纳什均衡不动点

纳什均衡不动点
纳什均衡不动点

纳什均衡的存在性与多重性

对于数学家来说,一个数学概念的存在性与唯一性是特别需要加以关注的。这是因为,从形式逻辑角度看,如果某个事物并不存在,那么关于这个杜撰中的事物所给出的任何陈述或判断都可认为是正确的或错误的,因为对于不存在的事物来说,任何关于它的陈述或判断都不可能加以证伪。所以,倘若某个概念所对应的事物并不存在。那么,关于这个概念所给出的研究结论都必然不存在被证伪的可能。因而根据波普尔的证伪主义观点,这样的研究不具备科学上的意义。所以,我们在对任何新提出来的数学概念加以系统研究之前,首先需要弄清楚所研究的对象事物是否存在。

有许多被称为伪科学的东西,它们之所以被人们认为是“伪科学”的原因就是它们大肆谈论的东西并不存在或并未被证实其存在性。譬如,所谓的特异功能或“超灵学”并未得到证实,而UFO研究迷们至今也未能拿出一件存在球外生命的证据,所以,特异功能学或“超灵学”或“不明飞行物学”实际上都可被归入伪科学。除了存在性之外,概念事物的唯一性也是数学家们所关心的问题。从纯理论的兴趣上看,数学家们更多地是从审美的角度上看待概念的唯一性,但从波普尔的证伪主义哲学看,模型均衡解的唯一性关系到模型的预测功能,从而是科学理论应基本具有的特征。我们在第二章中曾指出,理论的预测功能是判别理论的科学性的准绳,而在第三章中,我们提出用纳什均衡作为模型的预测结果。按照这样的逻辑,一个自然的推论就是:模型能否具有科学意义取决于纳什均衡的唯一性。因为倘若纳什均衡不是唯一的,那么就难以根据模型对即将出现的结果加以预测,这种不确定性对于科学理论来说是不存在的。再加上前面谈到的存在性问题,我们可以这样说,模型能否具有科学意义取决于纳什均衡的存在性和唯一性,因为这正是科学理论所具有的基本性质。

博弈论目前发展的情况是这样的:已经证明在非常一般的情况下,纳什均衡是存在的,这是一个好的结果;但是,在许多情形,模型的纳什均衡解不是唯一的,这被称为纳什均衡的多重性问题。

纳什在1950年代证明了纳什均衡的存在性定理,为非合作博弈打下了重要基础。纳什的工作不仅解决了存在性问题,而且还为其后的博弈论研究提供了一整套方法论工具,即运用不动点定理(fixed point theorem)这一强有力的数学工具进行博弈论数学分析,这对后来的博弈论甚至数理经济学的发展产生了很大的影响。纳什均衡的多重性问题至今仍是困扰博弈论学者的一个主要问题。为了攻克这一问题,博弈论专家已经做出了许多贡献,如聚点均衡、相关均衡,子博弈精炼纳什均衡,颤抖手均衡,序贯均衡等概念的提出。但不幸的是,这类努力还未使得多重均衡问题完全得到解决,许多博弈论专家正在这一领域进行着不懈的工作。

本章将给出纳什均衡的存在性定理和讨论存在多重均衡情况下的均衡选择问题。

4.1 纳什均衡的存在性定理

自从纳什(1950)首先给出存在性定理及其证明之后,许多学者又相继提出了不同表述下的存在性定理和不同的证明方法。这里,我们介绍Myerson(1991)给出的存在性定理和证明。

4.1.1 纳什均衡与不动点定理

所有的存在性定理证明都采用了不动点定理,这是因为,纳什均衡的概念在数学上就是一个不动点的概念。在给出存在性定理及其证明之前,我们先来说明不动点的概念和给出不动点定理。

什么是“不动点”呢?考虑一个方程()x x f =,其中x 为方程的解。我们将()?f 视为一种“变换”,即()?f 是将x 对应为()x f y =的变换,其中x 和y 分别是属于集合X 和Y 的两个元素,X ∈x ,Y y ∈。如果Y X =,则方程()x x f =的几何意义就是:变换()?f 将

x 变为自己,即x 在()?f 变换下是不变的,故称()x x f =的解为变换()?f 的不动点。

一般地,我们可以将所有的方程都写为如下形式:

()0=x y (4.1) 在式(4.1)两端加上一个x ,则变为()x x x y =+。 令()()x x y x f +=则有

()x x f =

所以,一般地,方程求解的问题本质上是寻找变换的不动点问题。

对于这样一种非常一般地的问题,数学家们感到十分高兴的是居然在不太严格的条件下式(4.1)存在解,即不动点是较为广泛地存在的。

譬如,图4.1表明不动点是曲线()?f 与45o 线的交点。当函数()x f 定义在[]1,0∈x 区间上且因变量()x f y =的值域也为[]1,0区间时,如果()x f 是连续的,则必然存在不动点。

图4.1 [0,1]区间上的自变换函数的不动点

x )(x f

x

1

那么,这种现象到底具有多大的一般性意义呢?

数学家Brouwer 在很久以前就注意到这一现象,他得出了如下的一般性定理,即著名的Brouwer 不动点定理。

定理4.1(Brouwer ……)

设()x f 是定义在集合X 上的实函数,且()X ∈x f ,X ∈?x 。

如果()x f 是连续的,X 为一非空的有界凸闭集,则至少存在一个X x ∈*使

()

**x x f =。即()x f 至少存在一个不动点[1]。

有意思的是,Brouwer 不动点定理存在很强的几何直观[2],但其数学证明却十分艰深,需要动用代数拓扑这类就是职业数学家也感到望而生畏的超级抽象数学工具[3]。

在此,我们不给出Brouwer 不动点定理的证明。

直接用来证明纳什存在性定理的不动点定理还不是Brouwer 不动点定理,而是角谷静夫(Kakutani)不动点定理,而后者的证明只是前者的一个相对简单的运用。

我们所以要引用角谷静夫不动点定理,是因为在纳什均衡存在性证明中所遇到的反应函数一般是多个因变量函数,即所谓对应(correspondence),而角谷静夫不动点定理正好描述的是对应的一种性质。角谷静夫不动点定理是Brouwer 不动点定理的推广,但其自身的证明要用到Brouwer 不动点定理。我们在这里不打算给出这两个不动点定理的证明,因为这类证明只是一种纯数学过程,但我们将给出纳什存在性定理的一种证明,因为了解存在性定理的证明过程有助于我们更好地理解纳什均衡。

为了解读角谷静夫不动点定理,我们先来准备一下一些有关的数学概念。

对于任一有限集M ,我们用R M 表示形如()M m m x x ∈=的所有向量组成的集合,其中对M 中每一个m ,第m 个分量m x 是实数域R 的一个元素。为方便计,我们也可将R M 等价地理解为M 到R 上的所有函数组成的集合,这时R M 中x 的m 分量m x 也可被记为

()m x 。

令S 是R M 中的一个子集,我们有如下定义:

定义4.1 S 是凸的(Convex)当且仅当对任意的M M R y R x ∈∈,及满足10≤≤λ的λ,只要S x ∈和S y ∈,则有

()S y x ∈-+λλ1

这里,()()()()()M m y x y x y y x x m m M m m M m m ∈-+=-+==∈∈,11,,λλλλ 定义4.2,S 是闭的(Closed)当且仅当对每个收敛的序列()}{

∞=1

j j x ,如果对每个j 都有()S j x ∈,则有

()S j x j ∈∞

→lim

定义4.3,R M 中的子集S 是开的(open)当且仅当它的补集R M /S 是闭的。

定义4.4,S 是有界的(bounded)当且仅当存在某个正数K 使得对S 中的每个元素x 都有

∑∈≤M

m m

K x

定义4.5,一个点到集合的“对应”(correspondence)Y X G →:是任何一个规定了对X 中的每个点x ,()x G 是与x 相对应的Y 中的一个子集。

如果X 和Y 都是度量空间,则X 和Y 上的收敛和极限概念已经定义,这时有: 定义4.6 ,一个对应G:X →Y 是上半连续的(upper —hemicontinuous),当且仅当对每

个序列()(){}∞=1,j j y j x ,如果对于每个j 有()X j x ∈和()j y ()()j x G ∈,而且序列(){}∞

=1j j x 收敛于某个点X x ∈,又序列(){}∞

=1j j y 收敛于某个点Y y ∈,则有

)(x G y ∈

定理 4.2,对应Y X G →:是上半连续的当且仅当集合()(){}x G y X x y x ∈∈,,是集合

Y X ?中的一个闭子集。

证明:必要性。记集合()(){}

Y X x G y X x y x A ??∈∈=,,. 设()()()j y j x Z j ,=为A 中一收敛序列,其中()X j x ∈,

()()∞=∈,,1),( j j X g j y

由上半连续性知()()??? ??∈∞→∞

→j x G j y j j lim lim

显然有()X j x j ∈∞

→lim

故A Zj j ∈∞>lim ,所以A 为

Y X ?中一闭子集。 充分性。假设A 为Y X ?上的一个闭子集。 如果序列()(){}∞

=1,j j y j x 中每个()j x 和()j y 都有

()X j x ∈, ()()()j x G j y ∈

且(){}∞

=1j j x 收敛于x 和(){}∞

=1j j y 收敛于y ,则()()()j y j x Z j ,=收敛于()

y x ,。 由A 的闭性知()A y x ∈,,即()

x G y ∈ 故G 为上半连续。 证毕!

上半连续性是我们熟知的连续函数概念的一种推广,而函数的连续性比上半连续性要强一些,于是有

定理4.3,如果Y X y →:是一个从X 到Y 的连续函数,且对X 中的每一个X 都有

()(){}x y x G =,那么Y X G →:是一个点到集的上半连续对应。

证明:

设序列()(){}∞=1,j j y j x ,且对每个j 有()X j x ∈和()()()j x G j y ∈,(){}∞

=1j j x 收敛于x ,(){}∞=1

j j y 收敛于y 。

由y 的连续性知()

x y y = 故()

x G y ∈

于是G 是上半连续的。

下面,我们将不动点概念扩充到对应的情形。

定义4.7,一个对应F :S S →的一个不动点是S 中任一满足()x F x ∈的x 。 角谷静夫得出如下被广泛应用的一个重要定理。

定理4.4 (角谷不动点定理)令S 是一个有限维向量空间中任一非空有界闭凸子集。 设F :S S →是任一上半连续的点到集对应,且对S 中每个()x F x ,都是S 的一个非空凸子集。那么,S 中一定存在某个x 使得()

x F x ∈(Kakutani, 1941)

角谷不动点定理说的是对于有限维向量空间中任一非空有界闭凸子集上的上半连续自对应来说,在一定条件下都至少存在一个不动点。角谷不动点定理及其它的一系列相关定理的证明还可参见Burger(1963), Franklin (1980)和Border(1985)。数理经济学家Scarf(1973)曾通过一种计算不动点的算法而提供了一个构造性证明,其中不动点的存在性是由这个定理所保证的。关于角谷不动点定理的推广,可参见Glicksberg (1952)。

4.1.2 纳什存在性定理及其证明

下面,我们来证明纳什存在性定理,该定理最早由纳什得出,这里的证明由Myerson(1991)给出[5]。

定理4.5 (Nash , 1950),任何一个战略式表述的有限博弈都至少存在一个混合博弈纳什均衡。

证明:令Γ是任—战略式表述有限博弈,即 {}n n u u S S ,;11 =Γ

显然,∑∏=∑=n

i i 1是一个有限维向量空间的一个非空有界闭凸子集(注意Γ是有限博

弈,即局中人数和每个i S 中的元素个数都是有限数)[6]。

任给∑∈σ和任一局中人i ,令

()()i i i i i V R i

i -∑∈-=σσσσ,max arg

即()i i R -σ是局中人i 在∑i 中对其余局中人独立混合战略组合i -σ的最优反应混合战略。

根据定理 3.2,()i i R -σ是i S 上所有的概率分布i σ组成的集,且使得对每一个满足

()i i i S s i s V S i

i -∈∈σ,max arg 的i S 有()0=i i s σ,由定理3.2的证明过程知道,

()()∑--=k

i k i i ik i i i s V V σσσσ,,

任给()()[]令,1,0,,'∈∈∈--λσσσσi i i i i i R R

()i i i σλλσσ++=1''

显然i i ∑∈''σ,

()

()∑--=k

i ik i ik i i i S V V σσσσ,,'

'''

()()()∑∑---+=k k

i ik i ik i ik i ik s V s V σσλσσλ,1,'

()()()i

i i i i i V v ---+≥σσλσσλ,~1,~ ())(~,,~i

i

i

i

i

i

R V --∈?=σσσσ

故()i i i R -∈σσ'',所以()i i R -σ是凸的。

根据()()∑--=R

i ik i ik i i i s V V σσσσ,,,因为i S 是有限集,故存在某个k 使

()()[]i il i l

i ik i s V s V --=σσ,max ,

即argmax ()i i i s V -σ,是非空的。令k l il ik ≠==,0,1σσ,则 ()()i i i i i i V V i

i -∑∈-=σσσσσ,max ,

即()i i i R -∈σσ 故()i i R -σ非空。

下面构造对应R ,它将∑中的点映射于∑中的子集,满足:

()() n

i i i R R 1,=-∑∈=σσσ

由于对每一个n i ,,1 =,()i i R -σ都是非空凸集,显然()σR 也是非空凸集。下面我们来证明R 是上半连续的。

假设{

}∞

=1k k σ和{}∞

=1k k τ都是收敛序列 ()k k k R στσ∈∈∑ ,

,2,1=k

且k k k k ττσσ∞

→∞

→==lim ,lim

为了证明R 是上半连续的,我们将需要证明()στR ∈~。 因为有: ()()

∑∈?≥--i i k

i i i k i k i i V V σσσστ,,,

,2,1=k

显然期望效用函数i V 是∑上的连续函数,故有

()()i i i i i i i i V V ∑∈?≥--σσσστ,,, 因此,对于每一个i 有()故,i i i R -∈στ

()

R ∈。

所以R 是∑到自身上的一个上半连续对应。

根据角谷不动点定理,存在∑中的某个混合战略组合σ使()σσR ∈,即对于每一个i 有()i i i R -∈σσ,因此σ就是Γ的一个(混合)纳什均衡。

证毕!

4.1.3 其它的纳什均衡存在性定理

在纳什存在性定理中,我们只谈及到包括混合战略均衡在内的纳什均衡存在性问题,除此之外,我们自然会对纯战略纳什均衡的存在性感到特别的兴趣。另外,许多博弈不一定是有限博弈,一些常见的博弈的纯战略空间通常都是无限集。在纳什定理之后,其他研究者还得到许多进一步的结果,这些结果中与上述问题相关的有如下几个定理。 定理 4.6(Debreu, 1952; clicksberg, 1952, Fan, 1952)在n 人战略式表述博弈{}n n u u S S G ,,;,,1 =中,如果纯战略空间S i 是欧氏空间上的非空有界闭凸子集,支付函数i u 是连续的且对i S 是拟凹的()n i ,1=,则G 存在一个纯战略纳什均衡。

一般地,当函数()x f 满足下述性质时,我们称其为凹的:

()()()()()[]n R x x x f x f x x f ∈∈-+≥-+212121, 1,0,11λλλλλ

如果当()1,0∈λ时上面的不等式严格成立,则称()x f 为严格凹的。一个函数()x f 是凸的当且仅定函数-()x f 是凹的;()x f 为严格凸函数当且仅当-()x f 为严格凹函数。

拟凹函数是凹函数概念的一种推广,它包括了凹函数在内的一大类函数,而这类函数在经济学中有着广泛应用,关于拟凹函数的定义如下:

定义4.8,函数()x f 定义在R n 中的子集D 上,当且仅当()x f 满足如下性质时,()x f 是拟凹的:

()()()()()2121,min 1x f x f x x f ≥-+λλ ∈λ[0,1]

显然,凹函数是拟凹的,但反过来并不成立,即拟凹函数不一定是凹函数。在图3.2 中,函数()x f 是拟凹的,但不是凹的。

图4.2 不是凹函数的拟凹函数

在定理4.6中,与定理4.5相比,我们增强了对支付函数i u 性质的假设,于是获得更进一步的结论,即保证了存在的纳什均衡还是纯战略博弈纳什均衡。在有限博弈场合,即使纯战略空间可能是非凸的,支付函数也可能是非连续的,但混合战略空间是欧氏空间上的非空有界闭凸集,期望支付函数是连续的,拟凹的。当纯战略空间本身是欧氏空

x 1

y

x 2

x

()

x f

间上一个非空的,闭的,有界的凸集且支付函数在纯战略空间上是连续的,拟凹的时,就没有必要引入混合战略了。

如果放松定理4.6中关于支付函数的拟凹性假设,则只能保证混合战略均衡的存在性,这就是下面的定理4.7。

定理4.7 (Glicksberg, 1952) ,在n 人战略式表述博弈{}n u u u S S G 11;,,=中,如果纯战略空间i S 是欧氏空间上一个非空有界闭凸集,支付函数i u 是连续的,则G 存在一个混合战略纳什均衡。

注释:

[1]这个定理的表述中隐含了X 为一个度量空间,所谓度量空间,即在空间X 上定义了一个“距离”函数?,使得对任意的X x X x ∈∈21,都有

()

2121x x x x i +≤+(三角不等式,意思是三角形的两边之和大于第三边)

()

0,021≥≥x x ii 同时还有

0=x 当且仅当0=x

当然,这种定义又要求在空间X 上首先定义了一种加法“+”和“零”元素。一般地,度量空间的形式化定义为:集合X 上的“距离”指X X ?到实数轴R 上的一个函数

()y x ,δ,满足:对X 中任意的y x ,和Z ,有:

()()0,,≥=x y y x δδ (对称性) ()y x y x ==当且仅当 0,δ

()()()z x z y y x ,,,δδδ≥+ (三角不等式)

[2]譬如,揉面的师傅都有着这样的体验,即在面板上揉面时总有一些面粒的位置基本上不因揉面动作变化;另外,男人在梳头时总会发现某一撮头发梳不平整——它们呈竖立状伸出。

[3]某些数学家声称已找到Brouwer 不动点定理的初等证明,但从严格的数学证明所要求的严密程度看,这类“证明”,并非真正数学意义上的证明,同时,它们还十分繁锁。譬如见……。

[4]这个定义中隐含了X x ∈的假设。

[5]我们这里将Myerson(1997)中的证明作了一些形式上的修改,主要是为了适应本书的符号系统。

[6]∑是M R 中的一个子集,而 1

==i i S M 。

平新乔《微观经济学十八讲》课后习题详解(策略性博弈与纳什均衡)

第10讲 策略性博弈与纳什均衡 1.假设厂商A 与厂商B 的平均成本与边际成本都是常数,10A MC =,8B MC =,对厂商产出的需求函数是 50020D Q p =- (1)如果厂商进行Bertrand 竞争,在纳什均衡下的市场价格是多少? (2)每个厂商的利润分别为多少? (3)这个均衡是帕累托有效吗? 解:(1)如果厂商进行Bertrand 竞争,纳什均衡下的市场价格是10B p ε=-,10A p =,其中ε是一个极小的正数。理由如下: 假设均衡时厂商A 和B 对产品的定价分别为A p 和B p ,那么必有10A p ≥,8B p ≥,即厂商的价格一定要高于产品的平均成本。其次,达到均衡时,A p 和B p 都不会严格大于10。否则,价格高的厂商只需要把自己的价格降得比对手略低,它就可以获得整个市场,从而提高自己的利润。所以均衡价格一定满足10A p ≤,10B p ≤。但是由于A p 的下限也是10,所以均衡时10A p =。给定10A p =,厂商B 的最优选择是令10B p ε=-,这里ε是一个介于0到2之间的正数,这时厂商B 可以获得整个市场的消费者。综上可知,均衡时的价格为10A p =,10B p ε=-。 (2)由于厂商A 的价格严格高于厂商B 的价格,所以厂商A 的销售量为零,从而利润也是零。下面来确定厂商B 的销售量,此时厂商B 是市场上的垄断者,它的利润最大化问题为: max pq cq ε>- ①

其中10p ε=-,()5002010q ε=-?-,把这两个式子代入①式中,得到: ()()0 max 1085002010εεε>----???? 解得0ε=,由于ε必须严格大于零,这就意味着ε可以取一个任意小的正数,所以厂商B 的利润为: ()()500201010εε-?--????。 (3)这个结果不是帕累托有效的。因为厂商B 的产品的价格高于它的边际成本,所以如果厂商B 和消费者可以为额外1单位的产品协商一个介于8到10ε-之间的价格,那么厂商B 的利润和消费者的剩余就都可以得到提高,同时又不损害厂商A 的剩余(因为A 的利润还是零)。 2.(单项选择)在下面的支付矩阵(表10-1)中,第一个数表示A 的支付水平,第二个数表示B 的支付水平,a 、b 、c 、d 是正的常数。如果A 选择“下”而B 选择“右”,那么: 表10-1 博弈的支付矩阵 (1)1b >且1d < (2)1c <且1b < (3)1b <且c d < (4)b c <且1d < (5)1a <且b d <

平新乔《微观经济学十八讲》课后习题详解(第10讲--策略性博弈与纳什均衡)

平新乔《微观经济学十八讲》第 10 讲策略性博弈与纳什均衡 跨考网独家整理最全经济学考研真题,经济学考研课后习题解析资料库,您可以在这里查阅历年经济学考研真题,经济学考研课后习题,经济学考研参考书等内容,更有跨考考研历年辅导的经济学学哥学姐的经济学考研经验,从前辈中获得的经验对初学者来说是宝贵的财富,这或许能帮你少走弯路,躲开一些陷阱。 以下内容为跨考网独家整理,如您还需更多考研资料,可选择经济学一对一在线咨询进行咨询。 1.假设厂商 A与厂商 B的平均成本与边际成本都是常数, MC A 10, MC B 8,对厂商产出的需求函数是 Q D 500 20p ( 1)如果厂商进行 Bertrand 竞争,在纳什均衡下的市场价格是多少? ( 2)每个厂商的利润分别为多少? ( 3)这个均衡是帕累托有效吗? 解:(1)如果厂商进行 Bertrand 竞争,纳什均衡下的市场价格是 p B 10 , p A 10 ,其中是一个极小的正数。理由如下: 假设均衡时厂商 A 和 B 对产品的定价分别为 p A 和 p B ,那么必有 p A 10 , p B 8 ,即厂商的价格一定要高于产品的平均成本。其次,达到均衡时,p A和 p B 都不会严格大于 10。否 则,价格高的厂商只需要把自己的价格降得比对手略低,它就可以获得整个市场,从而提高自己的利润。所以均衡价格一定满足p A 10, p B 10。但是由于 p A 的下限也是10,所以 均衡时 p A 10。给定 p A 10,厂商 B的最优选择是令 p B 10 ,这里是一个介于 0到2 之间的正数,这时厂商 B可以获得整个市场的消费者。综上可知,均衡时的价格为p A 10 , p B 10 。 ( 2)由于厂商 A 的价格严格高于厂商 B 的价格,所以厂商 A 的销售量为零,从而利润也是零。下面来确定厂商 B 的销售量,此时厂商 B是市场上的垄断者,它的利润最大化问题为: max pq cq ① 其中 p 10 ,q 500 20 10 ,把这两个式子代入①式中,得 到: max 10 0 8 500 20 10 解得0 ,由于必须严格大于零,这就意味着可以取一个任意小的正 数, 所以厂商 B的利润 为: 500 20 10 10 。 (3)这个结果不是帕累托有效的。因为厂商 B 的产品的价格高于它的边际成本,所以 如果厂商 B和消费者可以为额外 1 单位的产品协商一个介于 8 到10 之间的价格,那么厂商 B 的利润和消费者的剩余就都可以得到提高,同时又不损害厂商 A的剩余(因为A 的利润还是零)。

纳什均衡

纳什均衡简介 纳什均衡,又称为非合作博弈均衡,是博弈论的一个重要术语,以 约翰·纳什命名。在一 个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组 合分别构成各自的支配性策略,那么这个组合就被定义为纳什均衡。 一个策略组合被称为纳什均衡,当每个博弈者的均衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。 纳什均衡的得来 关于纳什均衡的普遍意义和存在性定理的证明等奠定非合作博弈理论发展基础的重要成果,是约翰·纳什在 普林斯顿大学攻读博士学位时完成 的。实际上,博弈论的研究起始于1944年冯·诺依曼( Von Neumann)和 奥斯卡·摩根斯坦 (Oscar Morgenstern)合著的《博弈论和经济行 为》。然而却是纳什首先用严密的数学语言和简明的文字准确地定义了纳什均衡这个概念,并在包含“混合策略(mixed strategies)”的情况下, 证明了纳什均衡在n人有限博弈中的普遍存在性,从而开创了与诺依曼和摩根斯坦框架路线均完全不同的“非合作博弈(Non-cooperative Game)”理论,进而 对“合作博弈 (Cooperative Game)”和“ 非合作博弈”做了明确 的区分和定义。阿尔伯特·塔克(Albert tucker)教授评价其论文,“这是对博弈理论的高度原创性和重要的贡献。它发展了本身很有意义的n人有限非合作博弈的概念和性质。并且它很可能开拓出许多在两人零和问题以外的,至今尚未涉及的问题。在概念和方法两方面,该论文都是作者的独立创造。” 纳什均衡例子 博弈论中一个著名的例子就是囚徒困境。 囚徒困境是一个 非零和博弈,说的是两个嫌疑犯 甲和乙私人民宅联手作案,被警方逮住但未获证据。警方于是将两个嫌疑犯分开审讯。警官分别告诉 两个囚犯,如果你招供,而对方不招供,则你将被判刑3个月,对方将被判刑10年;若两人都不招供则因未获证据但私人民宅将各拘留1年;如果两人均招供,每人将被判刑5年。于是,两个人同时陷入招供还是不招供的两难处境。结果是,尽管甲不知乙是否招供,但他认为自己选择“招供”最好,因而甲会选择“招供”,同样乙也会选择“招供”,两人各判5年。而两人都选择不招供,虽证据不足但因私人民宅将各拘留1年的结果是不会出现的。 博弈矩阵囚犯甲 招供不招供 囚犯乙招供判刑五年 甲判刑十年;乙判刑三个月 不招供

浅析囚徒困境与纳什均衡

浅析囚徒困境 囚徒困境是博弈论的非零和博弈中具代表性的例子,指反映个人最佳选择并非团体最佳选择。 囚徒困境的经典案例这里不再复述,让我们看一下身边的例子。囚徒困境在生活中最常见的表现就是挤公共汽车。从集体理性的角度来看,按次序上车是最有效率的做法,但是你挤我不挤,我就可能上得慢,所以每个人的最优战略都是挤,结果上车就更慢了。学生也同样遭遇囚徒困境:减轻中小学生过重负担喊了20多年,仅1985年至2000年的15年里,中央就下达“减负令”49次。但实际情况却是学生课业负担不但没减下来,反倒呈现出越演越烈之势,致使学生作业做到深夜、节假日仍然上课、业余时间奔忙于各种补习班等。可见“减负令”难以见效,中小学生课业负担不减反增。 又比如近年来炒得火热的楼市——“我没买房,结果房价还是涨了,因为我们无法保证大家都不买房。可是,我错了吗?没有。当初如果我买房了,房价下跌了呢?因为我不能保证大家都买房。人们根本不能预知在疾风暴雨式的调控之下,房价竟还能且调且涨。可是,我对了吗?没有。”这是一部眼下流行、充满黑色幽默的网络视频《北漂族的无房生活》中的经典对白。含泪的“调侃”折射出当下楼市的“囚徒困境”:买,难担高房价重负;不买,难受房价节节攀升的煎熬。 再看中国的法治之路。虽然法治让所有人都长期受益,甚至执政者自己也不例外,但是一个狭隘理性社会却偏偏无力支撑法治,以至最后每个理性人都不得不忍受法治缺位的非理性之苦。绝大多数中国人都是很识时务的理性人,不会故意给自己找茬,多数律师也不例外。不过,任何事物都有两面性,“理性”过了头也就成了非理性。这就是充斥着当今中国社会的“囚徒困境”:一种行为模式对于个人看起来是很理性的,但是对于个人构成的集体来说却是非理性的,最后对于每个人来说也是非理性的。我们都不敢站出来说话,对每个人来说都是很“理性”的一种行为方式,但最后的结果只能是让整个社会丧失法治。 但囚徒困境一定是坏事吗?就以囚徒困境的经典案例来说,作为一个比喻,我们会为囚犯不能合作而遗憾;可是如果它发生在现实中,我们就巴不得他们不能合作。 然而如果是多次博弈,人们就有了合作的可能性,囚徒困境就有可能破解,合作就有可能达成。连续的合作有可能成为重复的囚徒困境的均衡解,这也是博弈论上著名的“大众定理”的含义。但合作的可能性不是必然性。博弈论的研究表明,要想使合作成为多次博弈的均衡解,博弈的一方(最好是实力更强的一方)必须主动通过可信的承诺,向另一方表示合作的善意,努力把这个善意表达清楚,并传达出去。比如在楼市的囚徒困境中,政府能适当调控房价,给予购房者房价稳定合理的承诺,那么楼市的囚徒困境是有可能破解的。 在重复的囚徒困境中,博弈被反复地进行。因而每个参与者都有机会去“惩罚”另一个参与者前一回合的不合作行为。这时,合作可能会作为均衡的结果出

平新乔课后习题详解(第10讲--策略性博弈与纳什均衡)

平新乔《微观经济学十八讲》第10讲策略性博弈与纳什均衡 1 ?假设厂商A与厂商B的平均成本与边际成本都是常数,MC A=10, MC B =8,对厂 商产出的需求函数是 Q D二500 -20 p (1)如果厂商进行Bertrand竞争,在纳什均衡下的市场价格是多少? (2)每个厂商的利润分别为多少? (3)这个均衡是帕累托有效吗? 解:(1)如果厂商进行Bertrand竞争,纳什均衡下的市场价格是p B =10 一;,p A =10 , 其中;是一个极小的正数。理由如下: 假设均衡时厂商A和B对产品的定价分别为p A和p B,那么必有p A刃0 , p B K8,即厂商的价格一定要高于产品的平均成本。其次,达到均衡时,p A和p B都不会严格大于10。否 则,价格高的厂商只需要把自己的价格降得比对手略低,它就可以获得整个市场,从而提高 自己的利润。所以均衡价格一定满足p A空10 , p B?「0。但是由于p A的下限也是10,所以均衡时P A =10。给定P A =10 ,厂商B的最优选择是令 P B =10- ;,这里:是一个介于0到2 之间的正数,这时厂商B可以获得整个市场的消费者。综上可知,均衡时的价格为P A =10 , P B =10 -;。 (2)由于厂商A的价格严格高于厂商B的价格,所以厂商A的销售量为零,从而利润也是零。下面来确定厂商B的销售量,此时厂商B是市场上的垄断者,它的利润最大化问题为: max pq —cq ①其中p =10 _ q =500 -20 107、把这两个式子代入①式中,得到: max (10 —芯―)500 —20(10 —名卩 解得;=0,由于;必须严格大于零,这就意味着;可以取一个任意小的正数,所以厂商 B 的利润为:||500-20 10 -; 10-;。 (3)这个结果不是帕累托有效的。因为厂商B的产品的价格高于它的边际成本,所以 如果厂商B和消费者可以为额外1单位的产品协商一个介于8到10一;之间的价格,那么厂商B的利润和消费者的剩余就都可以得到提高,同时又不损害厂商A的剩余(因为A的利润 还是零)。 2.(单项选择)在下面的支付矩阵(表10-1 )中,第一个数表示A的支付水平,第二个数表示B的支付水平,a、b、c、d是正的常数。如果A选择“下”而B选择“右”,那么: (1) b .1 且 d :::1

纳什均衡不动点

纳什均衡的存在性与多重性 对于数学家来说,一个数学概念的存在性与唯一性是特别需要加以关注的。这是因为,从形式逻辑角度看,如果某个事物并不存在,那么关于这个杜撰中的事物所给出的任何陈述或判断都可认为是正确的或错误的,因为对于不存在的事物来说,任何关于它的陈述或判断都不可能加以证伪。所以,倘若某个概念所对应的事物并不存在。那么,关于这个概念所给出的研究结论都必然不存在被证伪的可能。因而根据波普尔的证伪主义观点,这样的研究不具备科学上的意义。所以,我们在对任何新提出来的数学概念加以系统研究之前,首先需要弄清楚所研究的对象事物是否存在。 有许多被称为伪科学的东西,它们之所以被人们认为是“伪科学”的原因就是它们大肆谈论的东西并不存在或并未被证实其存在性。譬如,所谓的特异功能或“超灵学”并未得到证实,而UFO研究迷们至今也未能拿出一件存在球外生命的证据,所以,特异功能学或“超灵学”或“不明飞行物学”实际上都可被归入伪科学。除了存在性之外,概念事物的唯一性也是数学家们所关心的问题。从纯理论的兴趣上看,数学家们更多地是从审美的角度上看待概念的唯一性,但从波普尔的证伪主义哲学看,模型均衡解的唯一性关系到模型的预测功能,从而是科学理论应基本具有的特征。我们在第二章中曾指出,理论的预测功能是判别理论的科学性的准绳,而在第三章中,我们提出用纳什均衡作为模型的预测结果。按照这样的逻辑,一个自然的推论就是:模型能否具有科学意义取决于纳什均衡的唯一性。因为倘若纳什均衡不是唯一的,那么就难以根据模型对即将出现的结果加以预测,这种不确定性对于科学理论来说是不存在的。再加上前面谈到的存在性问题,我们可以这样说,模型能否具有科学意义取决于纳什均衡的存在性和唯一性,因为这正是科学理论所具有的基本性质。 博弈论目前发展的情况是这样的:已经证明在非常一般的情况下,纳什均衡是存在的,这是一个好的结果;但是,在许多情形,模型的纳什均衡解不是唯一的,这被称为纳什均衡的多重性问题。 纳什在1950年代证明了纳什均衡的存在性定理,为非合作博弈打下了重要基础。纳什的工作不仅解决了存在性问题,而且还为其后的博弈论研究提供了一整套方法论工具,即运用不动点定理(fixed point theorem)这一强有力的数学工具进行博弈论数学分析,这对后来的博弈论甚至数理经济学的发展产生了很大的影响。纳什均衡的多重性问题至今仍是困扰博弈论学者的一个主要问题。为了攻克这一问题,博弈论专家已经做出了许多贡献,如聚点均衡、相关均衡,子博弈精炼纳什均衡,颤抖手均衡,序贯均衡等概念的提出。但不幸的是,这类努力还未使得多重均衡问题完全得到解决,许多博弈论专家正在这一领域进行着不懈的工作。 本章将给出纳什均衡的存在性定理和讨论存在多重均衡情况下的均衡选择问题。

纳什均衡

1.纳什均衡:给出对方的策略,你所选的是最优的(至少不比其它策略差),如果每个局 中人都是这样,那么所构成的策略组合(对局),就称为纳什均衡。 2.效用:消费者偏好与收入之间的相互作用导致人们做出消费选择,效用则是人们从这种 消费选择中所获得的愉悦或满足。 3.边际产量:当其他要素不变时,可变要素增加一个单位所带来的总产量的增加量。 4.生产成本:经营一个企业,为达到利润最大化,必须支付一些资金来维持运营,如建造 厂房,采购机器及原料,雇用员工等支出都可视为厂家的生产成本。 5.帕累托标准:如果一种变化可以改善某些人的处境,同时对其他人都没有伤害。则这种 变化是好事,应该给予实行。 6.恩格尔系数:是食品支出总额占个人消费支出总额的比重。一个家庭收入越少,家庭收 入中或者家庭总支出中用来购买食物的支出所占的比例就越大,随着家庭收入的增加,家庭收入中或者家庭支出中用来购买食物的支出将会下降。恩格尔系数是用来衡量家庭富足程度的重要指标。 7.效用:消费者偏好与收入之间的相互作用导致人们做出消费选择,效用则是人们从这种 消费选择中所获得的愉悦或满足。 8.价格管制:是指政府对新药定价以及上市药品价格上涨实施严格的管制,企业不能自由 定价,而是由政府和制药企业谈判决定新药的价格。 9.软着陆:当一个国家经过强劲的经济增长后,仍维持缓和的增长,并未因此转入衰退, 即使“软着陆”。 10.硬着陆:一个国家的经济在高速增长的同时伴随着高度通货膨胀,使得经济迅速从增高 长直接走入低增长甚至衰退。 11.通货膨胀:平均物价水平持续上扬的状态,通货膨胀率通常是以消费者物价指数(CPI) 的变化率来表示。指数上升→物价上升,货币购买力下降。 12.再贴现率:一般商业银行可以直接向中央银行借贷的利率。所谓“贴现”:通过一定的 方式把发生在未来(或不同时间)的费用和效益转化为现值的方式就叫贴现。 13.机会成本:在资源一定的情况下,多生产一个单位的某种产品,就要以少生产若干单位 的另一种产品为代价。这种放弃若干单位另一种产品生产的代价,就是生产某种成品的机会成本。 14.需求价弹性价格:指在市场需求曲线的任何一点,价格每变动1%所导致的需求量变动 的百分比。它是衡量产品需求量对产品价格变动的敏感指标。 15.生产函数(生产成本):企业在每个时期投入的各种生产要素的数量与获得的产出品的 数量之间的关系。 16.均衡及均衡价格:均衡:供给和需求达到平衡的状态。均衡价格:供需平衡时的价格。 有时被称为市场出清价格。 17.资源的概念及分类:指用于生产能满足人类需要的东西的那些物品或劳务。分类:自由 资源和经济资源 18.恩格尔曲线:某种商品的均衡购买量与消费者货币收入之间的关系。 1.药物需求与供给的特征:需求的特征:需求的不确定性、需求的最高优先性、需求的不 可替代性、需求的外部效应性、需求缺乏弹性、需求的被动性、独特的需求三方结构供给的特征:高质量性、高技术性、高投入性、高风险性、高回报性、高度集中性 2.影响药品需求的因素有哪些: (一)一般经济学因素:1.经济发展水平;2.价格水平(1)是否实施医疗保障制度(2)医疗保障制度下保障的范围(3)医疗保障制度的报销制度和自付比例等(二) 社会人口学因素(三)流行病学因素(四)临床医生和药师因素(五)医药技

平新乔课后习题详解(第10讲--策略性博弈与纳什均衡)

平新乔《微观经济学十八讲》第10讲 策略性博弈与纳什均衡 1.假设厂商A 与厂商B 的平均成本与边际成本都是常数,10A MC =,8B MC =,对厂商产出的需求函数是 50020D Q p =- (1)如果厂商进行Bertrand 竞争,在纳什均衡下的市场价格是多少? (2)每个厂商的利润分别为多少? (3)这个均衡是帕累托有效吗? 解:(1)如果厂商进行Bertrand 竞争,纳什均衡下的市场价格是10B p ε=-,10A p =,其中ε是一个极小的正数。理由如下: 假设均衡时厂商A 和B 对产品的定价分别为A p 和B p ,那么必有10A p ≥,8B p ≥,即厂商的价格一定要高于产品的平均成本。其次,达到均衡时,A p 和B p 都不会严格大于10。否则,价格高的厂商只需要把自己的价格降得比对手略低,它就可以获得整个市场,从而提高自己的利润。所以均衡价格一定满足10A p ≤,10B p ≤。但是由于A p 的下限也是10,所以均衡时10A p =。给定10A p =,厂商B 的最优选择是令10B p ε=-,这里ε是一个介于0到2之间的正数,这时厂商B 可以获得整个市场的消费者。综上可知,均衡时的价格为10A p =,10B p ε=-。 (2)由于厂商A 的价格严格高于厂商B 的价格,所以厂商A 的销售量为零,从而利润也是零。下面来确定厂商B 的销售量,此时厂商B 是市场上的垄断者,它的利润最大化问题为: max pq cq ε>- ① 其中10p ε=-,()5002010q ε=-?-,把这两个式子代入①式中,得到: ()()0 max 1085002010εεε>----???? 解得0ε=,由于ε必须严格大于零,这就意味着ε可以取一个任意小的正数,所以厂商B 的利润为:()()500201010εε-?--????。 (3)这个结果不是帕累托有效的。因为厂商B 的产品的价格高于它的边际成本,所以 如果厂商B 和消费者可以为额外1单位的产品协商一个介于8到10ε-之间的价格,那么厂商B 的利润和消费者的剩余就都可以得到提高,同时又不损害厂商A 的剩余(因为A 的利润还是零)。 2.(单项选择)在下面的支付矩阵(表10-1)中,第一个数表示A 的支付水平,第二个数表示B 的支付水平,a 、b 、c 、d 是正的常数。如果A 选择“下”而B 选择“右”,那么: 表10-1 博弈的支付矩阵

浅析囚徒困境与纳什均衡

浅析囚徒困境 令狐采学 囚徒困境是博弈论的非零和博弈中具代表性的例子,指反映个人最佳选择并非团体最佳选择。 囚徒困境的经典案例这里不再复述,让我们看一下身边的例子。囚徒困境在生活中最常见的表现就是挤公共汽车。从集体理性的角度来看,按次序上车是最有效率的做法,但是你挤我不挤,我就可能上得慢,所以每个人的最优战略都是挤,结果上车就更慢了。学生也同样遭遇囚徒困境:减轻中小学生过重负担喊了20多年,仅1985年至2000年的15年里,中央就下达“减负令”49次。但实际情况却是学生课业负担不但没减下来,反倒呈现出越演越烈之势,致使学生作业做到深夜、节假日仍然上课、业余时间奔忙于各种补习班等。可见“减负令”难以见效,中小学生课业负担不减反增。 又比如近年来炒得火热的楼市——“我没买房,结果房价还是涨了,因为我们无法保证大家都不买房。可是,我错了吗?没有。当初如果我买房了,房价下跌了呢?因为我不能保证大家都买房。人们根本不能预知在疾风暴雨式的调控之下,房价竟还能且调且涨。可是,我对了吗?没有。”这是一部眼下流行、充满黑色幽默的网络视频《北漂族的无房生活》中的

经典对白。含泪的“调侃”折射出当下楼市的“囚徒困境”:买,难担高房价重负;不买,难受房价节节攀升的煎熬。 再看中国的法治之路。虽然法治让所有人都长期受益,甚至执政者自己也不例外,但是一个狭隘理性社会却偏偏无力支撑法治,以至最后每个理性人都不得不忍受法治缺位的非理性之苦。绝大多数中国人都是很识时务的理性人,不会故意给自己找茬,多数律师也不例外。不过,任何事物都有两面性,“理性”过了头也就成了非理性。这就是充斥着当今中国社会的“囚徒困境”:一种行为模式对于个人看起来是很理性的,但是对于个人构成的集体来说却是非理性的,最后对于每个人来说也是非理性的。我们都不敢站出来说话,对每个人来说都是很“理性”的一种行为方式,但最后的结果只能是让整个社会丧失法治。 但囚徒困境一定是坏事吗?就以囚徒困境的经典案例来说,作为一个比喻,我们会为囚犯不能合作而遗憾;可是如果它发生在现实中,我们就巴不得他们不能合作。 然而如果是多次博弈,人们就有了合作的可能性,囚徒困境就有可能破解,合作就有可能达成。连续的合作有可能成为重复的囚徒困境的均衡解,这也是博弈论上著名的“大众定理”的含义。但合作的可能性不是必然性。博弈论的研究表明,要想使合作成为多次博弈的均衡解,博弈的一方(最好是实力更强的一方)必须主动通过可信的承诺,向另一方表示合

纳什均衡的重要影响及其问题局限

研究领域:微观经济学 纳什均衡的重要影响及其问题局限 高红阳 (东北师范大学传媒科学学院,吉林长春 130117;吉林大学管理学院博士生,吉林长春 130022) 摘要:纳什均衡理论奠定了现代主流博弈理论和经济理论的根本基础,其对经济学以及其他社会科学甚至自然科学产生了重要影响。尽管纳什均衡理论及其应用得到了空前的肯定,但近年来纳什均衡分析却遭到了前所未有的质疑。论文从理性前提、犯错误、多重性、静态分析、动态分析、期望效用等六个角度论述了目前理论所存在的问题局限,而且将学界尝试解决上述问题的有限理性、好像理性、颤抖手均衡、聚焦均衡、风险占优均衡、帕累托最优均衡、防联盟均衡、相关均衡等方法一并加以讨论阐述。 关键词:纳什;纳什均衡;局限 博弈论(game theory)研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,纳什均衡(Nash Equilibrium)是博弈解的一般名称,是当前博弈理论体系的核心概念。从1994年纳什(Nash)、泽尔腾(Selten)和海萨尼(Harsanyi)三位博弈论专家获得诺奖,博弈论一直是十余年来学界最活跃的研究领域之一,被经济学、政治学、生物学、军事学等许多学科奉为重要的方法论基础。 1纳什均衡的重要影响 1.1纳什及纳什均衡的得来 纳什1928年生于美国西弗吉尼亚州。关于纳什均衡的普遍意义和存在性定理的证明等奠定非合作博弈理论发展基础的重要成果,是纳什在普林斯顿大学攻读博士学位时完成的。实际上,博弈论的研究起始于1944年冯·诺依曼(Von Neumann)和奥斯卡·摩根斯坦(Oscar Morgenstern)合著的《博弈论和经济行为》。然而却是纳什首先用严密的数学语言和简明的文字准确地定义了纳什均衡这个概念,并在包含“混合策略(mixed strategies)”的情况下,证明了纳什均衡在n人有限博弈中的普遍存在性,从而开创了与诺依曼和摩根斯坦框架路线均完全不同的“非合作博弈(Non-cooperative Game)”理论,进而对“合作博弈(Cooperative Game)”和“非合作博弈”做了明确的区分和定义。图克(Tucker)教授评价其论文,“这是对博弈理论的高度原创性和重要的贡献。它发展了本身很有意义的n人有限非合作博弈的概念和性质。并且它很可能开拓出许多在两人零和问题以外的,至今尚未涉及的问题。在概念和方法两方面,该论文都是作者的独立创造。” 1.2纳什均衡的重要影响 纳什均衡理论奠定了现代主流博弈理论和经济理论的根本基础,正如克瑞普斯(Kreps,1990)在《博弈论和经济建模》一书的引言中所说,“在过去的一二十年内,经济学在方法论以及语言、概念等方面,经历了一场温和的革命,非合作博弈理论已经成为范式的中心……在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不懂纳什均衡能够‘消费’近期文献的领域。”纳什均衡的重要影响可以概括为以下六个方面(谢识予,1999): (1)改变了经济学的体系和结构。非合作博弈论的概念、内容、模型和分析工具等,均已渗透到微观经济学、宏观经济学、劳动经济学、国际经济学、环境经济学等经济学科的绝大部分学科领域,改变了这些学科领域的内容和结构,成为这些学科领域的基本研究范式和理论分析工具,从而改变了原有经济学理论体系中各分支学科的内涵。 (2)扩展了经济学研究经济问题的范围。原有经济学缺乏将不确定性因素、变动环境因素以及经济

浅析囚徒困境与纳什均衡

浅析囚徒困境 欧阳学文 囚徒困境是博弈论的非零和博弈中具代表性的例子,指反映个人最佳选择并非团体最佳选择。 囚徒困境的经典案例这里不再复述,让我们看一下身边的例子。囚徒困境在生活中最常见的表现就是挤公共汽车。从集体理性的角度来看,按次序上车是最有效率的做法,但是你挤我不挤,我就可能上得慢,所以每个人的最优战略都是挤,结果上车就更慢了。学生也同样遭遇囚徒困境:减轻中小学生过重负担喊了20多年,仅1985年至2000年的15年里,中央就下达“减负令”49次。但实际情况却是学生课业负担不但没减下来,反倒呈现出越演越烈之势,致使学生作业做到深夜、节假日仍然上课、业余时间奔忙于各种补习班等。可见“减负令”难以见效,中小学生课业负担不减反增。 又比如近年来炒得火热的楼市——“我没买房,结果房价还是涨了,因为我们无法保证大家都不买房。可是,

我错了吗?没有。当初如果我买房了,房价下跌了呢?因为我不能保证大家都买房。人们根本不能预知在疾风暴雨式的调控之下,房价竟还能且调且涨。可是,我对了吗?没有。”这是一部眼下流行、充满黑色幽默的网络视频《北漂族的无房生活》中的经典对白。含泪的“调侃”折射出当下楼市的“囚徒困境”:买,难担高房价重负;不买,难受房价节节攀升的煎熬。 再看中国的法治之路。虽然法治让所有人都长期受益,甚至执政者自己也不例外,但是一个狭隘理性社会却偏偏无力支撑法治,以至最后每个理性人都不得不忍受法治缺位的非理性之苦。绝大多数中国人都是很识时务的理性人,不会故意给自己找茬,多数律师也不例外。不过,任何事物都有两面性,“理性”过了头也就成了非理性。这就是充斥着当今中国社会的“囚徒困境”:一种行为模式对于个人看起来是很理性的,但是对于个人构成的集体来说却是非理性的,最后对于每个人来说也是非理性的。我们都不敢站出来说话,对每个人来说都是很“理性”的一种行为方式,但最后的结果只能是让整个社会丧失法

纳什均衡的应用

纳什均衡的应用 1.考虑不对称的古诺双头垄断,市场反需求函数为Q p -=115,A 企业生产的固定成本 为1000,B 企业没有固定成本,A 和B 两个企业的可变成本分别为2a q 和2b q 。 (1)请写出A 公司的古诺反应函数的表达式。 (2)请写出B 公司的古诺反应函数的表达式。 (3)请求出纳什均衡时两个企业的产量和利润。 2.在贝特兰德模型中,假定每个企业的最大生产能力是K ,单位生产成本为c =10,需求为100,如果两个企业的价格相同,市场需求在二者之间平分;如果j i P P < (i ,j =1,2,i ≠j),企业i 产量为Min{100-P i ,K},企业j 的产量为Min[Max(0,100-P i -K),K](即只有低价企业不能满足需求时,高价企业才生产,并且产量不超过生产能力)。 (1)求企业的得益函数; (2)假定300,即两国税收的替代系数。假定两国是同时决策,征税的边际成本为c 1,c 2>0,无固定成本。试求解该博弈问题的纳什均衡。 7.五户居民都可以在一个公共的池塘里放养鸭子。每只鸭子的收益v 是鸭子总数N 的函数,并取决于N 是否超过某个临界值N ;如果N N <,收益N N v v -==50)(;如果N N ≥时,0)(=N v 。再假设每只鸭子的成本为c =2元。若所有居民同时决定养鸭的数量,问该博弈的纳什均衡是什么? 8.一群渔夫在一个特定有限的区域内集体作业。该区域捕鱼的回报依赖于整体的总作业时

3-混合策略的纳什均衡

博弈论教学/混合策略的纳什均衡 出自MyKnowledgeBase < 博弈论教学 Bread crumbs: Main Page > 博弈论教学/混合策略的纳什均衡 目录 ■1 复习 ■2 混合策略(Mixed strategy) ■2.1 举例/Example ■2.2 概念 ■2.3 纯策略和混合策略 ■2.4 混合策略的争议 ■3 混合策略的纳什均衡 ■3.1 基本概念 ■3.2 混合策略纳什均衡的存在性/纳什定理 ■3.3 学术争议与批评 ■4 混合策略纳什均衡举例 ■4.1 社会福利博弈Social Welfare Game ■4.1.1 博弈分析(方法1:收益无差异) ■4.1.2 博弈分析(方法2:图形分析法) ■4.1.3 博弈分析(方法3:导数(Derivative)极值法) ■4.2 普通例子 ■4.3 审计博弈(Tax Game) ■4.4 激励的悖论[5] ■4.5 求解纳什均衡的一般方法 ■5 多重纳什均衡 ■5.1 多重纳什均衡举例 ■5.1.1 夫妻之争 ■5.1.2 制式问题 ■5.1.3 市场机会博弈 ■5.2 多重纳什均衡分析 ■5.2.1 帕累托上策均衡(Pareto Dominated Equilibrium) ■5.2.1.1 帕累托最优Pareto optimality ■5.2.1.2 帕累托上策均衡(Pareto Dominated Equilibrium) ■5.2.1.3 举例分析 ■5.2.2 风险上策均衡(Risk-dominant Equilibrium) ■5.2.3 聚点均衡(Focal Points Equilibrium) ■5.2.4 相关均衡 ■5.2.5 抗共谋均衡(coalition-proof Nash equilibrium)■6 纳什均衡的意义 ■7 作业 ■8 参考文献

浅谈纳什均衡

浅谈纳什均衡 第一次接触到纳什均衡是在电影《美丽心灵》里边,主人公约翰·纳什经过不断探索和创新提出了他梦想的原创理论——纳什均衡定律。 关于纳什均衡的来源,有一段有趣的小故事。约翰·纳什假设有四男五女,其中有位女士长得非常漂亮以至于所有的男士都去追求这个女士。由于漂亮女士的天生孤傲,她拒绝了所有人的追求。于是这四个男士退而求其次,去追求另外四个女士。而这四个女士都不想作为第二个选择,所以都拒绝了这四个男士,公共利益为零。这时,约翰·纳什就想道:如果这四个男士一开始都不去追求那位漂亮女士而是直接去追求那四个不那么漂亮的女士,那么毫无疑问都会成功,这时公共效益达到最大。不管信还是不信,这个故事便是纳什均衡的最初来源了。 亚当·斯密,现代经济学之父,曾经提出:在竞争中,个人的野心往往会促进公共效益。但是约翰·纳什在普林斯顿大学发表的博士论文彻底推翻了统治了经济学界100多年的亚当·斯密的重要理论。经过一段时间后,纳什的理论像是一个炸弹爆炸在了各相关学界,引起了相当大的轰动。约翰·纳什也由于他的原创理论获得了1994年的诺贝尔经济学奖。 随着时间的推移,纳什的理论逐渐进入到博弈学领域,并且成为博弈学界不可或缺的支撑理论。 纳什均衡的定义:假设有n个局中人参与博弈,给定其他人策略

的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态。 标准定义,在博弈G=﹛S1,…,Sn:u1,…,un﹜中,如果由各个博弈方的各一个策略组成的某个策论组合(s1*,…,sn*)中,任一博弈方i的策论si*,都是对其余博弈方策略的组合(s1*,…s*i-1,s*i+1,…,sn*)的最佳对策,也即ui(s1*,…s*i-1, si*,s*i+1,…,sn*)≥ui(s1*,…s*i-1, sij*,s*i+1,…,sn*)对任意sij∈Si都成立,则称(s1*,…,sn*)为G的一个纳什均衡。 关于纳什均衡最经典的案例莫过于囚徒困境了,关于这个经典案例已经分析得太多太多,这里就不详细介绍了。 那么就通过生活中的例子来简单加入纳什均衡定理吧。话说马上就要期末考试了,有小A同学和小B同学两位刻苦学习的好孩子。他们相约一起复习,假设两人对各个学科的掌握情况不一致,小A对《经济学原理》比较熟络,而小B则更加擅长于《博弈与实践》课程。于是他们两个就打起了小算盘:如果小A和小B都自己复习自己所掌握

纳什均衡点

纳什均衡点 纳什均衡点纳什均衡点(港译:纳殊均衡点),又称为非合作博弈均衡点,是博弈论的一个重要概念,以约翰·纳什命名。 如果某情况下无一参与者可以独自行动而增加收益,则此策略组合被称为纳什均衡点[1]。 [编辑本段]例子 经典的例子就是囚徒困境,囚徒困境是一个非零和博弈。大意是:一个案子的两个嫌疑犯被分开审讯,警官分别告诉两个囚犯,如果你招供,而对方不招供,则你将被判刑一年,而对方将被判刑十年;如果两人均招供,将均被判刑五年。于是,两人同时陷入招供还是不招供的两难处境。如果两人均不招供,将最有利,只被判刑三年。但两人无法沟通,于是从各自的利益角度出发,都依据各自的理性而选择了招供,这种情况就称为纳氏均衡点。这时,个体的理性利益选择是与整体的理性利益选择不一致的。 囚犯甲的博弈矩阵 囚犯甲 招供不招供 囚犯乙招供判刑五年甲判刑十年;乙判刑一年 不招供甲判刑一年;乙判刑十年甲判刑三年 基于经济学中Rational agent的前提假设,两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被判刑三年就不会出现。事实上,这样两人都选择坦白的策略以及因此被判五年的结局被是“纳什均衡”(也叫非合作均衡),换言之,在此情况下,无一参与者可以“独自行动”(即单方面改变决定)而增加收获。 [编辑本段]学术争议和批评 第一,纳什(Nash)的关于非合作(non-cooperative)博弈论的平衡不动点解(equilibrium/fixpoint)学术证明是非构造性的(non-constructive),就是说纳什用角谷静夫不动点定理(Kakutani fixed point theorem)证明了平衡不动点解是存在的,但却不能指出以什么构造算法如何去达到这个平衡不动点解。这种非构造性的发

浅谈纳什均衡理论

浅谈纳什均衡理论 姓名:郭善禄班级:11保险精算学号:1008014 摘要:在本学期的校选修数学欣赏课上看了电影《美丽心灵(A Beautiful Mind)》使我感触非常深刻,尤其是对其中的主人公——约翰·纳什十分的敬佩和仰慕,由于我的经济学专业对其主要理论思想进行过一段时间的学习,因此纳什理论引起了我的很大兴趣,我查阅了很多关于这方面的资料,因此这次的期末论文也以此为题材。下面就让我们一同去了解和探寻这位有着传奇色彩的数学天才,诺贝 尔学奖获得者的人生和博弈理论。 关键词:博弈论;纳什均衡;非合作博弈;合作共赢。 正文:1.纳什简介及博弈论的发展 1.1纳什简介 纳什均衡:Nash equilibrium ,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名… 约翰·纳什1948年作为年轻数学博士生进入普林斯顿大学。其研究成果见于题为《非合作博弈》(1950)的博士论文。该博士论文导致了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表。纳什在上述论文中,介绍了合作博弈与非合作博弈的区别。他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用解概念,也就是不限于两人零和博弈。该解概念后来被称为纳什均衡。 纳什均衡定义:假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己效用最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。 1.2博弈论的产生及发展 冯·诺依曼、摩根斯坦把对策论、运筹学引入经济学,形成了最早的博弈论。博弈论字面的意思是游戏策略,及用类似游戏中解决问题的方法,揭示解决社会、经济及其他领域问题的策略、对策,因此有的还把博弈论译成对策论。准确的说博弈论是在给定的条件下寻求最优策略,这里给定的条件包含其他人的策略以及本人的决策对其他决策主体的影响。 策略性活动在社会、经济、政治生活中大量存在,也可以说,整个社会、经济、政治生活都是博弈行为。因此,博弈论作为一种方法,广泛的应用在经济、政治、军事、外交中,只是博弈论在经济学中应用的最广泛、最成功。

纯策略纳什均衡

纯策略纳什均衡 纯策略纳什均衡(Pure Strategy Nash Equilibrium ) 什么是纯策略纳什均衡 纯策略纳什均衡 是指在一个纯策略组合中,如果 给定其他的策略不变,该节点不会单方面改变自己的 策略,否则不会使节点访问代价变小。 如果重复博弈中有惟一纯策略纳什均衡,那么我 们怎么找出它的纯策略纳什均衡呢?首先看下面囚徒 的困境的博弈的例子: 我们现在考虑该博弈重 以理解成给囚徒两次坦白机 会,最后的得益是两个阶 段博弈中各自得益之和.在两次博弈过程中,双方知 道第一次博弈的结果再进行二次博弈.用逆推归纳法 来分析,先分析第二阶段,也就是第二次重复时两 博 存在纯策略纳什均衡的有限次重复博弈 [1] 复两次的重复博弈,这可

弈方的选择.很明显,这个第二阶段仍然是两囚徒之 间的一个囚徒的困境博弈,此时前一阶段的结果已成 为既成事实,此后又不再有任何的后续阶段,因此实 现自身当前的最大利益是两博弈方在该阶段决策中的 惟一原则. 因此我们不难得出结论,不管前一次的博弈得到 的结果如何,第二阶段的惟一结果就是原博弈惟一的 纳什均衡 (坦白,坦白 ) ,双方得益 (-5 ,-5) . 现在再回到第一阶段,即第一次博弈.理性的博 弈方在第一阶段就对后一阶段的结局非常清楚,知道 第二阶段的结果必然是 (坦白,坦白 ) ,因此不管第一 阶段的博弈结果是什么,双方在整个重复博弈中的最 终得益,都将是第一阶段的基础上各加 -5 .因此从第 一阶段的选择 来看,这个 于是我们可以得出惟一纯策略均衡的 有限次重复 博弈的结果就是重复原博弈惟一的纯策略纳什均衡, 这就是 这种重复博弈惟一的 子博弈完美纳什均衡 路 径. 重复博弈 与图 l 表示的一次性博弈实际上是完全等价的. 中得益矩阵

相关文档
最新文档