就不会进到源里面去啦。冲源的时候气可以关小些。

日常维护:注意用流动相HPLC级,水用超纯水,不含磷酸盐等缓冲液.防湿防尘(用除湿机各遮布).用UPS电源以防临时停电影响.样品分析后用异丙醇液清洗雾化室.此外,定期清洗雾化针和查看泵油液面等.

液相部分:

应勤过滤流动相或更换新流动相,一般配制一次水相使用时间不要超过三天;

及时清洗流动相滤头;

若发现排空压力增大应及时更换泵头滤芯;

每天做完样应及时冲洗管路及色谱柱。

质谱部分:

勤洗离子源,并定期进行一次彻底的清洗维护,不定时检查雾化针的情况并可定期用异丙醇(或异丙醇:水)悬空超声清洗;

每天进样时检查雾化状况;

每天检查气源情况,防止气源不足造成断气既影响工作又影响仪器使用寿命;

定期检查前级泵泵油情况,及时震气使油回流;

若长时间分析样品,每天或每隔几天应重启电脑及与质谱的通讯设备,防止因通讯故障造成质谱采样出错或无法连接。

简单说说IT-TOF日常维护:

1 每分析完一批样品(大概30-40个生物样品),IT-TOF中的离子源及Heat Block模块要用甲醇或异丙醇清洗

2 每隔一段时间要进行一次仪器调谐以保证准确质量数;平时可只做TOF的调谐;调谐完毕之后要先用乙腈以0.2mL/min的流速冲洗30min以上并清洗离子源。

3 LC中若使用缓冲盐,实验结束之后先用水冲洗柱子,柱子最后要保存在有机相中;用于洗泵头的溶剂要经常更换

5 每4个月更换一次泵油;每隔两星期打开真空泵放气阀约30min,关阀后要再往回旋2圈。说说我们在建立方法时感触最深的几点:

1. 选择的离子对一定要稳定,质谱的参数要细细优化:尤其在选择用加合离子定量时,尤其要注意这一点,一般加合离子需要在一定的条件下(酸碱度、离子强度等)才能保持离子化程度一样,就响应一样。用对照品溶液测定时可能一致,可实际样品中要复杂的多,其他物质对离子化可能有影响。

2.确定待测物在柱上是否有保留:计算一下管路的死体积、柱的死体积之和,除以你的流速所得到的值,一定要小于你的待测物的出峰时间,最好差值在0.5min以上。因为液质不同液相,柱上没有保留在前面流出的物质喷雾时不稳定,会导致低浓度点、尤其定量下限附近同一样品响应不稳定。

我们在测得时遇到低浓度点的QC能相差双倍,怎么也不符合要求(80~120%),于是就将同一样品重复进样,发现重复性非常差,也是成倍的差异,于是就寻找原因,什么都试了就是不行,后来咨询了应用工程师,才怀疑是否有保留。于是,改变比例,推迟出峰,嘿,问题就解决了。

就此问题,浪费了我们一个多星期来找原因。

3. 样品的处理方法及内标的选择:

当测定复杂样品时,如生物样品血浆、胆汁、尿等,一定要考察在不同的实际样品中,内标、待测物是否能保持一致。

我们就遇到特别郁闷的事情,在空白血浆中内标提取后响应非常一致,线性及QC样品都很好,可加入不同时间点采得的血浆后,发现内标出现高低不平的现象,有时甚至相差1倍。可能为不同时间点的血浆中的背景物质、或pH等不一致、导致其在提取、离子化过程中存在差异。

质谱仪所能检测的最小到最大的质量范围:

不同仪器:四极杆1~600Da,1~4000Da,磁质谱:1~10000Da,飞行时间质谱:无上限,离子阱质谱:1~2000Da,1~4000Da,

质谱图中的横坐标,质量与电荷之比。

若离子所带电荷为z = 1,则质荷比等于该离子的质量数。

离子是以12C原子的1/12定义为一个质量单位,用u表示。

1u=1.66054x10-27kg

其它常用符号,Da, 道尔顿1Da=1u

分辨力(Resolution Power, RP)

分辨力:分开两个邻近质量峰的能力。

何为分开:若两个相邻峰的峰谷低于峰高的10%(或5%,50%),则认为是分开的。

磁质谱,飞行时间质谱仪,离子回旋共振质谱仪:

分辨力、线性和稳定性好,属高分辨质谱仪。

离子阱质谱仪:分辨力高,线性低,准高分辨质谱仪,用于判断质谱的电荷数。

四极杆质谱仪:分辨力低,线性好,不属于高分辨质谱仪。

电喷雾电离(Electro-Spray Ionization, ESI)

毛细管直径0.1~0.2mm。

喷雾电压:毛细管尖端与离子引入口之间,3~8kV。

壳气(Sheath gas), 从毛细管端与喷雾反向加热后流出。

离子通过取样锥(Skimmer)和毛细管(Capillary)传送至光学聚焦系统。

四极杆串联质谱仪:Q1和Q3:正常的四极杆质量分析器。

Q2:四、六、八极杆等,其上只加射频电压,可防止碰撞散射。八极杆对散射的抑制作用最强。目前,商品仪器多用八极杆。

弯曲的八极杆:防止中性碎片进入Q3,提高灵敏度。

ESI的优点与缺点

(1)优点

1.分子量确认

2,适合于挥发及不挥发的溶质

3.适合于离子化及极性的溶质

4.好的灵敏度

5.高分子量测定

6.适合于毛细管色谱

(2)缺点

1.相对较低的LC流速。

2.在溶液中必须离子化。

3.在高盐条件下会发生离子抑制。

4.产生加和离子影响结果。

5.有限的结构信息。

ESI在工作时要求流速越低灵敏度越高,主要原因是高流速不适合脱溶剂,ESI的电离假设是库仑爆炸的模式,如果流速过高,会有抑制。所以在做大分子的时候,还有采用nano-ES I源,流速可以降低到nL级。

APCI要求较高流速才可以有更好的离子化效果,如果流速过低电晕针放电无法电离出足够的电子或者质子与样品分子发生反应(印象里是这样,不对的地方请指正),导致灵敏度降低。

APPI源(大气压下的阈值光电离源)是在APCI源上加了一个紫外灯(也有使用激光的),通过紫外灯的照射使带有共轭双键的化合物选择性电离,由于其选择性好,所以对特定的化合物灵敏度会有提高。

现在还有厂家提出H-ESI源,说是灵敏度比普通ESI能提高5-10倍,具体情况还不了解,有了解请帮忙跟贴说明,谢谢!

液相色谱-串联质谱法

消毒产品中丙酸氯倍他索和盐酸左氧氟沙星测定?液相色谱-串联质谱法 Determination of clobetasol propionate and levofloxacin hydrochloride in disinfection product - LC-MS-MS method 1 范围 本方法规定了膏霜类消毒产品中丙酸氯倍他索和盐酸左氧氟沙星残留量液相色谱-串联质谱测定方法。 本方法适用于膏霜类消毒产品中丙酸氯倍他索和盐酸左氧氟沙星残留量的测定。 取样量为0.1g时,本方法对丙酸氯倍他索和盐酸左氧氟沙星的检出限见表1。 表1 丙酸氯倍他索和盐酸左氧氟沙星的检出限、保留时间和特征离子 中文名称英文名称 检出限 (μg/g) 保留时 间(min) 特征离子(m/z) 丙酸氯倍他索Clobetasol propionate 0.009 7.83 467.0/355.2/373.4 盐酸左氧氟沙星Levofloxacin hydrochloride 0.06 1.11 362.0/260.9/318.2 2 规范性引用文件 3 原理 试样中丙酸氯倍他索和盐酸左氧氟沙星用甲醇提取,提取液经0.45μm滤膜过滤,用C18柱分离后,用液相色谱-串联质谱仪测定,正离子扫描,离子对定性,峰面积定量。 4 试剂和材料 除另有说明外,所用试剂均为分析纯,水为不含有机物的纯水,纯水中干扰物的浓度需低于方法中待测物的检出限。 4.1甲醇:农药残留级。 4.2乙腈:农药残留级。 4.3甲酸:分析纯。

4.4标准品:丙酸氯倍他索和盐酸左氧氟沙星均购自中国药品生物制品检定所,纯度≥99.8%。 4.5标准溶液:准确称取丙酸氯倍他索适量,用乙腈-水(1:1)配制成100μg/mL 的标准贮备液。准确称取盐酸左氧氟沙星适量,用纯水配制成100μg/mL的标准贮备液。准确量取上述标准贮备溶液适量,用乙腈稀释配制成浓度为10.0μg/mL 的混合标准中间溶液,将标准中间溶液转移到安瓿瓶中于4 C保存。临用前,再根据需要用甲醇配制成不同浓度的标准使用溶液。 4.6甲酸溶液(0.2%,v/v):量取2mL甲酸,用纯水定容至1000mL。 4.7 0.45μm滤膜。 5 仪器 5.1 液相色谱-串联质谱联用仪:HP1100高效液相色谱仪(Agilent) - API 4000质谱仪(Applied Biosystems) ,电喷雾离子化源(ESIMS,NI/PI模式)。 5.2 分析天平:感量0.1mg和0.001g。 5.3实验室纯水机:Barnstead纯水机。 5.4涡旋振荡器:Scientific Industries 涡旋振荡器。 5.5 具塞试管:10mL。 6 试样的制备与保存 6.1 试样的制备 取有代表性样品5g,搅拌均匀,制成实验室样品。 6.2 试样保存 制备好的试样置于室温保存。 7 测定步骤 7.1样品前处理 称取0.1g~0.2g样品(精确到0.001 g) ,置于10mL试管中,加入3.00mL甲醇溶液,涡旋振摇使样品分散后,超声振荡10min。静置,吸取上清液经滤膜(4.7)过滤后,供液相色谱-串联质谱测定。

液相色谱串联质谱的小知识

一、开机 water 2695/micromass zq4000: 开机步骤 1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机主机建立通讯联系,这个时间大约需要1至2分钟。 2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具体根据液相色谱不同型号来执行,下面以2695为例)。 a.打开脱气机 (Degasser On)。 b.湿灌注(Wet Prime)。 c.Purge Injector。 d.平衡色谱柱。 3.双击桌面上的 MassLynx 4.0图标进入质谱软件。 4.检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过3000小时,请及时更换机械泵油。 5.点击质谱调谐图标(MS Tune)进入质谱调谐窗口。 6.选择菜单“Options –Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真空。几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。 7.点击真空状态图标,检查真空规的状态,以确认真空达到要求。 8. 确认氮气气源输出已经打开,气体输出压力为90 psi。 9.设置源温度(Source Temp)到目标温度。 关机 1.点击质谱调谐图标进入调谐窗口。 2.点击Standby 让MS 进入待机状态时,这时状态灯会由绿变红,这一过程是关质谱高电压的过程。 3.停止液相色谱流速,如果还需要冲洗色谱柱,可以将液相色谱管路从质谱移开到废液瓶。4.等脱溶剂气温度(ESI)或APCI探头温度降到常温,点击气体图标关闭氮气。 5.逆时针方向拧开机械泵上的Gas Ballast 阀,运行20分钟后关闭(镇气)。 a) 对于ESI源,至少每星期做一次。 b) 对于APCI源,每天做一次。 6.再次确认机械泵的Ballast阀是否已经关闭。 7.选择Option / Vent,这时质谱开始泄真空,ZQ 前面板的状态灯“Vacuum”开始闪烁,几分钟后机械泵会停止运行,这时可以关闭质谱电源。 FINNIGEN DECA 开关机及校正流程—— 1开机前准备事项 (1)确保质谱总电源开关(白色开关)及主板电源开关(黑色开关)处于关闭状态(O); (2)检查真空泵油液面,确保泵内油页面处于标定的上下两线之间; (3)查看离子源洁净程度,ESI源查看喷口是否有固体析出,毛细管口是否完好;APCI喷口是否有积液; (4)气体压力,打开高纯氮气钢瓶总阀,调节出口压力调至0.65MPa,打开高纯氦气钢瓶总阀,调节出口压力调至0.25Mpa; (5)检查壳气及辅助气接口连接紧固,松开液相管路与离子源的接口; (6)开启动力电源,电压稳定,正常;

液相色谱串联质谱联用专业技术实验指导(许煊炜)

液相色谱串联质谱联用仪检测技术 实验指导 (2014、2015级) 课程内容(一个实验8学时): (1)AB Sciex Qtrap 4500 三重四级杆/离子阱液相色谱串联质谱联用仪的结构原理、操作及定性定量应用。 (2)利用液相色谱串联质谱联用仪快速测定水果中7种农药的残留量。 吉林农业大学农业部参茸质检中心 2017.03

实验一AB Sciex Qtrap 4500 三重四级杆/离子阱液相色谱串联质谱联用仪的结构原理、操作及定性定量应用 一.实验目的和意义 通过学习液质联用仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生使用液质联用仪进行仪器分析的能力,并培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 (一)检测仪器 1、仪器名称高效液相色谱串联质谱联用仪(简称LC-MS-MS)。型号:4500 QTRAP(美国Applied Biosystems公司)。 2、仪器组成液相色谱部分:岛津LC-30A,配有在线脱气机、超高压二元泵、自动进样器;串联质谱部分:QTRAP4500,配有ESI离子源、串联四级杆/线性离子阱。 3、主要性能指标离子化方式:ESI电离质量范围:(5 ~ 1700)amu 分辨率:> 6900 质量稳定性:0.1 amu/12h 灵敏度:1pg reserpine, ESI+, MRM扫描(m/z : 609/195),信噪比S/N > 120:1 扫描速度:4000 amu/sec 质量准确度:< 0.01%(全质量数范围) 4、方法原理高效液相色谱二元泵将流动相泵人系统并混合,自动进样器将待测样品注入流动相中,随流动相进入色谱柱,由于样品不同组分在色谱柱中保留时间不同,各组分被分开,依次进入离子源。在离子源中,各组分以ESI或APCI方式电离,被加速后进入质量分析器。4500QTRAP 的质量分析器主要由Q1、Q2、Q3三组四级杆串联组成。Q1可将分子离子按质荷比(m/z)大小分开;Q2是碰撞室,可将母离子进一步破碎为碎片离子;Q3具有四级杆和线性离子阱两种功能,作为四级杆时可将分子离子或碎片离子按质荷比大小分开,作为离子阱还可富集离子从而提高检测灵敏度。各组分的不同离子在质量分析器中被破碎、分离,并按质荷比大小依次抵达监测器,经记录即得到按不同质荷比排列的离子质谱图。4500QTRAP通过串联四级杆/线性离子阱两种不同质谱技术的结合,可以在单次分析中对复杂样本中的单个成分同时进行定性和定量,也可以对多个化合物进行定量分析。整台仪器的控制、数据采集、数据处理、结果输出均由PC计算机Windows操作系统支持下的Analyst软件控制完成。

高效液相色谱-串联质谱法

附件 面膜类化妆品中氟轻松检测方法 (高效液相色谱-串联质谱法) 1范围 本方法规定了面膜类化妆品中氟轻松的高效液相色谱-串联质谱测定方法。 本方法适用于面膜类化妆品中氟轻松的定性定量测定。 2方法提要 面膜类化妆品用饱和氯化钠溶液分散,用乙腈从分散液中提取氟轻松,用亚铁氰化钾和乙酸锌沉淀提取液中大分子基质,经固相萃取小柱净化,用高效液相色谱仪分离,质谱检测器检测,采用保留时间和特征离子对丰度比定性,以待测物质相对应离子峰面积定量,以标准曲线法计算含量。 本方法的检出限为0.03 μg/g,定量限为0.05 μg/g。 3试剂和材料 除另有规定外,本方法所用试剂均为分析纯或以上规格,水为纯化水。 3.1甲醇:色谱纯。 3.2乙腈:色谱纯。 3.3冰醋酸:优级纯。 3.4饱和氯化钠溶液。 3.5 10%亚铁氰化钾溶液:称取115 g亚铁氰化钾K4Fe(CN)6·3H2O固体,

用水溶解定容至1000 mL。 3.6 20%乙酸锌溶液:称取239 g乙酸锌C4H6O4Zn·2H2O固体,用水溶解定容至1000 mL。 3.7Oasis HLB固相萃取小柱或相当者:60 mg,3 mL。 3.8 标准物质:氟轻松,纯度不小于99.0%;标准物质的分子式、相对分子质量、CAS登录号、化学结构图参见附录A。 3.9 标准储备液(ρ=1g/L):准确称取氟轻松标准物质(3.8)10mg,精确到0.01 mg,置于10 mL量瓶中,用甲醇溶解并定容,于-18℃下冷冻保存。 3.10 标准工作溶液:临用时,取标准储备液(3.9)适量,用乙腈稀释成0.05μg/mL、0.10μg/mL、0.20μg/mL、0.40μg/mL、0.80μg/mL系列浓度的标准工作溶液。 4仪器和设备 4.1 高效液相色谱-三重四极杆质谱联用仪(ESI源)。 4.2 分析天平:感量0.0001g;0.00001g。 4.3 涡旋混合器。 4.4离心机:转速5000r/min,容量10mL;50mL。 4.5 固相萃取装置。 5分析步骤 5.1样品处理 5.1.1提取 称取样品(带有载体的面膜,去除载体后取样)0.2 g,精确至0.0001 g,置15 mL具塞离心管中,加入3 mL饱和氯化钠溶液(3.4),于涡旋混合器上混合使样品分散,准确加入2 mL乙腈,充分涡旋提取2 min,以

液相色谱-质谱联用(LC-MS)

液相色谱-质谱联用(LC-MS) LCMS分别的含义是:L液相C色谱M质谱S分离(友情赠送:G是气相^_^) LC-MS/MS就是液相色谱质谱/质谱联用 MS/MS是质谱-质谱联用(通常我们称为串联质谱,二维质谱法,序贯质谱等) LC-MS/MS与LC-MS比较,M(质谱)分离的步骤是串联的,不是单一的。 色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。 色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。 现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。我们仍然叫它色谱分析。 一、色谱分离基本原理: 由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。 二、色谱分类方法: 色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。 从两相的状态分类:

液相色谱串联质谱的小知识知识讲解

液相色谱串联质谱的 小知识

一、开机 water 2695/micromass zq4000: 开机步骤 1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机主机建立通讯联系,这个时间大约需要1至2分钟。 2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具体根据液相色谱不同型号来执行,下面以2695为例)。 a.打开脱气机 (Degasser On)。 b.湿灌注(Wet Prime)。 c.Purge Injector。 d.平衡色谱柱。 3.双击桌面上的 MassLynx 4.0图标进入质谱软件。 4.检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过3000小时,请及时更换机械泵油。 5.点击质谱调谐图标(MS Tune)进入质谱调谐窗口。 6.选择菜单“Options –Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真空。几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。 7.点击真空状态图标,检查真空规的状态,以确认真空达到要求。 8. 确认氮气气源输出已经打开,气体输出压力为90 psi。 9.设置源温度(Source Temp)到目标温度。 关机 1.点击质谱调谐图标进入调谐窗口。 2.点击Standby 让MS 进入待机状态时,这时状态灯会由绿变红,这一过程是关质谱高电压的过程。 3.停止液相色谱流速,如果还需要冲洗色谱柱,可以将液相色谱管路从质谱移开到废液瓶。 4.等脱溶剂气温度(ESI)或APCI探头温度降到常温,点击气体图标关闭氮气。 5.逆时针方向拧开机械泵上的Gas Ballast 阀,运行20分钟后关闭(镇气)。 a) 对于ESI源,至少每星期做一次。 b) 对于APCI源,每天做一次。 6.再次确认机械泵的Ballast阀是否已经关闭。 7.选择Option / Vent,这时质谱开始泄真空,ZQ 前面板的状态灯“Vacuum”开始闪烁,几分钟后机械泵会停止运行,这时可以关闭质谱电源。 FINNIGEN DECA 开关机及校正流程—— 1开机前准备事项 (1)确保质谱总电源开关(白色开关)及主板电源开关(黑色开关)处于关闭状态(O); (2)检查真空泵油液面,确保泵内油页面处于标定的上下两线之间; (3)查看离子源洁净程度,ESI源查看喷口是否有固体析出,毛细管口是否完好;APCI喷口是否有积液; (4)气体压力,打开高纯氮气钢瓶总阀,调节出口压力调至0.65MPa,打开高纯氦气钢瓶总阀,调节出口压力调至0.25Mpa;

液相色谱-串联质谱(LCMSMS)方法 - 岛津中国

液相色谱-串联质谱(LC/MS/MS)法测定癫痫患者血清中 卡马西平的浓度 谢 华ì,王 荣,贾正平?, 徐丽婷 (兰州军区兰州总医院临床药理基地,兰州 730050) 摘要目的:本文建立了液相色谱-串联质谱(LC/MS/MS)法测定患者血清中的卡马西平浓度的方法。方法:色谱柱:Zorbax Extend-C18柱(150×4.6 mm I.D,5μm);流动相:甲醇-0.01mmol·L-1乙酸 胺溶液(80:20,v/v);流速:0.3 mL·min-1。结果:卡马西平浓度在2~40 ng·mL-1范围内,峰面积与浓度线性关系良好,平均回收率为101.1%,日内精密度、日间精密度的RSD分别为3.39%和4.11%。并测定了10名患者血清中卡马西平的浓度。结论:本方法具有良好的灵敏度、准确度、精确度及专属性,结果准确,重现性好,易于操作,可用于患者血清中卡马西平浓度的测定。 关键词卡马西平;LC/MS/MS;血清 Content Determination of Carbamazepine in epileptic patient serum by Liquid Chromatographic Tandem Mass Spectrometry XIE Hua, JIA Zheng-ping*, WANG Rong, XU Li-ting (Base of Clinic Pharmacology, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China) ABSTRACT OBJECTIVE:An analytical method based on Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) detection was developed for the content determination of carbamazepine in epileptic patient serum. METHODS: The method included that the column was Zorbax Extend-C18(150×4.6 mm I.D.,5μm ); mobile phase was methanol-0.01mmol·L-1amine acetic acid (80:20,v/v) at a flow rate of 0.3 mL·min-1. RESULTS: The method was proved to be linear in the range of 2~40ng·mL-1 with a regression confficient of 0.9976. The average recovery rate was 101.1%(n=5). The RSD of average contents of intra-day and inter-day was 3.39% and 4.11% respectively. The carbamazepine concentrations of ten epileptic patient’s serums were detected. CONCLUSION: This method is accurate, precise, sensitive and specific to be used in the content determination of carbamazepine serum. KEY WORDS Carbamazepine; LC/MS/MS; Serum ?基金项目:国家科技部重大项目(2008ZXJ09014-010) ì主管药师。研究方向:临床治疗药物监测。电话:(0931)8994675; E-mial: xiehua-72@https://www.360docs.net/doc/1e17197471.html, ?通讯作者:教授,主任药师,博士。研究方向:临床药学。电话:(0931)8994652。

固相萃取-高效液相色谱串联质谱法

固相萃取-高效液相色谱串联质谱法 测定原料奶中5种环境雌激素残留量的研究 李雪1,2,牟光庆1,陈历俊1,2,*,姜铁民2 (1.大连工业大学食品学院,辽宁大连116034; 2.北京三元食品股份有限公司,北京100076) 摘要:建立固相萃取-高效液相色谱串联质谱法测定原料乳中环境雌激素(雌酮、雌二醇、雌三醇、己烯雌酚、双酚A)的方法。原料乳用NH2-SPE固相萃取小柱进行富集,旋转蒸发浓缩后,采用高效液相色谱串联质谱法测定。实验结果表明:各待测物在0.01 ~0.5μg/mL 范围内具有良好的线性关系,相关系数均大于0.9978,加标回收率为68.5%~105.6%,RSD 为2.56%~7.59%,最低检出限为0.22 ~0.56μg/L(S/N=3)。本方法操作简便,快速灵敏,适合于牛奶中痕量环境雌激素的残留分析检测。 关键词:高效液相色谱串联质谱,固相萃取,环境雌激素,原料奶,残留检测Research of the determination of 5 kinds of environmental estrogens residues in raw milk by solid phase extraction-high performance liquid chromatography tandem mass spectrometry LI Xue1,2,MU Guang-qing1,CHEN Li-jun1,2,*,JIANG Tie-min2 (1.College of Food Science and Technology,Dalian Polytechnic University , Dalian 116034,China; 2.Beijing Sanyuan Foods Co., Ltd, Beijing 100076,China) Abstract: A solid phase extraction-high performance liquid chromatography tandem mass spectrometry method for simultaneous determination of environmental estrogens including estrone,estradiol,estriol,diethylstilbestrol and bisphenol A in raw milk was established. 5 kinds of environmental estrogens were extracted from the raw milk sample by a NH2-SPE column, and concentrated with a rotary evaporator. The extract was analyzed by high performance liquid chromatography tandem mass spectrometric.Results showed that:a good linear range from 0.01~0.5μg/mL with correlation coefficient of above 0.9978 was obtained.The extraction recovery were 68.5%~105.6% and the relative standard deviation were 2.56%~7.59%.The limit of detection was 0.22~0.56μg/L(S/N=3).The descri bed method was simple,sensitive and accurate. *通讯作者:陈历俊,chlj@https://www.360docs.net/doc/1e17197471.html,。 作者简介:李雪(1986-),女,硕士研究生,研究方向:食品安全。 基金资助:奶牛产业技术体系北京市创新团队建设项目;国家科技部“863”计划(2011AA100903) 。

浅谈液相色谱串联质谱

浅谈液相色谱质谱联用技术 刘谦 保定出入境检验检疫局,保定 071000 摘要:液相色谱-质谱联用技术以液相色谱作为分离系统,质谱作为检测系统,经纯化后的样品在液相色谱和质谱部分经过分离和离子化,经由检测器得到质谱图。液质联用体现了色谱和质谱优势的互补,结合了色谱对复杂样品的高分离能力和质谱的高选择性,高灵敏度及能够提供相对分子量和结构信息的优点,在药物分析,食品检测等领域有广泛的应用。 关键词:液相色谱质谱食品检测 高效液相色谱是一种准确度高,分离范围广的快速分离方法,它对化合物的结构破坏性小,适合有机分子和生物分子的分离。质谱具有其他分析方法无可比拟的灵敏度,对于未知化合物的结构分析定性十分准确,对相应的标准样品要求也比较低。质谱可以和气相联用如GC/MS,也可以和高效液相色谱联用如HPLC/MS。由于色谱和质谱灵敏度相当,再加上分离效果很好的色谱可以作为质谱的进样系统,质谱作为色谱的鉴定仪速度快,分离好,应用广。色谱-质谱联用成为最好的用于分析微量有机混合物的仪器。 在1970年后,质谱-质谱法(mass separetion-mass spectra Characterization)迅猛发展起来。这种方法让母离子进一步裂解,从而获得裂解过程和分子结构的信息,通常我们称为串联质谱,二维质谱法,序贯质谱等。 我们知道,质谱的分析建立在物质离子化的基础上,按照荷质比分离离子,通过测量离子谱峰的强度实现分析目的。通过色谱纯化后的样品气化离子化形成的离子在电场和磁场的综合作用下,按照质量数和电荷数的比值大小依次排列成谱被记录下来。常见的质谱图的纵坐标是离子信号强度,横坐标就是离子核质比。在液相色谱质谱中通常所用的离子源有ESI 和APCI,我们常用的是ESI。ESI 是比APCI软电离程度较小的电离方式,应用范围较APCI 的大,只有少部分有机分子ESI 做不出,可以用APCI 辅助解决问题。一般用ESI 和 APCI 搭配使用比 ESI 和APCI 的应用范围更广一些。 下面说一说ESI和API源的异同点。 ESI 和APCI通常产生(M+H)+或(M-H)-等准分子离子,源参数调整简单,容易使用,仪器灵敏度高。对APCI源来说,不足就是给出的结构信息有限,样品易发生热裂解,低质量时基线噪声大。ESI通常只产生分子离子峰,可以直接测定混合物,并可以测定热不稳定的极性

高效液相色谱-串联质谱法分析

第39卷2011年4月 分析化学(FEN XI H U A XU E) 研究报告Chinese Journal o f Analytical Chemistr y 第4期534~539 DOI:10.3724/SP.J.1096.2011.00534 高效液相色谱 串联质谱法分析大肠杆菌代谢组中样品提取方法的比较 梅辉 1,2 戴军 *1 刘文卫3 凌霞3 朱鹏飞3 赵志军 1 1 (江南大学食品科学与技术国家重点实验室,无锡214122) 2 (江南大学食品学院,无锡214122) 3 (无锡市疾病预防控制中心,无锡214002) 摘 要 比较了基于液相色谱和串联质谱联用技术(L C M S/M S)的E.co li 代谢组分析的5种不同样品提取方法。在对样品进行淬灭和洗涤后,分别使用冷甲醇法、热乙醇法、甲醇/氯仿法、热甲醇法和高氯酸法对样品平行提取3次,每个样品重复进样3次。结果显示,冷甲醇法所得到的相对提取率最高,且重复性好(RSD <5%)。从相对提取率、重复性等方面综合考察5种提取方法,从优到劣依次为:冷甲醇法>甲醇/氯仿法>高氯酸法>热乙醇法>热甲醇法。此外,以冷甲醇法的提取溶剂配制系列不同浓度的代谢物标样测定的结果表明,本方法的代谢物检测线性较好,线性范围较宽,提取溶剂的基体效应对代谢物的定量分析影响较小。本方法的检出限为0.05~0.36m mol/L 。 关键词 代谢组分析;液 质联用;提取方法;大肠杆菌 2010 07 20收稿;2010 10 29接受 本文系江南大学食品科学与技术国家重点实验室自由探索课题基金(No.SKLF T S 200803)资助项目*E mail:d j998lc@https://www.360docs.net/doc/1e17197471.html, 1 引 言 饲料工业的发展及在医药工业上应用的不断扩大使色氨酸的需求量越来越大,目前我国色氨酸主要依赖进口。采用微生物直接发酵法生产色氨酸,其合成代谢途径较长,代谢流弱,调控机制复杂,很难实现工业化。代谢组学技术已应用于微生物表型分类、突变体筛选、代谢途径及微生物代谢工程等方面,但有关色氨酸生产的代谢组学及其分析策略的研究尚未见报道。 微生物代谢组学定义为对胞内所有低分子量代谢物的定性和定量分析[1]。微生物样品前处理是对代谢物进行准确定性和定量的关键步骤,一般包括微生物培养、淬灭、洗涤和代谢产物的提取等步骤[2]。本实验所研究的E scherichia coli (E.coli )全部代谢物仅占细胞干重的3%~5%,但其化学成分的复杂性和生物活性的多样性远超过一般化学合成和组合化学体系[3]。应用现代分析技术对大部分中心代谢途径的磷酸化代谢产物以及三羧酸循环中间代谢物的提取方法已有报道[4~6],多采用气 质联用(GC MS)[7]检测目标代谢物。但气 质联用法往往需要衍生化,且高温条件下易导致热敏性化合物的变性分解。本研究对生产色氨酸的E.coli 发酵液进行淬灭、洗涤处理后,分别运用冷甲醇法、热乙醇法、甲醇/氯仿法、热甲醇法和高氯酸法提取胞内代谢物,在LC M S/M S 的多反应检测模式(M RM )对目标代谢物进行检测,由于胞内代谢物数量巨大,而在代谢流研究磷酸化糖和磷酸化有机酸、有机酸和氨基酸起到关键作用。因此分别选择以上3类物质中有代表性的8种代谢物(共计24种)作为考察对象,比较5种提取方法的提取率及重复性。结果表明,冷甲醇法的相对提取率及其重复性均优于其它方法。 2 实验部分 2.1 仪器与试剂 1200型高效液相色谱仪(Agilent 公司);3200Q TRA P 质谱仪(Applied Biosystems 公司),配有电喷雾离子源;3L 发酵罐(NBS);高速冷冻离心机(T erm o 公司),超低温冰箱(NBS 公司);真空冷冻干燥机(Labconco 公司);JY 2006电子分析天平(Mettler T pledo 公司);YDS 6液氮罐(乐山东亚公司)。 苹果酸、富马酸、琥珀酸、柠檬酸、草酰乙酸、2 酮戊二酸、邻氨基苯甲酸的标准品均购自BBI 公司,其它

固相萃取液相色谱串联质谱法测定

DO I :10.3724/S P.J .1096.2010.00214 固相萃取 液相色谱串联质谱法测定城市污水中他莫昔芬和来曲唑 刘先军 1,2 张晶1 邵兵 *1,2 尹杰 1,3 1 (北京市疾病预防控制中心,北京100013) 2 (首都医科大学公共卫生与家庭医学学院,北京100058) 3 (北京大学医学部公共卫生学院,北京100191) 摘 要 他莫昔芬和来曲唑常用于治疗雌激素依赖型乳腺癌。本研究建立了城市污水中他莫昔芬和来曲唑的超高效液相色谱 串联质谱(UPLC M S /M S)联用检测方法。水样通过O asis HLB 固相萃取柱富集后串联氨基柱,先用6mL 甲醇洗脱,再用3mL 甲醇洗脱氨基柱,合并洗脱液后浓缩。使用ACQU I TY U PLC T M BE H C 18反相柱,流动相为0.1%甲酸 乙腈,在梯度条件下分离;目标分析物使用超高效液相色谱 电喷雾串联质谱进行测定。本方法对他莫昔芬和来曲唑的线性范围分别是1.0~100 g /L 和0.1~100 g /L,相关系数R 2>0 997,检出限分别为1.0和0.1ng /L,进水和出水的3个不同水平的加标平均回收率为68.8%~103 0%,相对标准偏差小于15%。本方法可用于城市污水中相关物质的分析。关键词 超高效液相 串联质谱法;他莫昔芬;来曲唑;环境污水;固相萃取 2009 06 22收稿;2009 11 18接受本文系国家自然科学基金(N os .20607004,20837003)资助项目*E m ai:l s h aob i ngch @s i na .co m 1 引 言 现有毒理学实验和野外调查研究表明,一些人工合成的化合物表现出类激素或抗激素作用 [1~5] ,其 中环境雌激素类物质如烷基酚、双酚A 、多氯联苯类等报道较多[6~8] ,而有关环境抗雌激素类物质的研 究却较少[9~13] 。他莫昔芬和来曲唑是典型的抗雌激素药物,主要用于治疗雌激素依赖型乳腺癌。据估计2005年国内他莫昔芬的年产量约为5万吨,这些药物在使用后最终会随着医疗废水、生活污水等排放进入污水处理系统。2006年,Roberts 等 [10] 在英国北部泰恩河下游污水处理厂出水中检测出他莫昔 芬,检出率为100%,最高浓度达212ng /L ;同年,Ann ick 等[11] 在瑞士Lausanne 和M o r ges 两个污水处理 厂出水中检测出1~4ng /L 他莫昔芬。有关环境水体中来曲唑的存在水平的报道很少。他莫昔芬及其光解产物能抑制网纹蚤等水生物生长分化,具有明显的慢性毒性作用[12] 。因此,研究环境水体中抗雌 激素类药物的存在水平和生态效应具有重要意义。 本研究以抗雌激素类药物他莫昔芬和来曲唑为研究对象,利用固相萃取富集净化,液相色谱 串联质谱技术分析城市生活污水中相关化合物,并应用于实际污水样品分析。 2 实验部分 2.1 仪器与试剂 W aters AC QU I TY TM 超高效液相色谱,M icro m ass Quattro Pre m ier XE 质谱仪(W aters 公司)。O asis HLB (500m g ,6mL)、Sep Pak C 18(500m g ,6mL)、Sep Pak NH 2(500m g ,3mL)和Sep Pak S ilica(500m g ,6mL)固相萃取(SPE )柱(W aters 公司);GF /A 玻璃纤维滤纸(W hat m an 公司)。 甲醇、乙腈(H PLC 级,D i k m a 公司),甲酸(H PLC 级,Fl u ka 公司),NH 3 H 2O 和H C l(分析纯,北京化学试剂公司)。他莫昔芬和来曲唑标准品(加拿大To r onto Research Che m icals 公司)。2.2 标准溶液的配制 准确称取他莫昔芬和来曲唑标准品各0.0100g ,分别置于10mL 棕色容量瓶中,用甲醇溶解并定容,混匀,配制成1.0g /L 的标准储备溶液,-18 避光保存。精密量取他莫昔芬和来曲唑储备液各 第38卷2010年2月 分析化学(FENX I HUAXU E) 研究报告Ch i nese Journa l o f A na l y tica l Che m i stry 第2期214~218

液相色谱串联质谱仪期间核查实验方法

液相色谱串联质谱仪期间核查实验方法 1 目的 用于质检站(检验公司)的液相色谱串联质谱仪在两次校准期间的仪器核查,以确保设备持续符合计量要求。 2 范围 适用于质检站(检验公司)液相色谱串联质谱仪的校准核查工作。 3 程序 3.1 信噪比 根据仪器供应商推荐的条件或者附录A 设定液相色谱条件并优化质谱条件,将检测离子的m/z 设定为表1中特征离子的m/z ,经色谱柱注入相应量的利血平。观察色谱图,记录其色谱峰峰高作为Hs 。同时记录信号峰后1min~3min 时间内的基线输出信号的最大值与最小值之差,记做Hn 。根据公式(1)计算信噪比S/N ,连续测量6次,以6次测量S/N 的平均值作为信噪比的结果。 S/N = Hs/Hn (1) 式中:Hs ——提取离子(m/z )的色谱峰峰高; Hn ——基线噪声值。 表1 信噪比测试条件 3.2 面积重复性 将检测离子的m/z 设为表2中特征离子的m/z ,经色谱柱注入相应量的利血平。观察色谱图,记录其色谱峰的峰面积。连续测量6次。根据公式(2)计算相对标准偏差(RSD ),作为面积重复性的结果。 %100x 1 1 6)x x (RSD 6 1 i 2 i ?? --= ∑= (2)

式中:x i——第i次测量的峰面积; x——6次测量的算术平均值; i——测量序号。 表2 面积重复性测量条件 3.3 性能指标 以上测量项目可根据日常检测项目情况具体安排核查项目,指标应满足表3要求。 表3 液相色谱串联色谱仪性能指标 附录A 液相色谱和质谱参数 色谱柱:C18色谱柱。 流速:0.2mL/min~0.4 mL/min。 流动相:ESI+与APCI+模式,甲醇:水=8:2(0.1%甲酸) ESI-模式,甲醇:水=8:2(0.1%甲酸+0.2%氨水)质谱调谐:首先使用仪器的质谱优化功能进行优化。可采用浓度为1.0μg/mL 的利血平溶液标准物质,以直接注入或经液相色谱进样的方式分别对质谱的毛细管电压值、锥孔电压值、碰撞能量、雾化气温度和气流大小等参数进行优化,使利血平在m/z 609的离子峰最高。 编制:批准:

DGLC-31 在线全二维液相色谱串联质谱分析刺五加提取物成分

应用文集 DGLC-31 在线全二维液相色谱串联质谱分析刺五加提取物成分关键词:提取物,刺五加,在线全二维,液质联用 DGLC-31 Determination of constituents in Radix Acanthopanacis Semticosi extracts by online 2D-HPLC method using LC-MS Key words:extracts, Radix Acanthopanacis Semticosi, online 2D-HPLC, LC-MS 引言 高效液相色谱技术已成为中药复杂体系研究的强有力的分析技术支撑,在中药质量控制方面占据重要的地位。当前,随着新型色谱固定相和填料技术的不断发展,为中药各类成分的分析提供多种选择。然而很多中药复方中通常涵盖强极性、中等极性和弱极性等化学成分,这种性质决定了其很难用单一的分离模式进行分离,复杂性超出了单一色谱分离系统的分离能力。在这种情况下,结合多种分离方式的多维色谱分离模式,可以增加色谱系统的分离能力,扩大分离空间,增加色谱峰容量,减少色谱峰重叠。多维液相色谱分离技术已成为液相色谱发展的一个重要方向。 刺五加是五加科五加属的一种落叶灌木,主要的药用部分是它的根及根皮,药材名又称五加参,是中药五加皮的一种。我国民间很早就将其作为药材使用,以达到扶正固本,益智安神,补肾健脾的功效。其系统的化学研究已比较深入,主要含有甾体类、香豆素类、木质素类、酚类、糖类、三萜类及有机酸、微量元素等。本文拟采用全二维液相色谱分离技术结合质谱对刺五加水提取物进行系统的物质基础分析。 测试条件 仪器:Ultimate DGP 3600系列,包括带有在线脱气单元的双三元梯度泵;柱温箱(配置一个六通阀和一个十通阀);DAD检测器。仪器条件及连接图见表1,一维和二维分离梯度程序见图1。 表1 仪器条件及连接图 一维分析柱Hypersil GOLD PFP,5μm 4.6×150mm(P/N: 25405-154630) 二维分析柱Acclaim Polar AdvantageⅡC18,120°3μm 4.6×50mm(S/N 001160 P/N: 063189) 柱温40℃ 流动相A一维分析泵:甲醇; 二维分析泵:乙腈 流动相B0.1%甲酸 流速0.5mL/min for 一维分析泵;2.4 mL/min for 二维泵 检测UV@218,230,275nm 进样量 5 μL

液相色谱串联质谱临床检测方法的开发与验证

·189·检验医学2019年3月第34卷第3期Laboratory Medicine,March 2019,V ol. 34,No. 3 液相色谱串联质谱临床检测方法的开发与验证 中国医师协会检验医师分会临床质谱检验医学专业委员会 摘要:液相色谱串联质谱(LC-MS/MS)是近年来发展极为迅速的新技术。该技术结合了液相色谱的高分离性能和质谱的高敏感性、高特异性等优势,被广泛应用于化工、生物、医药、食品、临床医学、环境等领域。在临床检验和诊断领域,LC-MS/MS作为传统诊断技术的补充,可提供更为准确、可靠的依据,使许多疾病得到准确、快速的诊断。文章结合目前已公布的LC-MS/MS方法相关验证指南、文献及实际操作经验,系统介绍了LC-MS/MS方法开发的关键流程,并以25-羟基维生素D3 [25(OH)D3]为实例介绍方法验证的关键要素,为LC-MS/MS技术临床应用方法的建立、验证和实施提供参考。 关键词:液相色谱串联质谱;方法开发;方法验证 Consensus of method development and validation of liquid chromatography-tandem mass spectrometry in clinical laboratories Clinical Mass Spectrometry Committee,Chinese Medical Doctor Association of Laboratory Medicine. Abstract:Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an emerging technology which has developed rapidly in recent years. It has combined the separation properties of liquid chromatography and the high sensitivity and specificity of mass spectrometry,which is widely applied in various areas,such as chemistry,biology,pharmaceutical science,food,clinic and environmental science. Especially in the field of clinical laboratory and diagnostics,LC-MS/MS used as a complement to traditional diagnostic techniques can often provide more accurate and reliable testing results in accurate and rapid diagnosis of diseases. In this review,some internationally published LC-MS/MS method validation guidelines,related literature and practical experience were summarized,and some key processes of LC-MS/MS development were introduced. Using 25-hydroxyvitamin D3 [25(OH)D3] as an example,the key elements of method validation were reviewed,in order to provide a reference for the establishment,veri?cation and implementation of LC-MS/MS. Key words:Liquid chromatography-tandem mass spectrometry;Method development;Method validation 文章编号:1673-8640(2019)03-0189-08 中图分类号:R446.1 文献标志码:A DOI:10.3969/j.issn.1673-8640.2019.03.001 近年来,各种检验新理论和新技术不断涌现,极大地推动了临床检验学科的发展。液相色谱串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)技术集液相色谱对复杂样本的高分离性能和质谱的高敏感性、高特异性于一体,在临床检验领域被广泛应用,如维生素D和激素检测、新生儿遗传代谢病筛查、治疗药物监测、药物中毒与药物滥用分析以及其他功能医学检测等,尤其在生物样本小分子物质的定量检测上应用越来越广泛。与传统的临床检验方法相比,LC-MS/MS技术具有敏感性高、特异性好、准确度高,且可以同时检测多个目标分析物等优点,有很好的临床应用前景;但也存在自动化程度低、仪器复杂、尚难以标准化等问题。为保障临床LC-MS/ MS技术的规范化使用,有必要在实验室建立液相色谱质谱方法时提供开发和验证的指导性意见。相信随着质谱仪敏感性的不断提高、样本前处理技术的持续改进、标准化方法和试剂的逐渐开发,LC-MS/MS技术将在临床检验领域发挥更大作用。 在采用LC-MS/MS技术开展临床检验前,必须建立相应的检测方法并对其进行验证。由于临床检测多针对生物样本(血清、血浆、全血、尿液、唾液、脑脊液、干血滤纸片、组织等),因此在方法开发过程中,需要对样本前处理方法、色谱条件和质谱条件进行开发和优化,确保建立的方法适合临床检测需求。为了保证检测结果的

相关文档
最新文档