过控课程设计 1

过控课程设计 1
过控课程设计 1

1 前言

本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识并查阅相关书籍完成设计。

本设计的液料为液氨,它是一种无色液体。氨作为一种重要的化工原料,应

,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点

用广泛。分子式NH

3

-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。蒸汽与空气混合物爆炸极限16~25%(最易引燃浓度17%)。氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。水溶液呈碱性。液态氨将侵蚀某些塑料制品,橡胶和涂层。遇热、明火,难以点燃而危险性较低; 但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。

设计基本思路:本设计综合考虑环境条件、介质的理化性质等因素,结合给定的工艺参数,机械按容器的选材、壁厚计算、强度核算、附件选择、焊缝标准的设计顺序,分别对储罐的筒体、封头、人孔接管、人孔补强、接管、管法兰、液位计、鞍座、焊接形式进行了设计和选择。设备的选择大都有相应的执行标准,设计时可以直接选用符合设计条件的标准设备零部件,也有一些设备没有相应标准,则选择合适的非标设备。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

2 设计选材及结构

2.1 工艺参数的设定

2.1.1 设计压力

根据《化学化工物性数据手册》查得40℃蒸汽压为1.555Mp(绝对压力),可以判断设计的容器为储存内压压力容器,按《压力容器安全技术监察规程》规定,盛装液化气体无保冷设施的压力容器,其设计压力应不低于液化气40℃时的饱和蒸汽压力,可取液氨容器的设计压力为Pc=1.1×1.555=1.7105 Mpa,属于中压容器。而且查得当容器上装有安全阀时,取1.05~1.3倍的最高工作压力作为设计压力;所以取1.7105 Mpa的压力合适。6.0Mpa≤Pc≤10Mpa属于中压容器。

2.1.2 筒体的选材及结构。设计温度为40摄氏度,在-20~200℃条件下工作属于常温容器。

根据液氨的物性选择罐体材料,碳钢对液氨有良好的耐蚀性腐蚀率在0.1㎜/年以下,且又属于中压储罐,可以考虑20R和16MnR这两种钢材。如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济。所以在此选择16MnR钢板作为制造筒体和封头材料。钢板标准号为GB6654-1996。筒体结构设计为圆筒形。因为作为容器主体的圆柱形筒体,制造容易,安装内件方便,而且承压能力较好,这类容器应用最广。

2.1.3 封头的结构及选材。

封头有多种形式,半球形封头就单位容积的表面积来说为最小,需要的厚度是同样直径圆筒的二分之一,从受力来看,球形封头是最理想的结构形式,但缺点是深度大,直径小时,整体冲压困难,大直径采用分瓣冲压其拼焊工作量也较大。椭圆形封头的应力情况不如半球形封头均匀,但对于标准椭圆形封头与厚度相等的筒体连接时,可以达到与筒体等强度。它吸取了蝶形封头深度浅的优点,用冲压法易于成形,制造比球形封头容易,所以选择椭圆形封头,结构由半个椭球面和一圆柱直边段组成。查椭圆形封头标准(JB/T4737-95)

表2.1 标准椭圆封头 公称直径DN

曲面高度h1 直边高度h2 内表面积A/㎡ 溶剂V/m 3 2600

650 40 7.63 2.51

封头取与筒体相同材料。

3 设计计算

3.1 筒体壁厚计算

查 《压力容器材料使用手册-碳钢及合金钢》得16MnR 的密度为7.85t/m3[]t σ,熔点为1430℃,许用应力列于下表:

表3.1 16MnR 许用应力 钢号 板厚/mm

在下列温度(℃)下的许用应力/Mpa

≤20 100 150 200 250 300 16MnR 6~16

170 170 170 170 156 144 16~36

163 163 163 159 147 134 36~60

157 157 157 150 138 125 >60~100

153 153 150 141 128 116

圆筒的计算压力为1.7105 Mpa,容器筒体的纵向焊接接头和封头的拼接接头都采用双面焊或相当于双面焊的全焊透的焊接接头,取焊接接头系数为1.00,全部无损探伤。取许用应力为170 Mpa 。

壁厚: (3—1)

钢板厚度负偏差C1=0,查材料腐蚀手册得40℃下液氨对钢板的腐蚀速率小于0.05㎜/年,所以双面腐蚀取腐蚀裕量C2=2㎜。

[]mm p D p c t i c 1.137.10.1170226007.12=-???=-=φσδ

所以设计厚度为:

δn =δ +C1+C2 +Δ=15.1mm 近似为16mm

故取dn =16mm 厚的16MnR 钢板制作罐体。

3.2 封头壁厚计算

标准椭圆形封头a:b=2:1 封头计算公式 :

(3-2)

可见封头厚度近似等于筒体厚度,则取同样厚度。因为封头壁厚<20㎜则标准椭圆形封头的直边高度h0=40㎜,则δn=16mm

3.3 压力试验

水压试验,液体的温度不得低于5℃; 试验方法:试验时容器顶部应设排气口,充液时应将容器内的空气排尽,试验过程中,应保持容器外表面的干燥。试验时压力应缓慢上升,达到规定试验压力后,保压时间一般不少于30min 。然后将压力降至规定试验压力的80%,并保持足够长的时间以便对所有焊接接头和连接部位进行检查。如有渗漏,修补后重新试验。 水压试验时的压力

[][]pa 14.27105.125.125.1t

M p Pt =?=??= (3—3) de= dn -C1-C2 =16-0-1=15mm

δs=345 MPa

(3-4)

水压试验的应力校核:

水压试验时的应力 0.9*φ*δs=0.9x1.0x345 =310.5MPa

水压试验时的许用应力为 故筒体满足水压试验时的强度要求。

MPa D p e e i T T 5.18615

2)152600(14.22)(=?+?=+=δδδ[]mm p D p c t i c 3.135.07.10.1170226007.15.02=?-???=-=φσδ

4 附件选择

4.1 人孔选择

人孔的作用:为了检查压力容器在使用过程中是否产生裂纹、变形、腐蚀等缺陷。人孔的结构:既有承受压力的筒节、端盖、法兰、密封垫片、紧固件等受压元件,也有安置与启闭端盖所需要的轴、销、耳、把手等非受压件。人孔类型:从是否承压来看有常压人孔和承压人孔。从人孔所用法兰类型来看,承压人孔有板式平焊法兰人孔、带颈平焊法兰人孔和带颈对焊法兰人孔,在人孔法兰与人孔盖之间的密封面,根据人孔承压的高低、介质的性质,可以采用突面、凹凸面、榫槽面或环连接面。从人孔盖的开启方式及开启后人孔盖的所处位置看,人孔又可分为回转盖人孔、垂直吊盖人孔和水平吊盖人孔三种。

人孔标准HG21524-95规定PN≥1.0Mpa时只能用带颈平焊法兰人孔或带颈对焊法兰人孔。

容器上开设人孔规定当Di>1000时至少设一个人孔,压力容器上的开孔最好是圆形的,人孔公称直径最小尺寸为φ400㎜。

综合考虑选择水平吊盖带颈对焊法兰人孔(HG21524-95),公称压力PN1.7、公称直径DN450、H1=320、RF型密封面、采用Ⅵ类20R材料、垫片采用外环材料为低碳钢、金属带为0Cr19Ni9、非金属带为柔性石墨、C型缠绕垫。标记为:人孔RFⅥ(W·C-1220)450-2.5HG21524-95总质量为256kg.法兰标准号为HGJ50~53-91,垫片标准号为HGJ69~72-91,法兰盖标准HGJ61~65-91材料为20R,螺柱螺母标准HGJ75-91螺柱材料40Cr螺母材料45,吊环转臂和材料Q235-A·F,垫圈标准为GB95-85材料100HV,螺母标准GB41-86,吊钩和环材料Q235-A·F,无缝钢管材料为20,支承板材料为20R。

尺寸表如图

表4.1 人孔标准尺寸表

密封面形式PN/Mpa DN dw×s d D1 D2 H1 H2

总质

量Kg

突面 1.7 450 480×12 450 484 760 320 214 256

4.2 人孔补强的计算

开孔补强结构:压力容器开孔补强常用的形式可分为补强圈补强、厚壁管补强、整体锻件补强三种。 补强圈补强是使用最为广泛的结构形式,它具有结构简单、制造方便、原材料易解决、安全、可靠等优点。在一般用途、条件不苛刻的条件下,可采用补强圈补强形式。但必须满足规定的条件。 压力容器开孔补强的计算方法有多种,为了计算方便,采用等面积补强法,即壳体截面因开孔被削弱的承载面积,必须由补强材料予以等面积的补偿。当补强材料与被削弱壳体的材料相同时,则补强面积等于削弱的面积。补强材料采用16MnR 。

1、内压容器开孔后所需的补强面积

)1(2r et f d A -+=δδδ (4-1) 式中开孔直径

mm C d d i 469224652=?+=+= (4-2) 强度消弱系数

[][]78.0170/133===t t n r f σσ

(4-3) 壳体开孔处的计算厚度13.1mm

接管有效厚度

mm c en et

10212=-=-=δδ (4-4)

则 9.6200)170/1331(101.1321.13469=-???+?=A (4-5)

2、有效补强面积即已有的加强面积 壳体开孔后,在有效补强范围内,可作为补强的截面积(包括来自壳体、接管、焊缝金属、补强元件)

321A A A A e ++=

(4-6) 筒体上多余金属面积

)1)((2))((1r e et e f d B A -----=δδδδδ

(4-7) 有效补偿宽度 B=2d

筒体的有效厚度 14216=-=e δ

所以

18.418)170/1331()1.1314(102)1.1314(4691=-?-??--?=A m ㎡ (4-8)

人孔接管上多余的面积

r et r t et f C h f h A )(2)(22212-+-=δδδ (4-9)

外侧有效高度

02.75469121=?==d h nt δ

内侧有效高度即实际内伸高度2h =0

接管计算厚度

[]00.371

.111332)16480(71.12=-??-?=-=c t n i c t p d p φσδ (4-10) 69.821170/133)310(4691222=?-???=A (4-11)

焊缝金属截面积 2314412122

12mm A =???= 所以

232178.138314469.82118.418mm A A A A e =++=++=

(4-12) 比较e A A >

满足以下条件的可选用补强圈补强:刚材的标准常温抗拉强度b σ≤540Mpa ;补强圈厚度应小于或等于壳体壁厚的1.5倍;壳体名义厚度n δ≤38㎜;设计压力<4Mpa ;设计温度≤350℃。可知本设计满足要求,则采用补强圈补强。 所需补强圈的面积为:

2403.4817mm A A A e =-=

补强圈的结构及尺寸:为检验焊缝的紧密型,补强圈上钻M10的螺孔一个,以通入压缩空气检验焊缝质量。按照根据焊接接头分类,接管、人孔等与壳体连接的接头,补强圈与壳体连接的接头取D 类焊缝。根据补强圈焊缝要求,并查得结构图为带补强圈焊缝T 型接头,补强圈坡口取B 型(查《化工容器及设备

简明设计手册》)。查标准HG 21506-92 得补强圈外径

2

D0=760,内径)5~3(0+=d D i 则取485㎜。

计算补强圈厚度:

mm D B A c 63.10485

246903.48174=-?=-=δ 查标准补强圈厚度取20㎜,计算的补强圈厚度也满足补强圈补强的条件。 查得对应补强圈质量为42.3㎏

4.3 进出料接管的选择 .

材料:容器接管一般应采用无缝钢管,所以液体进料口接管材料选择无缝钢管,采用无缝钢管标准GB8163-87。材料为16MnR 。 结构:接管伸进设备内切成45度,可避免物料沿设备内壁流动,减少物料对壁的磨损与腐蚀。 接管的壁厚要求:接管的壁厚除要考虑上述要求外,还需考虑焊接方法、焊接参数、加工条件、施焊位置等制造上的因素及运输、安装中的刚性要求。一般情况下,管壁厚不宜小于壳体壁厚的一半,否则,应采用厚壁管或整体锻件,以保证接管与壳体相焊部分厚度的匹配。 不需另行补强的条件:当壳体上的开孔满足下述全部要求时,可不另行补强。

① 设计压力小于或等于2.5Mpa 。

② 两相邻开孔中心的距离应不小于两孔直径之和的2倍。

③ 接管公称外径小于或等于89㎜。

④ 接管最小壁厚满足以下要求。

表4.2 接管最小壁厚要求 接管公称直径/mm

57 76

65

89 最小壁厚/mm 5.0

6.0

因此热轧无缝钢管的尺寸为φ89×12㎜。 钢管理论重量为22.79㎏/m 。取接管伸出长度为150㎜。

管法兰的选择:根据平焊法兰适用的压力范围较低(PN<4.0Mpa),选择突面板式平焊管法兰,标记为:HG20592-1997法兰RF(A)80-2.5,其中D=190,管法兰材料钢号(标准号):20(GB711)。根据(欧洲体系)钢制管法兰、垫片、垫片、紧固件选配表(HG20614-1997)选择:垫片型式为石棉橡胶板垫片(尚无标准号),密封面型式为突面,密封面表面为密纹水线,紧固件型式为六角螺栓双头螺柱全螺纹螺柱。在离筒体底以上250㎜处安装容器出料管,容器内的管以弯管靠近容器底,这种方式用于卧式容器。出料口的基本尺寸以及法兰与进料口相同。进出料接管满足不另行补强的要求所以不再另行补强[5] 4.4 液面计的设计。

液面计的种类很多,常用的有玻璃板液面计和玻璃板液面计。它们都是外购的标准件,只需要选用。玻璃板液面计有三种:透光式玻璃板液面计、反射式玻璃板液面计、视镜式玻璃板液面计。

根据选用表选用:选用反射式玻璃板液面计,标准号HG21590-95,法兰形式及其代号C型(长颈对焊突面管法兰HG20617-97),液面计型号R型公称压力PN4.0,使用温度0~250℃,液面计的主题材料代号:锻钢(16Mn),结构形式及其代号:普通型(无代号),公称长度为1450mm,排污口结构:V(排污口配螺塞)。液面计标记为:液面计CR4.0-Ⅰ-1450V 根据筒体公称直径3000㎜选择两个同样的液面计,单个质量为90㎏左右。两个液面计接口管的安装位置如装配图所画。液面计接管:无缝钢管GB8163-87热轧钢管,尺寸为φ89×12㎜[4]

4.5 安全阀的选择。

安装位置:在离右封头切线处1150处安装一安全阀。

由操作压力决定安全阀的公称压力,由操作温度决定安全阀的使用温度范围,所以由本设计的温度、压力、介质等基本参数可以查得标准型号A21H-40,公称通径DN取20㎜,质量约为80㎏。与安全阀和接管连接的法兰选择突面板式平焊管法兰HG20592-1997法兰RF(A)80-2.5,与壳体连接的接管为无缝钢管GB8163-87热轧钢管,尺寸为φ89×12㎜[5]

4.6 排污管的选择

安装位置:在离右鞍座的左侧1000mm处安装一个排污管。选择无缝钢管

GB8163-87热轧钢为材料的排污管焊接在容器底部,尺寸为φ89×12㎜。管端法兰:突面板式平焊管法兰HG20592-1997法兰RF(A)80-2.5,法兰一端连接排污阀(截止阀),型号J41H-40,取公称通径为80㎜,对应质量为44.4㎏。排污阀的结构是利用装在阀杆下面的阀盘与阀体的突缘部分相配合,一控制阀的启闭。结构较闸阀简单,制造、维修方便。可以调节流量,应用广泛。

4.7 鞍座的选择。

4.7.1 鞍座结构和材料的选取

卧式容器的支座有三种形式:鞍座、圈座、和支腿,常见的卧式容器和大型卧式储罐、换热器等多采用鞍座,它是应用得最为广泛的一种卧式容器支座。置于支座上的卧式容器,其情况和梁相似,有材料力学分析可知,梁弯曲产生的应力与支点的数目和位置有关。当尺寸和载荷一定时多支点在梁内产生的应力较小,因此支座数目似乎应该多些好。但对于大型卧式容器而言,当采用多支座时,如果各支座的水平高度有差异或地基沉陷不均匀,或壳体不直不圆等微小差异以及容器不同部位受力挠曲的相对变形不同,是支座反力难以为个支点平均分摊,导致课题应力增大,因而体现不出多制作的优点,故一般情况采用双支座。采用双支座时选取的原则如下:

①双鞍座卧式容器的受力状态可简化为受均布载荷的外伸梁,由材料力学知,当外伸长度A=0.207L时,跨度中央的弯矩与支座截面处的弯矩绝对值相等,所以一般近似取.2L0A≤,其中L取两封头切线间距离,A为鞍座中心线至封头切线间距离。

②当鞍座邻近封头时,则封头对支座处筒体有加强刚性的作用。为了充分利

5.0R。

用这一加强效应,在满足.A≤0.2L下应尽量使A≤

此外,卧式容器由于温度或载荷变化时都会产生轴向的伸缩,因此容器两端的支座不能都固定在基础上,必须有一端能在基础上滑动,以避免产生过大的附加应力。通常的做法是将一个支座上的地脚螺栓孔做成长圆形,并且螺母不上紧,使其成为活动支座,而另一支座仍为固定支座。所以本设计就采用这种支座结构。根据设备的公称直径和容器的重量参照鞍座标准JB/T4712-1992选取鞍座结构及尺寸。鞍座的材料(除加强垫板除外)为Q235-A·F,加强垫板的材料应与设备壳体材料相同为16MnR。

4.7.2 容器载荷计算

筒体的质量1m :查得圆筒体理论质量为1778㎏/m,筒体长度加上封头的直边长度为6m,则W1=1778×6=10668㎏。 封头的质量2m:根据封头的名义厚度查得2:1标准椭圆形封头理论质量为1901㎏。 水压试验时水的质量3m :由常用压力容器手册查得公称直径3000mm 厚24mm 的标准椭圆封头的容积为3.8873m,则容器容积为:

4575.499.534887.322=??+?=+=π筒体封头V V V (4-13) 水重 3m=49.4575×1000=49457.5㎏。 附件的质量4m :人孔重256kg,人孔补强重42.3kg,进出料管约100kg,两个液面计共180kg,安全阀80kg,排污阀44.4kg,再加上与阀门相接的接管重量,附件总质量约为750kg. 所以设备总质量为62776.5kg.即627.765kN[1,3,5]

4.7.3 鞍座选取标准 .

查得公称直径为3000mm 的容器选择轻型(A),120°包角、焊制、六筋、带垫板,高度为250mm 的鞍座,允许载荷Q786kN>627.765kN,为使封头对鞍座处的圆筒起加强作用,可取A ≤0.5m R ,则选A=700mm 。左鞍座标记为JB/T4712-1992 鞍座 A3000-F.右鞍座标记为JB/T4712-1992 鞍座 A3000-S.

具体尺寸表如下

表4.3 鞍座标准尺寸表 公称直径

允许载荷 鞍座高度 螺栓间距 鞍座质量 /Kg 增加100mm 高度增加的质量/Kg DN

Q/kN h 12 2600

786 250 1940 405 34

4.7.4 鞍座强度校核

鞍座腹板的水平分力:

F K Fs 9= (4-14) 查得鞍座包角120°对应系数

204.09=K

支座反应力: kN mg F 8825.3132

== (4-15) 鞍座腹板有效界面内的水平方向平拉应力: re

r b Hsb Fs δσ+=09 (4-16) Hs ——计算高度,取鞍座实际高度和3m R 两者中的较小值,mm

0b ——鞍座腹板厚度,mm

r b ——鞍座腹板有效宽度,取垫板宽度4b 与圆筒体的有效宽度e m R b b δ56.12+=两者中的较小值,mm

re δ——鞍座垫板有效厚度,10mm

则 Mpa b Hsb Fs re r m 538.810

500102505.313882204.009=?+??=+=δσ (4-17) 应力校核:鞍座材料Q235-A ·F 的许用应力

[][][]sa 9sa 3

2pa 333.8332,125σσσσ≤==,则M Mpa sa 5 容器焊缝标准

5.1 压力容器焊接结构设计要求

焊缝分散原则;避免焊缝多条相交原则;对称质心布置原则;避开应力复杂区或应力峰值去原则;对接钢板的等厚连接原则;接头设计的开敞性原则;焊接坡口的设计原则(焊缝填充金属尽量少;避免产生缺陷;焊缝坡口对称;有利于焊接防护;焊工操作方便;复合钢板的坡口应有利于减少过渡层焊缝金属的稀释率)。

5.2 筒体与椭圆封头的焊接接头

压力容器受压部分的焊接接头分为A 、B 、C 、D 四类,查得封头与圆筒连接的环向接头采用A 类焊缝。 焊接方法:采用手工电弧焊,其原理是利用电弧热量融化焊条和母材,由融化的金属结晶凝固而形成接缝,焊接材料为碳钢、低合金钢、不锈钢,应用范围广,适用短小焊缝及全位置施焊,可适用在静止、冲击和振动载荷下工作的坚固密实的焊缝焊接,这种方法灵活方便,适应性强,设备简单,维修方便,生产率低,劳动强度高。 封头与圆筒等厚采用对接焊接。平行长度任取。坡口形式为I 型坡口。

根据16MnR 的抗拉强度b σ=490Mpa 和屈服点s σ=325Mpa 选择E50系列(强度要求:b σ≥490Mpa ;s σ≥400Mpa )的焊条,型号为E5014.该型号的焊条是铁粉钛型药皮(药皮成分:氧化钛30%,加铁粉),适用于全位置焊接,熔敷效率较高,脱渣性较好,焊缝表面光滑,焊波整齐,角焊缝略凸,能焊接一般的碳钢结构。

5.3 管法兰与接管的焊接接头

管法兰与接管焊接接头形式和尺寸参照标准HG20605-97,根据公称通经DN 80选择坡口宽度b=6mm ,如附图中的局部放大图所示。

5.4 接管与壳体的焊接接头

所设的接管都是不带补强圈的插入式接管,接管插入壳体,接管与壳体间的焊接有全焊透和部分焊头两种,它们的焊接接头均属T 形或角接接头。选择HG20583-1998标准中代号为G2的接头形式,基本尺寸为,3

1;5.01;5.02;550t o o k p b δβ=±=+=±=且6≥k ,它适用于s t s δδδ2

1,25~4≥=,因为所选接管的厚度都为壳体厚度的一半,壳体的厚度为24mm ,所以符合要求。选择全焊透工艺,可用于交变载荷,低温及有较大温度梯度工况。

6总结

通过这次课程设计让我更加了解了,压力容器的制作原理,深刻理解上课老师所讲授的知识,同时亲身的设计也从问题中找到自己的不足,和如何处理发现的问题,细心的处理每一个环节,为以后走出校门增加了自己的学识。

说实话,亲身设计了压力容器后才发现,自己所学的知识真是,用时方恨少了,还有对老师上课讲解的问题记忆不牢靠,许多简而易见的事情,往往脑袋转不过个,导致浪费了很多时间。查找资料,筛选自己所能用到的东西,也是对我来说一种相当困难的考验,因为资料里的东西往往能用到的很少,并不是想你想要的那样,所以需要自己提炼、精简,这样才能得到你所要的东西。

总而言之,通过这次课程设计,让我对化工设备机械基础这门课有了进一步的认识。这次课设是对这门课程的一个总结,对化工机械知识的应用。设计时要有一个明确的思路,要考虑多种因素包括环境条件和介质的性质等再选择合适的设计参数,对罐体的材料和结构确定之后还要进行一系列校核计算,包括筒体、封头的应力校核,以及鞍座的载荷和应力校核。校核合格之后才能确定所选设备型符合要求。通过这次设计对我们独自解决问题的能力也有所提高。在整个过程中,我查阅了相关书籍及文献,取其相关知识要点应用到课设中,而且其中有很多相关设备选取标准可以直接选取,这样设计出来的设备更加符合要求。在设计的最后附有CAD设备图,在绘图的整个过程中,我对制图软件的操作更加熟悉。这次课设的书写中对格式的要求也很严格,在老师的指导下我们按照毕业设计的格式要求完成课设。这就为我们做毕业设计打下了基础。因为的知识有限,所做出的设计存在许多缺点和不足,请老师做出批评和指正。最后感谢老师对这次课设的评阅。

参考文献

[1] 过程装备机械基础李勤李福宝

[2] GB150—1998,中国国家标准,钢制压力容器;

[3] 董大勤、袁凤隐编,压力容器与化工设备实用手册,化学工业出版社,2000年

[4] 化工部第六设计研究院编,化工设备图样技术要求,化工工业部设计技术中心站;

[5] 全国压力容器标准化技术委员会设计分委会,钢制压力容器设计指南,1993年;

[6] 赵军,张有忱等编. 化工设备机械基础. 第二版. 北京:化学工业出版社,2007.7

[7] 《压力容器实用技术丛书》编写委员会编. 压力容器设计知识. 北京:化学工业出版社,2005.7

[8] 刘湘秋编. 常用压力容器手册. 北京:机械工业出版社,2004.6

[9] 董大勤编. 化工设备机械基础. 北京:化学工业出版社,2003

[10] 贺匡国. 化工容器及设备简明设计手册,第二版. 2002.4

[11] 余国琮. 化工机械工程手册,上卷. 北京:化学工业出版社

[12] 郑晓梅编. 化工制图. 北京:化学工业出版社,2001.11

[13] 林大军编著. 简明化工制图. 北京:化学工业出版社,2005.6

过程装备控制及应用课设报告书

目录 第一章工艺流程简介 1.1工艺流程文字叙述…………………………………………………4. 1.2工艺流程图 (4) 第二章调节阀设计计算 2.1调节阀流量系数计算 (4) 2.2调节阀原理图和外型结构图 (5) 第三章控制回路设计 3.1 比值控制回路设计 (5) 3.2 均匀控制回路设计 (6) 3.3 前馈反馈控制回路设计 (7) 3.4 串级控制回路设计 (8) 第四章按工程标准符号绘制的带控制点的工艺流程图 (10) 第五章蒸汽贮罐设计 (11) 第六章结语 (17) 参考文献

过程装备综合课程设计任务书3—控制设计部分 说明:此表一式3份,学生、指导教师、系部各一份。 2013年12月20日 学 号 101610041162 学生姓名 陈妃墨 专业(班级) 10过程装2班 设计题目 控制系统与调节阀设计 设 计 技 术 参 数 调节阀设计参数: 调节阀类型:直通单座阀 调节阀流量: 控制系统类型: (其它具体参数见附表) 设 计 要 求 1设计说明书要求计算准确,文字工整。 用CAD 绘制的调节阀的结沟图要与设计计算的结构尺寸一致。 用CAD 绘出带控制点的工艺流程图要求清晰准确,符合工程图纸要求。 从工程实际出发分析当负载波动时调节器与调节阀的工作过程。 工 作 量 1 按给出的参数要求进行调节阀的设计计算,绘出CAD 图纸. (A4纸) (资料中的参考数据均可采用.) 2 用 CAD 绘出参考的工艺流程图和流程文字说明. (A4纸) 3 根据给出的工艺流程进行4-5个复杂控制回路设计,(每人必有1--2个可监控的控制回路)要求绘出控制原理图,方框图;设计中可以添加相关设备,并逐个分析你所设计的控制回路在载荷波动时如何满足控制要求. (注明调节器和调节阀 的正 、反作用) 4 按工程标准符号要求绘出含控制点的工艺流程图(A3纸) 5 设计完成时要求上交用A4和A3纸打印的3张图纸,设计计算的文字材料(每个控制回路的控制原理图,方框图加文字说明用一页纸)总计3000字以上。 工 作 计 划 查阅检索资料及设计计算2-3天 绘图、写说明书、准备答辩3-4天 参 考 资 料 [1] 王毅. 过程装备控制技术[M].北京:化学工业出版社,2001. [2] 林锦国 过程控制系统仪表装置[M]南京:东南大学出版社,2006. [3] 陆培文.调节阀实用技术[M].北京:机械工业出版社,2006. [4] 翁维勤 .过程控制系统 [M].北京:化学工业出版社,2004. [5] 胡国祯.化工仿真[M].北京:化学工业出版社,2004. 指导教师签字 郭 奇 基层教学单位主任签 字

【VIP专享】运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间 2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博 __ 学号 41151093 指导教师潘月斗 ___ 成绩 _______

摘 要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

管式加热炉串级系统控制过控课设解析

学号1422060213 天津城建大学 过程控制课程设计 设计说明书 串级温度控制系统设计 起止日期:2017 年7 月 3 日至2017 年7 月7 日 学生姓名侯亚东 班级14自动化2班 成绩 指导教师(签字) 控制与机械工程学院 2017年7月7日

天津城建大学 课程设计任务书 2016 -2017学年第 2学期 控制与机械工程 学院 自动化专业 班级 14自动化2班 姓名 侯亚东 学号 1422060213 课程设计名称: 过程控制 设计题目: 串级温度控制系统设计 完成期限:自 2017 年 7 月 3 日至 2017 年 7 月 7 日共 1 周 设计依据、要求及主要内容: 一、设计任务 管式加热炉系统,考虑将燃烧室温度作为副变量,烧成温度作为主变量,主、副对象的传递函数分别为: 2017()81 s G s e s -=+,021()(101)(201)G s s s =++ 试采用串级控制设计温度控制系统,具体要求如下: 1) 进行控制方案设计,包括调节阀的选择、控制器参数整定,给出相应的闭环系统原理图; 2) 进行仿真实验,给出系统的跟踪性能和抗干扰性能; 3)说明不同控制方案对系统的影响。 二、设计要求 采用MATLAB 仿真;需要做出以下结果: (1) 超调量 (2) 峰值时间 (3) 过渡过程时间 (4) 余差 (5) 第一个波峰值 (6) 第二个波峰值 (7) 衰减比 (8) 衰减率 (9) 振荡频率 (10)全部P 、I 、D 的参数 (11)PID 的模型 (12)设计思路 三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。

测量平差课程设计指导书word文档

《误差理论与测量平差》课程设计指导书 (测绘工程专业) 2011年6月

《误差理论与测量平差》课程设计指导书 适用专业:测绘工程 学分数:1 学时数:1周 1.设计的目的 《测量平差》是一门理论与实践并重的课程,测量平差课程设计是测量数据处理理论学习的一个重要实践环节,是在学生学习了专业基础理论课《误差理论与测量平差基础》课程后进行的一门实践课程,其目的是增强学生对测量平差基础理论的理解,牢固掌握测量平差的基本原理和公式,熟悉测量数据处理的基本原理和方法,灵活准确地应用于解决各类数据处理的实际问题,并能用所学的计算机基础知识,编制简单的计算程序。 2.设计的任务 (1)该课的课程设计安排在理论学习结束之后进行的,主要是平面控制网和高程控制网严密平差,时间为一周。 (2)通过课程设计,培养学生运用本课程基本理论知识和技能,分析和解决本课程范围内的实际工程问题的能力,加深对课程理论的理解与应用。 (3)在指导老师的指导下,要求每个学生独立完成本课程设计的全部内容。

3.课程设计要求 3.1基本要求: 测量平差课程设计要求每一个学生必须遵守课程设计的具体项目的要求,独立完成设计内容,并上交设计报告。在学习知识、培养能力的过程中,树立严谨、求实、勤奋、进取的良好学风。 课程设计前学生应认真复习教材有关内容和《测量平差》课程设计指导书,务必弄清基本概念和本次课程设计的目的、要求及应注意的事项,以保证保质保量的按时完成设计任务。 3.2具体设计项目内容及要求: 3.2.1高程控制网严密平差及精度评定 总体思路:现有等级水准网的全部观测数据及网型、起算数据。要求对该水准网,分别用条件、间接两种方法进行严密平差,并进行平差模型的正确性检验。 水准网的条件平差: ①列条件平差值方程、改正数条件方程、法方程; ②利用自编计算程序解算基础方程,求出观测值的平 差值、待定点的高程平差值; ③评定观测值平差值的精度和高程平差值的精度。 ④进行平差模型正确性的假设检验。 水准网的间接平差: ①列观测值平差值方程、误差方程、法方程; ②利用自编计算程序解算基础方程,求出观测值的平

过程控制工程课程设计

过程控制工程 课程设计任务书 设计名称:扬子烯烃厂丁二烯装置控制模拟设计设计时间:2006.2.20~2006.3.10 姓名:毛磊 班级:自动化0201 学号:05号 南京工业大学自动化学院 2006年3月

1.课程设计内容: 学习《过程控制工程》课程和下厂毕业实习2周后,在对扬子烯烃厂丁二烯装置的实际过程控制策略、实习环节的控制系统以及相应的组态软件有一定的认识和了解的基础上,针对扬子烯烃厂丁二烯装置,设计一个复杂控制系统(至少包含一个复杂回路和3-5个简单回路),并利用组态软件进行动态仿真设计,调节系统控制参数,使控制系统达到要求的控制效果。 1)独立完成设计任务,每个人根据下厂具体实习装置,确定自己的课程设 计题目,每1-3人/组; 2)选用一种组态软件(例如:采用力控组态软件)绘制系统工艺流程图; 3)绘制控制系统原有的控制回路; 4)利用下厂收集的实际数据和工艺要求,选择被控对象模型,利用组态软 件,对控制系统进行组态; 5)改进原有的控制回路,增加1-2个复杂回路,并进行组态; 6)调节控制参数,使性能指标达到要求; 7)写出设计工作小结。对在完成以上设计过程所进行的有关步骤:如设计 思想、指标论证、方案确定、参数计算、元器件选择、原理分析等作出 说明,并对所完成的设计做出评价,对自己整个设计工作中经验教训, 总结收获。 2. 进度安排(时间3周) 1)第1周选用一种组态软件绘制系统工艺流程图;绘制控制系统原有的 控制回路; 2)第2周利用下厂收集的实际数据和工艺要求,选择被控对象模型,利 用组态软件,对控制系统进行组态; 3)第3周(1-3) 改进原有的控制回路,增加1-2个复杂回路,并进行组态; 调节控制参数,使性能指标达到要求; 4)第3周(4) 书写课程设计说明书 5)第3周(5) 演示、答辩

运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博__ 学号 指导教师潘月斗 ___ 成绩 _______

摘要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

控制装置与仪表课程设计

控制装置与仪表课程设计 课程设计报告( 2012-- 2013年度第二学期) 名称:控制装置与仪表课程设计 题目:炉膛压力系统死区控制系统设计 院系: 班级: 学号: 学生姓名: 指导教师: 设计周数:一周 成绩: 日期:2013年7 月5日

一、课程设计(综合实验)的目的与要求 1.1 目的与要求 (1)认知控制系统的设计和控制仪表的应用过程。 (2)了解过程控制方案的原理图表示方法(SAMA图)。 (3)掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM数据写入器的使用方法。 (4)初步了解控制系统参数整定、系统调试的过程。 1.2设计实验设备 KMM数字调节器、KMM程序写入器、PROM擦除器、控制系统模拟试验台1 1.3主要内容 1. 按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2 . 组态设计 2.1 KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写 KMM的各组态数据表。 2.2 组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3. 控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4. 系统调试 设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下内容: 1)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 二、设计(实验)正文 1设计题目:炉膛压力系统死区控制系统设计(如附图1) 附图1: 引风机 炉膛压力系统死区单回路控制系统

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

过控课设蒸发器前馈-反馈控制

过控课设目录 第一章前馈-反馈控制与设计任务 (2) 1.1 前馈控制 (2) 1.2 反馈控制 (2) 1.3 设计任务 (2) 1.4 设计要求 (2) 1.5 设计报告 (2) 第二章前馈-反馈系统 (2) 2.1 前馈控制系统的组成 (3) 2.2 前馈控制系统的特点 (3) 2.3 前馈-反馈复合控制系统特性分析 (4) 第三章前馈-反馈仿真分析 (7) 3.1 系统分析 (7) 3.2 静态系统仿真图 (8) 3.2 动态系统仿真 (9) 3.3 系统跟踪性能与抗干扰性能 .............................................. . 9 第四章总结 .. (11) 参考文献 (12)

第一章前馈-反馈控制与设计任务 1.1 前馈控制 前馈控制(英文名称为Feedforward Control),是按干扰进行调节的开环调节系统,在干扰发生后,被控变量未发生变化时,前馈控制器根据干扰幅值,变化趋势,对操纵变量进行调节,来补偿干扰对被控变量的影响,使被控变量保持不变的方法。 1.2 反馈控制 反馈控制(英文名称为Feedback Control),是指从被控对象获取信息,按照偏差的极性而向相反的方向改变控制量,再把调节被控量的作用馈送给控制对象,这种控制方法称为反馈控制,也称作按偏差控制。反馈控制总是通过闭环来实现的。反馈控制的特点:反馈控制的特点有:按偏差进行调节;调节量小,失调量小;能随时了解被控变量变化情况;输出影响输入(闭环)。反馈控制必须有偏差才能进行调节,调节作用落后于干扰作用;调节不及时,被控变量总是变化的。 1.3 设计任务 蒸发器的控制通道传递函数为,G01(s)=Wo(s)= 0.94/(55s+1)e-6s,扰动通道特性为G02(s)=Wf(s)=1.05/(41s+1)e-8s试设计前馈-反馈控制系统,具体要求如下: 1.4 设计要求 1) 采用matlab仿真分析不同形式前馈控制器对系统性能的影响; 2)采用matlab仿真分析不同形式前馈-反馈控制器对系统性能的影响; 3) 选择一种较为理想的控制方案进行设计,给出相应的闭环系统原理图; 4)进行仿真实验,给出系统的跟踪性能和抗干扰性能。 1.5 设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 第二章前馈-反馈系统 2.1 前馈控制系统的组成 在热工控制系统中,由于被控对象通常存在一定的纯滞后和容积滞后,因而从干扰产生到被调量发生变化需要一定的时间。从偏差产生到调节器产生控制作用以及操纵量改变到被控量发生变化又要经过一定的时间,可见,这种反馈控制方案的本身决定了无法将干扰对被控量的影响克服在被控量偏离设定植之前,从而限制了这类控制系统控制质量的进一步提高。考虑到偏差产生的直接原因是干扰作用的结果,如果直接按扰动而不是按偏差进行控制,也就是说,当干扰一出现调节器就直接根据检测到的干扰大小和方法按一定规律去控制。由于干扰发生后被控量还未显示出变化之前,调节器就产生了控制作用,这在理论上就可以把偏差彻底消除。按照这种理论构成的控制系统称为前馈控制系统,显然,前馈控制对于干扰的克服

课程设计任务书及指导书格式

课程设计任务书及指导书格式 课程设计任务指导书文本格式一般为: 1.设计题目 2.设计目的 3.任务(要求:对于一班一题或半班一题的,需明确列出每位学生所对应的设计参数,学生以学号的后两位代替;对于一组一题的,应明确每题的学生人数和学生姓名) 4.时间安排 5.设计内容 6.设计工作要求 7.成绩评定标准 8.主要参考资料 Ⅰ、课程设计任务书 一、题目一:刚性基础 某厂房承重体系为三层钢筋混凝土框架结构,边柱荷载标准值F K边=400kN,中柱荷载标准值F K中=600kN,设计只考虑竖向荷载,要求学生完成刚性独立基础的设计(素混凝土基础),并计算沉降。工程设计正负零标高为20.0米,现形场平整平标高为20.0米。 二、设计条件 1 地质条件:场地土层如下:①素填土:松散,厚0.8m;②粘土:可塑,厚4.0 m; ③粉质粘土:硬塑,厚10.0 m;其下为不可压缩基岩; 2、水文地质条件:分布上层滞水,水位随季节性变化,现水位为地下埋深0.5m ; 3、根据岩土工程勘察报告,相关土层的设计参数如下表: 表1:土层设计参数表

表2:土层压缩试验成果表 注:②层土的基础承载力修正系数为η b =0.3,ηd=1.6; 三、设计内容 1 学生承担的具体设计题号见表一,要求每班分4个组。 表三、课程设计题号表 2 设计计算书一份(内容包括) (1)基础平面尺寸、埋深、验算; (2)基础结构施工图; (3)沉降计算; 四、题目二:桩基础 某高层民房,采用钢筋混凝土框架结构,建筑高度46米,边柱(柱断面尺寸600×600mm2 ) 荷载标准值F K边=18000kN,中柱(柱断面尺寸800×800mm2)荷载标准值F K中=30000kN,柱弯矩M K=200KN·m,水平荷载H K=100KN,桩顶允许水平位移10mm,桩顶约束按固结考虑;要求学生完成桩基础的设计。工程设计正负零标高为20.0米,现形场平整平标高为20.0米。 地质条件:场地土层如下:①素填土:松散,厚1.8m;②粘土:可塑,厚5.0 m;③粉质粘土:硬塑,厚10.0 m;其下为不可压缩基岩; 水文地质条件:分布上层滞水,水位随季节性变化,现水位为地下埋深0.5m ; 桩的设计参数如下表。 表5:土层设计参数表

PWM运动控制课程设计报告

摘要 速度对任何一个运动体来说都是一个至关重要的物理量,如何快速方便地进行速度调节是我们一直需要探索的问题。这份课程设计采用的是直流PWM调速双闭环控制系统,该调速系统是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技成为PWM控制技术发展的主要方向之一。这份课程设计对于PWM设计的各个方面进行了简要阐述,并进行了Proteus仿真以及Matlab中的Simulink仿真,去的了较好的结果。 关键词:PWM调速;Proteus仿真;Matlab ;双闭环 1

目录 1 绪论 (3) 2 设计总要求 (4) 2.1设计已知参数 (4) 2.2设计具体要求 (4) 3 控制电路设计 (4) 3.1直流调速系统控制方案的选择 (4) 3.2 电流环设计 (5) 3.2.1 电流调节器的设计 (6) 3.3 转速调节器 (7) 4 主电路设计 (8) 4.1 PWM调速系统主电路形式选择 (8) 4.1.1 T型PWM变换器电路 (8) 4.1.2 H型PWM变换器电路 (9) 4.2 PWM调速系统开关电路形式选择 (13) 4.3 H型双极性逆变器的驱动分析 (14) 5 频率电压转换设计 (17) 6 脉冲分配及功率放大电路设计 (17) 7 PI调节器设计 (18) 8 三角波发生器设计 (19) 9 Matlab仿真结果 (20) 10 设计总结 (21) 参考文献 (23)

过程控制系统课程设计

过程控制系统课程设计 报告书 课设小组:第四小组

目录 摘要 (1) 第一章课程设计任务及说明 (2) 1.1课程设计题目 (2) 1.2 课程设计容 (3) 1.2.1 设计前期工作 (3) 1.2.2 设计工作 (4) 第二章设计过程 (4) 2.1符号介绍 (4) 2.2水箱液位定制控制系统被控对象动态分析 (6) 2.3压力定制控制系统被控对象动态分析 (7) 2.4串级控制系统被控对象动态分析 (7) 第三章压力 P2 定值调节 (8) 3.1 压力定值控制系统原理图 (8) 3.2 压力定值控制系统工艺流程图 (8) 第四章水箱液位L1定值调节 (9) 4.1 水箱液位控制系统原理图 (9) 4.2 水箱液位控制系统工艺流程图 (9) 第五章锅炉流动水温度T1调节串级出水流量F2调节的流程图 (10) 5.1串级控制系统原理图 (10) 5.2串级控制系统工艺流程图 (11)

第六章控制仪表的选型 (12) 6.1 仪表选型表 (12) 6.2现场仪表说明 (13) 6.3 DCS I/O点位号、注释、量程、单位、报警限及配电设置表 (14) 第七章控制回路方框图 (15) 总结 (15) 参考文献 (16)

摘要 过程控制课程设计是过程控制课程的一个重要组成部分。通过实际题目、控制方案的选择、工程图纸的绘制等基础设计和设计的学习,培养学生理论与实践相结合能力、工程设计能力、创新能力,完成工程师基本技能训练。 使学生在深入理解已学的有关过程控制和DCS系统的基本概念、组成结构、工作原理、系统设计方法、系统设计原则的基础上,结合联系实际的课程设计题目,使学生熟悉和掌握DCS控制系统的设计和调试方法,初步掌握控制系统的工程性设计步骤,进一步增强解决实际工程问题的能力。 关键词:过程控制设计DCS

框架结构-课程设计任务书和指导书下说课材料

《建筑施工技术与组织》课程设计任务书 适用专业:12级建筑工程技术 一、课程设计目的 通过本次课程设计,使学生掌握单位工程施工组织设计的编制方法和编制步骤,能正确运用所学的基本理论知识,独立完成单位工程施工组织设计。 二、课程设计题目:单位工程施工组织设计(框架结构) 三、设计依据: 施工技术与组织课程中涉及的主要施工技术和组织原理如下: 1、《混凝土结构施工及验收规范》GB50204-2002(2011年版) 2、《混凝土质量控制标准》GB50164-2011 3、《混凝土强度检验评定标准》GB/T50107-2010 4、《砌体结构工程施工质量验收规范》GB50203-2011 5、《屋面工程技术规范》GB50345-2012 6、《建筑工程施工质量验收统一标准》GB50300-2013 7、《建筑施工手册》(第5版) 2012年 8、初步确定的基础持力层置于第二层粘土层,其承载力标准值为380Kpa。 9、现行国家有关施工验收规范。 四、设计条件: 1、工程概况 建筑概况:某四层学生公寓,底层为商业用房,上部为学生公寓,建筑面积3277.96m2,基础为钢筋混凝土独立基础,主体工程为全现浇框架结构,胶合板门,铝合金窗,外墙贴面砖,内墙为中级抹灰,普通涂料刷白,底层顶棚吊顶,楼地面贴地板砖,屋面用200mm厚的加气混凝土块做保温层,上做SBS改性沥青防水层,其劳动量见附表: 2、施工条件: 本工程位于该市东郊山坡地段,两面均有公路,交通便利,西面及北面为已建工程:厂内旧房、坟墓已由建设单位拆除,平整场地已在准备工作阶段完成,场地平整均按平均施工高度为-0.5米。 (1)开竣工时间:由当年9月1日开工至次年2月1日竣工,施工时间145天左右控制。 (2)气象条件:施工期间最低气温4°C,最高气温30°C,施工开始气温较高,以后逐月降低,春节以后有回升,施工期间很少有雨,主导风向为东偏南。 (3)土壤及地下水:土为二类土,地下水位-3.0米 (4)抗震要求:7度抗震烈度设防 (5)技术经济条件:各类钢窗、饰面材料等均有相关专业厂家生产,分批成套

控制装置与仪表课程设计

控制装置与仪表课程设计 课程设计报告 ( 2012-- 2013年度第二学期) 名称:控制装置与仪表课程设计 题目:炉膛压力系统死区控制系统设计院系: 班级: 学号: 学生姓名: 指导教师: 设计周数:一周 成绩: 日期:2013年7 月5日

一、课程设计(综合实验)的目的与要求 1.1 目的与要求 (1)认知控制系统的设计和控制仪表的应用过程。 (2)了解过程控制方案的原理图表示方法(SAMA图)。 (3)掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM 数据写入器的使用方法。 (4)初步了解控制系统参数整定、系统调试的过程。 1.2设计实验设备 KMM数字调节器、KMM程序写入器、PROM擦除器、控制系统模拟试验台1 1.3 主要内容 1. 按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2 . 组态设计 2.1 KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写KMM 的各组态数据表。 2.2 组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3. 控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4. 系统调试 设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下内容: 1)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 二、设计(实验)正文 1设计题目:炉膛压力系统死区控制系统设计(如附图1) 附图1: 引风机 炉膛压力系统死区单回路控制系统

交通管理与控制课程设计报告

《交通管理与控制》课程设计---------十字交叉口信号配时优化设计 姓名:吴明健 专业:交通工程 班级:交通1321 学号:130242109

1基础资料收集 1.1道路几何条件调查 交叉口现状图(要求使用AUTOCAD 画出)。例: 1.2交通条件调查 (1)交通量调查 高峰小时流量表

(2)交叉口交通控制状况调查相位数:3; 信号周期:157s; (3)现状评价分析 交叉口现状评价结果表

1.3交叉口问题分析 (1)非机动车道狭窄,而非机动车车流量又很大,导致非机动车越过停止线等待信号并在路口大量冗积,严重影响机动车右转; (2)西进口处机动车道只有两条,分别为直行左转合用车道和直行右转合用车道,直行右转合用车道上直行车等待信号灯时会影响后方右转车辆; (3)直行车辆和左转车辆会受对向直行和左转车辆的影响,从而滞留在交叉口内,影响通行效率。 2交叉口概略设计 2.1问题对策及概略设计 (1)机动车道设计(要求使用AUTOCAD画出) 东西南北车道均为3米,非机动车道均为3米,具体见图。 (2)非机动车道设计方案 南北不变,西进口到处将非机动车道由原来的1.5米扩建至3米。 (3)信号控制方案 具体计算过程及方案结果如下。 2.2信号配时初步检验 流量比总和Y是否满足<0.9:方案一不满足,方案二满足。 3详细设计 3.1进出口道设计 东西南北车道均为3米,非机动车道均为3米,具体见图。

3.2信号控制方案

4设计方案评价 交叉口设计方案评价表 对设计方案进行总结。 5.设计总结 本次交叉口优化经过两次设计方案并试算,方案一为,南北两相位,东西两相位,并把东西方向进口车道拓宽为一个左转专用道,一个直行车道和一个直行右转专用车道。方案二为,南北一相位,东西两相位,并把东西方向进口车道拓宽为一个左转专用道,一个直行车道和一个直行右转专用车道。 结果发现第一次试算后Y>0.9,故第一个方案不成功。经过第二个方案并试算后Y<0.9,故方案二合理,具体计算过程如下(第一次试算略): 初设C=120s,相位数j=3,相位损失时间Ls=3s,总损失时间为L=9s,总有效绿灯时间Ge=111s,平均每相位有效绿灯时间g e=111/3=37s,绿信比λ=g e/C=0.31.方案一和方案二总结见附表。

双容水箱-过控课程设计报告-上海电力_图文(精)

《过程控制系统设计》课程设计报告 姓名: 学号: XXXXXX 班级: XXXXXXXX 指导老师: 设计时间:2014年 1月 11日 ~1月 15日 第一部分双容水箱液位串级 PID 控制实物实验时间:同组人: 一、实验目的 1、进一步熟悉 PID 调节规律 2、学习串级 PID 控制系统的组成和原理 3、学习串级 PID 控制系统投运和参数整定 二、实验原理(画出“ 系统方框图” 和“ 设备连接图” 1、实验设备:四水箱实验系统 DDC 实验软件、四水箱实验系统 DDC 实验软件 2、原理说明: 控制系统的组成及原理 一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级” 控制器。两个控制器都有各自的测量输入, 但只有主控制器具有自己独立的设定值, 只有副控制器的输出信号送给被控对象, 这样组成的系统称为串级控制系统。本仿真系统的双容水箱串级控制系统如下图 1所示:

图 1 双容水箱串级控制系统框图 串级控制器术语说明 主变量:y1称主变量。使它保持平稳使控制的主要目的 副变量:y2称副变量。它是被控制过程中引出的中间变量 主对象:下水箱;副对象:上水箱 主控制器:PID 控制器 1,它接受的是主变量的偏差 e1,其输出是去改变副控制器的设定值副控制器:PID 控制器 2,它接受的是副变量的偏差 e2,其输出去控制阀门 主回路:若将副回路看成一个以主控制器输出 r2为输入,以副变量 y2为输出的等效环节, 则串级系统转化为一个单回路,即主回路。 副回路:处于串级控制系统内部的,由 PID 控制器 2和上水箱组成的回路 串级控制系统从总体上看, 仍然是一个定值控制系统, 因此, 主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。但是串级控制系统和单回路系统相比, 在结构上从对象中引入一个中间变量(副变量构成了一个回路,因此具有一系列的特点。串级控制系统的主要优点有:

轨道工程课程设计任务书、指导书及设计要求

轨道工程课程设计任务书 一、出发资料 1.机车车辆条件:韶山Ⅲ(SS3)型电力机车;机车轴列式30-30,轴距布置为230+200+780+200+230 (cm),轮重。 2.线路条件: (1)线路设计速度80km/h,最小曲线半径500m(实设超高为100mm),规划采用有砟轨道结构。 (2)线路铺设成无缝线路,铺设地区为福州,铺设线路长度为10km。 (3)道床顶面的容许应力为,路基顶面的容许应力为。 二、设计任务 (1)进行有砟轨道结构设计,包括钢轨和扣件的选型,轨枕的类型及布置根数,道床的等级及尺寸,并检算强度是否满足使用要求。 (2)进行无缝线路设计,包括设计锁定轨温确定、缓冲区设计、预留轨缝确定、轨条布置。 三、提交的成果 (一)、设计计算说明书 (1)轨道结构选型。 (2)轨道结构强度检算。 (3)无缝线路设计计算。 (二)、设计图图纸 (1)轨道结构组装图及选型说明。(1张A3)

(2)轨道结构受力图(3张A4:钢轨弯矩和挠度1张,轨枕三个支承状态的弯矩分布,道床顶面、路基顶面、路基第二区域、路基第三区域应力)。 (3)无缝线路设计图(1张A4或A3,基本温度力图、轨条布置图及相关说明)。 设计指导书

一、课程设计的基本步骤: 课程设计的步骤如图1所示: 图1 课程设计步骤 二、设计方法 (一)、轨道结构选型设计 根据机车车辆和线路条件,确定钢轨、轨枕、扣件的类型及刚度、道床的等级及主要尺寸(厚度、顶宽和边坡坡度)。钢轨、轨枕及扣件的可选用类型从教材中选择,道床的等级及主要尺寸也参考教材的内容确定。 以下两点说明: 1、道床厚度的选择 道床厚度设计根据《铁路轨道设计规范》(TB10082-2005)和《地铁设计规范》(GB50157-2003)进行,为方便可根据运营条件从教材表1-1中选择。我们的轨道类型可参考中型轨道结构。 2、钢轨支座刚度D 钢轨支座刚度D的意义是使钢轨支点顶面产生单位下沉时所必须施加于支点顶面上的力,单位一般采用kN/mm表示。 D值的计算:1/D=1/D1+1/D2 教材(7-3) 式中D1为扣件刚度,其值由设计确定;D2为道床支承刚度,计算

小车自动往返装卸料控制课程设计报告

机电一体化课程设计 2012级 小车自动往返装卸料控制 学生姓名 学号 系别 专业班级 指导教师 完成日期

目录 目录....................................................................................................................................................................... I 1. 引言 (1) 2. 设计任务 (1) 2.1 设计内容 (1) 2.2 控制要求 (1) 1)手动控制方式 (1) 2)单步运行方式 (2) 3)单周期运行控制要求 (2) 4)自动循环控制方式要求 (2) 3.总体方案的确定 (2) 3.1 小车自动往返装卸料控制系统的构成 (2) 3.2 工作过程 (2) 3.3 方案设计 (3) 1)小车自动控制主电路图 (3) 2)PLC装卸料小车接线示意图 (3) 3)总体设计方案 (4) 4.控制系统软件设计 (4) 4.1小车自动往返装卸料控制流程图 (4) 4.2 I/O分配表 (5) 4.3 PLC程序设计 (5) 1)主程序中调用运行方式子程序 (5) 2)手动子程序运行 (6) 3)单步子程序运行 (7) 4)单周期子程序运行 (8) 4)自动子程序运行 (9) 4.4组态软件的界面设置 (10) 4.5 组态与PLC通信 (12) 4.6 程序调试与运行 (14) 1)手动方式 (14) 2)单步方式 (14) 3)单周期方式 (15) 4)自动方式 (15) 5.程序调试心得与建议 (15) 参考文献 (15)

过控课程设计报告

课程设计报告 课程名称:过程控制工程 设计题目:阶跃曲线确定无滞后 一阶对象传递函数 专业:自动化 班级:一班学号: 20100220118 学生姓名:苏星 时间: 2013 年6月1日~6月16日 ―――――――以下指导教师填写―――――分项成绩:出勤成品答辩及考核 总成绩:总分成绩 指导教师:

前言 过程控制通常是指石油、化工、电力、冶金、轻工、纺织、建材、 原子能等工业部门生产过程的自动化,是连续生产过程的自动控制, 其被控量需定量地控制,而且应是连续可调的。若控制动作在时间上 是离散的,但是其被控量需定量控制,也是过程控制。 过程控制系统的品质是由组成系统的各个环节的结构及其特性所 决定的。过程的数学模型是设计过程控制系统,确定控制方案,分析 质量指标,整定调节器参数等等的重要依据。前馈控制,最优控制, 多变量解耦控制等更需要有精确的过程数学模型,所以过程数学模型 是过程控制系统设计分析和应用的重要资料。研究过程建模对于实现 生产过程自动化具有十分重要的意义。 被控过程的数学建模,是指过程在各输入量作用下,其相应输出量 变化函数关系的数学表达式。过程的数学建模有两种:一是非参数模型,例如阶跃响应曲线、脉冲响应曲线和频率特性曲线,是用曲线表 示的。二是参数模型,例如微分方程、传递函数、脉冲响应函数、状 态方程和差分方程等,是用数学方程式或函数表示。本次课程设计采 用的是第一种。 目录 一 .设计原理及思路 2 二. 实验数据(组1和组2) 3 三. maltab数据分析及校验(组1和组2)及matlab仿真4 4 四. 参考资料及心得体会 12

一、设计原理及思路 无滞后一阶对象(单容)传递函数 1.计算法 000 )0()(,x y y k T k ?-∞= ?如何确定 000 T x k dt dy t = =)(0000 00 ∞===y x k t T x k T t ; )(632.0)1)(()(010T y e y T y →∞=-∞=-

相关文档
最新文档