基于MT6752的 android 系统启动流程分析报告

基于MT6752的 android 系统启动流程分析报告
基于MT6752的 android 系统启动流程分析报告

基于MT6752的Android系统启动流程分析报告

1、Bootloader引导 (2)

2、Linux内核启动 (23)

3、Android系统启动 (23)

报告人:

日期:2016.09.03

对于Android整个启动过程来说,基本可以划分成三个阶段:Bootloader引导、Linux kernel启动、Android启动。但根据芯片架构和平台的不同,在启动的Bootloader阶段会有所差异。

本文以MTK的MT6752平台为例,分析一下基于该平台的Android系统启动流程。

1、Bootloader引导

1.1、Bootloader基本介绍

BootLoader是在操作系统运行之前运行的一段程序,它可以将系统的软硬件环境带到一个合适状态,为运行操作系统做好准备,目的就是引导linux操作系统及Android框架(framework)。

它的主要功能包括设置处理器和内存的频率、调试信息端口、可引导的存储设备等等。在可执行环境创建好之后,接下来把software装载到内存并执行。除了装载software,一个外部工具也能和bootloader握手(handshake),可指示设备进入不同的操作模式,比如USB下载模式和META模式。就算没有外部工具的握手,通过外部任何组合或是客户自定义按键,bootloader也能够进入这些模式。

由于不同处理器芯片厂商对arm core的封装差异比较大,所以不同的arm处理器,对于上电引导都是由特定处理器芯片厂商自己开发的程序,这个上电引导程序通常比较简单,会初始化硬件,提供下载模式等,然后才会加载通常的bootloader。

下面是几个arm平台的bootloader方案:

marvell(pxa935) : bootROM + OBM + BLOB

informax(im9815) : bootROM + barbox + U-boot

mediatek(mt6517) : bootROM + pre-loader + U-boot

broadcom(bcm2157) : bootROM + boot1/boot2 + U-boot

而对MT6752平台,MTK对bootloader引导方案又进行了调整,它将bootloader分为以下两个部分:

(1) 第1部分bootloader,是MTK内部(in-house)的pre-loader,这部分依赖平台。

(2) 第2部分bootloader,是LK(little kernel的缩写,作用同常见的u-boot差不多),这部分依赖操作系统,负责引导linux操作系统和Android框架。

1.2、bootloader的工作流程

1.2.1 bootloader正常的启动流程

先来看启动流程图:

正常启动的主要工作如下:

(1) 设备上电后,Boot ROM开始运行。

(2) BootROM初始化软件堆栈(software stack)、通信端口和可引导存储设备(比如

NAND/EMMC)。

(3) BootROM从存储器中加载pre-loader到内部SRAM(ISRAM)中,因为这时候还没有初

始化外部的DRAM。

(4) BootROM跳转到pre-loader的入口处并执行。

(5) Pre-loader初始化DRAM和加载U-Boot到RAM中。

(6) Pre-loader跳转到U-Boot中并执行,然后U-Boot做一些初始化,比如显示的初始化等。

(7) U-Boot从存储器中加载引导镜像(boot image),包括linux内核和ramdisk(Android呢?)

(8) U-Boot跳转到linux内核并执行。

正常的下载主要工作如下:

(1) 设备上电后,Boot ROM开始运行。

(2) BootROM初始化软件堆栈(software stack)、通信端口和可引导存储设备(比如

NAND/EMMC)。

(3) BootROM通过UART/USB和flash工具握手。

(4) BootROM通过UART下载pre-loader镜像到NAND flash/EMMC中,然后重启。

(5) BootROM加载pre-loader到内部SRAM汇总,因为DRAM还没有初始化。

(6) BootROM跳转到pre-loader并执行。

(7) Pre-loader初始化DRAM和通过USB与flash工具握手。

(8) Pre-loader通过USB下载其余镜像文件,比如U-Boot、boot image、recovery image、

android system image、user data到NAND FLASH/EMMC中。

1.2.3 Bootloader备用的下载流程(emergency download procedure)

(1) 设备上电后,Boot ROM开始运行。

(2) BootROM初始化软件堆栈(software stack)、通信端口和可引导存储设备(比如

NAND/EMMC)。

(3) BootROM在emergency DL按键按下后,通过USB和flash工具握手。

(4) BootROM通过USB把指定的镜像文件下载到NAND FLASH/EMMC中。

1.3、Pre-loader启动过程

1.3.1 Pre-loader的功能

pre-loader是MTK内置的loader,它的主要功能如下:

(1) 负责在芯片组平台(chipset platform)上准备好可执行的环境

(2) 如果外部工具有效,它会试图通过UART或是USB来和外部工具握手。

(3) 从NAND/EMMC加载U-Boot,并跳转到U-Boot。

(4) 使用工具握手,设备能够触发进入下载模式来下载需要的镜像,或是进入工厂/测试模

式,比如META模式和ATE工厂模式,在这些模式下可以测试模块,或是通过传递引导参数给U-Boot和linux内核来校准设备(device calibration)

1.3.2 Pre-loader中涉及的硬件部分

当系统启动时,芯片组(chipset)内部的可引导ROM开始执行,并从可引导存储设备(NAND/EMMC等等)上拷贝pre-loader。所以,需要通过初始化一些硬件模块来为软件创造必要的可执行环境(essential execution environment),所有这些硬件模块在接下来描述。

(1) PLL模块

1) PLL模块用于调整处理器和外部内存的频率。

2) 在PLL模块初始化后,处理器和外部内存的频率可由26MHZ/26MHZ增加到

1GHZ/192MHZ。

(2) UART模块

1) UART模块用于调试或是META模式下的握手。

2) 默认情况下,UART4初始化波特率为9216000bps和用于调试信息的输出,UART1

初始化为115200bps和作为UART META默认端口。但也可以使用UART1作为调试或是UART META端口。

(3) 计时器(timer)模块

这是个基本的模块,用来计算硬件模块所需要的延时或是超时时间。

(4) 内存模块

1) Pre-loader由boot ROM加载和在芯片组内部的SRAM中执行,因为外部的DRAM

还没有初始化。

2) 为了准备软件整个可执行环境,pre-loader采用内置的内存设置来初始化

DRAM(DRAM is initialized upon pre-loader built-inmemory settigns)。这样,U-Boot 就能够被加载到DRAM中并执行。

(5) GPIO模块

(6) PMIC模块

为了提供一些基本的硬件功能,比如控制外设电源,pre-loader初始化上层模块(upper modules)。

(7) RTC模块

1) 当通过power按键开机后,pre-loader拉高RTC的PWBB来保持设备一直有电(keep

the device alive)和继续引导U-Boot。

2) RTC闹钟(alarm)有可能是设备开机的启动源,对于这种情况,设备部需要按power

按键就可自动启动。

(8) USB模块

当USB线插入时,它初始化来和外部工具通信,比如用于升级系统的下载工具或是META模式触发器的META工具。

(9) NAND模块

(10) MSDC模块

Pre-loader可以从NAND flash或是EMMC中加载U-Boot,这两者只能选择其中一种来启动。

1.3.3 Pre-loader的过程(procedure)和流程(flow)

1.3.4 pre-loader的上电情景

函数位置在:\mediatek\platform\mt6752\preloader\src\core\download.c定义。

1.3.6 具体的代码分析过程

代码位置:\mediatek\platform\mt6752\preloader\src\core\main.c

代码位置:mediatek\platform\mt6752\preloader\src\core\handshake_usb.c

代码位置:mediatek\platform\mt6752\preloader\src\src\drivers\usbtty.c

代码位置:\mediatek\platform\mt6752\preloader\src\core\handshake_usb.c

代码位置:\mediatek\platform\mt6752\preloader\src\core\download.c 从Bus_hound分析工具,可以看到usb与flash tool工具的握手情况。

1.4、LK启动过程

LK是little kernel的简称,是一种bootloader(作用同常见的u-boot差不多),是Travis Geiselbrecht开发的一个开源项目,github地址为git://https://www.360docs.net/doc/1f4291766.html,/travisg/lk.git,而mtk的代码中就用到了LK。

它由pre-loader引导并执行。从根本上来说(basically),pre-loader已经初始化了相关的硬件模块,而不需要在LK中重新配置这些模块了。但一些模块在LK中被重新复位来配置硬件寄存器,这样可创造一个干净的环境。比如计时器模块,在LK中,计时器重新复位清零硬件计数来对计时进行复位。所有在LK中需要初始化的列在下面:

(1) 计时器模块

通过复位硬件寄存器来复位计时。

(2) 串口模块

LK采用串口模块来配置它的输入/输出系统,在这个模块初始化后,我们可以使用LK提供的“printf(…)”等函数来使用串口功能。

(3) I2C模块

(4) PWM模块

(5) PMIC模块

(6) RTC模块

和计时器模块一样,在LKt中,I2C/PMIC/RTC重新复位寄存器来复位这些模块。

(7) LED模块

通过这power off charging个模块,设备能够通知用户当前的充电状态。

(8) 充电模块

这个模块负责关机充电(power off charging)、低电压充电(lower charging in the system)。

(9) LCD模块

使用这个模块,设备能够显示logo或是任何通知的消息。

(10) NAND模块

因为LK也需要从flash读取镜像(比如内核或是ramdisk),所以有必要在LK中初始化NAND 相关的功能。

(11) MSDC模块

支持MSDC启动

1.4.1 LK的启动过程(procedure)和流程(flow)

1.4.3 启动充电情景(boot charging scenario)

1.4.4 LK模式选择情景(mode selection scenario)

支持3种主要的启动模式:

(1) 出厂/原厂模式(Factory mode)

用于批量生产(mass product)时的出厂测试。

(2) META模式(移动工程师测试架构模式)

用于批量生产时功能性测试。

(3) 恢复模式(recovery mode)

用于SD卡镜像升级(upgrade)(这是由Android提供的镜像升级方案,用户能够从SD卡升级Android系统镜像)。

(4) 高级的META模式(Advanced META mode)

批量生产时的功能性测试(不像META模式,这种模式和正常的android启动共存,一般用来测试多媒体功能)。

(5) 自动测试环境出厂模式(ATE Factory boot)

通过PC端的ATE工具发送命令来测试产品的特性(feature)。

(6) 闹钟启动(Alarm boot)

启动的原因是RTC闹钟。

(7) Fastboot启动(Fast boot)

进入Fastboot刷机模式

(8) 下载启动(download boot)

当下载时,支持logo显示。

(9) 软件重启(SW reboot)

启动原因是重启,(ex. adb reboot)1.4.5 LK具体的代码分析过程

代码位置:\bootable\bootloader\lk\kernel\main.c

代码位置:\mediatek\platform\mt6752\lk\platform.c

代码位置:\bootable\bootloader\lk\app\app.c

android系统开机启动流程分析

一,系统引导bootloader 加电,cpu执行bootloader程序,正常启动系统,加载boot.img【其中包含内核。还有ramdisk】 二,内核kernel bootloader加载kernel,kernel自解压,初始化,载入built-in驱动程序,完成启动。 内核启动后会创建若干内核线程,在后装入并执行程序/sbin/init/,载入init process,切换至用户空间(user-space) 内核zImage解压缩 head.S【这是ARM-Linux运行的第一个文件,这些代码是一个比较独立的代码包裹器。其作用就是解压Linux内核,并将PC指针跳到内核(vmlinux)的第一条指令】首先初始化自解压相关环境(内存等),调用decompress_kernel进行解压,解压后调用start_kernel启动内核【start_kernel是任何版本linux内核的通用初始化函数,它会初始化很多东西,输出linux版本信息,设置体系结构相关的环境,页表结构初始化,设置系 统自陷入口,初始化系统IRQ,初始化核心调度器等等】,最后调用rest_init【rest_init 会调用kernel_init启动init进程(缺省是/init)。然后执行schedule开始任务调度。这个init是由android的./system/core/init下的代码编译出来的,由此进入了android的代码】。 三,Init进程启动 【init是kernel启动的第一个进程,init启动以后,整个android系统就起来了】 init进程启动后,根据init.rc 和init. .rc脚本文件建立几个基本 服务(servicemanager zygote),然后担当property service 的功能 打开.rc文件,解析文件内容。【system/core/init/init.c】将service信息放置到service.list中【system/core/init/init_parser.c】。 建立service进程。【service_start(…) execve(…)】 在init.c中,完成以下工作 1、初始化log系统【解析/init.rc和init.%hardware%.rc文件,在两个 文件解析步骤2时执行“early-init”行动】 2、初始化设备【在/dev下创建所有设备节点,下载firmwares】 3、初始化属性服务器【在两个文件解析步骤2时执行“init”行动】

分析Android 开机启动慢的原因

开机启动花了40多秒,正常开机只需要28秒就能开机起来。 内核的启动我没有去分析,另一个同事分析的。我主要是分析从SystemServer启来到开机动画结束显示解锁界面的这段时间,也就是开机动画的第三个动画开始到结束这段时间,这是个比较耗时阶段,一般都在17秒左右(见过牛B的手机,只需5秒)。 SystemServer分两步执行:init1和init2。init1主要是初始化native的服务,代码在sy stem_init.cpp的system_init,初始化了SurfaceFlinger和SensorService这两个native的服务。init2启动的是java的服务,比如ActivityManagerService、WindowManagerService、PackageManagerService等,在这个过程中PackageManagerService用的时间最长,因为PackageManagerService会去扫描特定目录下的jar包和apk文件。 在开机时间需要40多秒的时,从Log上可以看到,从SurfaceFlinger初始化到动画结束,要27秒左右的时间,即从SurfaceFlinger::init的LOGI("SurfaceFlinger is starting")这句Log到void SurfaceFlinger::bootFinished()的LOGI("Boot is finished (%ld ms)", long(ns 2ms(duration)) ),需要27秒左右的时间,这显然是太长了,但到底是慢在哪了呢?应该在个中间的点,二分一下,于是想到了以启动服务前后作为分隔:是服务启动慢了,还是在服务启动后的这段时间慢?以ActivityManagerService的Slog.i(TAG, "System now ready")的这句Log为分割点,对比了一下,在从SurfaceFlinger is starting到System now read y多了7秒左右的时间,这说明SystemServer在init1和init2过程中启动慢了,通过排查,发现在init1启动的时候,花了7秒多的时间,也就是system_init的LOGI("Entered system _init()")到LOGI("System server: starting Android runtime.\n")这段时间用了7秒多,而正常情况是400毫秒便可以初始化完,通过添加Log看到,在SensorService启动时,用了比较长的时间。 不断的添加Log发现,在启动SensorService时候,关闭设备文件变慢了,每次关闭一个/dev/input/下的设备文件需要100ms左右,而SensorService有60~70次的关闭文件,大概有7s左右的时间。 调用流程是: frameworks/base/cmds/system_server/library/system_init.cpp: system_init->SensorServi ce::instantiate frameworks/native/services/sensorservice/SensorService.cpp: void SensorService::onFi rstRef()->SensorDevice& dev(SensorDevice::getInstance()) hardware/libsensors/SensorDevice.cpp: SensorDevice::SensorDevice()->sensors_open hardware/libsensors/sensors.cpp: open_sensors->sensors_poll_context_t sensors_poll_context_t执行打开每个传感器设备时,遍历/dev/input/目录下的设备文件,以匹配当前需要打开的设备,遍历文件是在 hardware/libsensors/SensorBase.cpp的openInput下实现,如果打开的设备文件不是正在打开的设备文件,会执行下面语句的else部分: if (!strcmp(name, inputName)) { strcpy(input_name, filename); break;

Android 开机启动流程

Android的开机流程 1. 系统引导bootloader 1) 源码:bootable/bootloader/* 2) 说明:加电后,CPU将先执行bootloader程序,此处有三种选择 a) 开机按Camera+Power启动到fastboot,即命令或SD卡烧写模式,不加载内核及文件系统,此处可以进行工厂模式的烧写 b) 开机按Home+Power启动到recovery模式,加载recovery.img,recovery.i mg包含内核,基本的文件系统,用于工程模式的烧写 c) 开机按Power,正常启动系统,加载boot.img,boot.img包含内核,基本文件系统,用于正常启动手机(以下只分析正常启动的情况) 2. 内核kernel 1) 源码:kernel/* 2) 说明:kernel由bootloader加载 3. 文件系统及应用init 1) 源码:system/core/init/* 2) 配置文件:system/rootdir/init.rc, 3) 说明:init是一个由内核启动的用户级进程,它按照init.rc中的设置执行:启动服务(这里的服务指linux底层服务,如adbd提供adb支持,vold提供SD卡挂载等),执行命令和按其中的配置语句执行相应功能 4. 重要的后台程序zygote 1)源码:frameworks/base/cmds/app_main.cpp等 2) 说明:zygote是一个在init.rc中被指定启动的服务,该服务对应的命令是/system/bin/app_process a)建立Java Runtime,建立虚拟机 b) 建立Socket接收ActivityManangerService的请求,用于Fork应用程序 c) 启动System Server 5. 系统服务system server 1)源码:frameworks/base/services/java/com/android/server/SystemServer.jav a 2) 说明:被zygote启动,通过SystemManager管理android的服务(这里的服务指frameworks/base/services下的服务,如卫星定位服务,剪切板服务等) 6. 桌面launcher 1)源码:ActivityManagerService.java为入口,packages/apps/launcher*实现 2) 说明:系统启动成功后SystemServer使用xxx.systemReady()通知各个服务,系统已经就绪,桌面程序Home就是在ActivityManagerService.systemReady()通知的过程中建立的,最终调用()启launcher 7. 解锁 1) 源码: frameworks/policies/base/phone/com/android/internal/policy/impl/*lock* 2) 说明:系统启动成功后SystemServer调用wm.systemReady()通知WindowManagerService,进而调用PhoneWindowManager,最终通过LockPatternKeyguardView显示解锁界面,跟踪代码可以看到解锁界面并不是一个Activity,这是只是向特定层上绘图,其代码了存放在特殊的位置

基于MT6752的 android 系统启动流程分析报告

基于MT6752的Android系统启动流程分析报告 1、Bootloader引导 (2) 2、Linux内核启动 (23) 3、Android系统启动 (23) 报告人: 日期:2016.09.03

对于Android整个启动过程来说,基本可以划分成三个阶段:Bootloader引导、Linux kernel启动、Android启动。但根据芯片架构和平台的不同,在启动的Bootloader阶段会有所差异。 本文以MTK的MT6752平台为例,分析一下基于该平台的Android系统启动流程。 1、Bootloader引导 1.1、Bootloader基本介绍 BootLoader是在操作系统运行之前运行的一段程序,它可以将系统的软硬件环境带到一个合适状态,为运行操作系统做好准备,目的就是引导linux操作系统及Android框架(framework)。 它的主要功能包括设置处理器和内存的频率、调试信息端口、可引导的存储设备等等。在可执行环境创建好之后,接下来把software装载到内存并执行。除了装载software,一个外部工具也能和bootloader握手(handshake),可指示设备进入不同的操作模式,比如USB下载模式和META模式。就算没有外部工具的握手,通过外部任何组合或是客户自定义按键,bootloader也能够进入这些模式。 由于不同处理器芯片厂商对arm core的封装差异比较大,所以不同的arm处理器,对于上电引导都是由特定处理器芯片厂商自己开发的程序,这个上电引导程序通常比较简单,会初始化硬件,提供下载模式等,然后才会加载通常的bootloader。 下面是几个arm平台的bootloader方案: marvell(pxa935) : bootROM + OBM + BLOB informax(im9815) : bootROM + barbox + U-boot mediatek(mt6517) : bootROM + pre-loader + U-boot broadcom(bcm2157) : bootROM + boot1/boot2 + U-boot 而对MT6752平台,MTK对bootloader引导方案又进行了调整,它将bootloader分为以下两个部分: (1) 第1部分bootloader,是MTK内部(in-house)的pre-loader,这部分依赖平台。 (2) 第2部分bootloader,是LK(little kernel的缩写,作用同常见的u-boot差不多),这部分依赖操作系统,负责引导linux操作系统和Android框架。 1.2、bootloader的工作流程 1.2.1 bootloader正常的启动流程 先来看启动流程图:

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

Android开机启动流程样本

Android的开机流程 1. 系统引导bootloader 1) 源码: bootable/bootloader/* 2) 说明: 加电后, CPU将先执行bootloader程序, 此处有三种选择 a) 开机按Camera+Power启动到fastboot, 即命令或SD卡烧写模式, 不加载内核及文件系统, 此处能够进行工厂模式的烧写 b) 开机按Home+Power启动到recovery模式, 加载recovery.img, recovery.img包含内核, 基本的文件系统, 用于工程模式的烧写 c) 开机按Power, 正常启动系统, 加载boot.img, boot.img包含内核, 基本文件系统, 用于正常启动手机( 以下只分析正常启动的情况) 2. 内核kernel 1) 源码: kernel/* 2) 说明: kernel由bootloader加载 3. 文件系统及应用init 1) 源码: system/core/init/* 2) 配置文件: system/rootdir/init.rc, 3) 说明: init是一个由内核启动的用户级进程, 它按照init.rc中的设置执行: 启动服务( 这里的服务指linux底层服务, 如adbd提供adb支持, vold提供SD卡挂载等) , 执行命令和按其中的配置语句执行相应功能 4. 重要的后台程序zygote 1) 源码: frameworks/base/cmds/app_main.cpp等 2) 说明: zygote是一个在init.rc中被指定启动的服务, 该服务对应的命令是/system/bin/app_process

Android系统启动过程详解

Android系统启动过程详解 Android系统启动过程 首先Android框架架构图:(来自网上,我觉得这张图看起来很清晰) Linux内核启动之后就到Android Init进程,进而启动Android相关的服务和应用。 启动的过程如下图所示:(图片来自网上,后面有地址)

下面将从Android4.0源码中,和网络达人对此的总结中,对此过程加以学习了解和总结, 以下学习过程中代码片段中均有省略不完整,请参照源码。

一Init进程的启动 init进程,它是一个由内核启动的用户级进程。内核自行启动(已经被载入内存,开始运行, 并已初始化所有的设备驱动程序和数据结构等)之后,就通过启动一个用户级程序init的方式,完成引导进程。init始终是第一个进程。 启动过程就是代码init.c中main函数执行过程:system\core\init\init. c 在函数中执行了:文件夹建立,挂载,rc文件解析,属性设置,启动服务,执行动作,socket监听…… 下面看两个重要的过程:rc文件解析和服务启动。 1 rc文件解析 .rc文件是Android使用的初始化脚本文件(System/Core/Init/readm e.txt中有描述: four broad classes of statements which are Actions, Commands, Services, and Options.) 其中Command 就是系统支持的一系列命令,如:export,hostname,mkdir,mount,等等,其中一部分是linux 命令, 还有一些是android 添加的,如:class_start :启动服务,class_stop :关闭服务,等等。 其中Options是针对Service 的选项的。 系统初始化要触发的动作和要启动的服务及其各自属性都在rc脚本文件中定义。具体看一下启动脚本:\system\core\rootdir\init.rc 在解析rc脚本文件时,将相应的类型放入各自的List中: \system\core\init\Init_parser.c :init_parse_config_file( )存入到 action_queue、action_list、service_list中,解析过程可以看一下parse_config函数,类似状态机形式挺有意思。 这其中包含了服务:adbd、servicemanager、vold、ril-daemon、deb uggerd、surfaceflinger、zygote、media…… 2 服务启动 文件解析完成之后将service放入到service_list中。 文件解析完成之后将service放入到service_list中。 \system\core\init\builtins.c

RK系统启动流程

RK29机型之Android系统启动流程 分类:瑞芯微RK 2012-02-12 14:50 4439人阅读评论(0) 收藏举报/******************************************************************************************** * author:conowen@大钟 * E-mail:conowen@https://www.360docs.net/doc/1f4291766.html, * https://www.360docs.net/doc/1f4291766.html,/conowen * 注:本文为原创,仅作为学习交流使用,转载请标明作者及出处。 ********************************************************************************************/ 第一步:系统引导bootloader,即RK29xxLoaderXXX.bin文件 加电后,CPU将先执行 bootloader程序,然后bootloader首先会读寄存器地址base + APP_DATA1的内容,根据这个地址的值决定是否进入recovery模式或者其它模式。bootloader还会读取MISC分区第一块的内容,决定进入recovery模式还是升级基带Baseband Processor(BP)或做其它事情 而上述寄存器与分区的值是有按键触发或者软件触发的。 a) 开机按reset+返回键,系统进入recovery模式,加载recovery.img,recovery.img 包含内核,基本的文件系统,用于工程模式的烧写 b) 开机按Power,正常启动系统,加载boot.img,boot.img包含内核,基本文件系统,用于正常启动机器(以下只分析正常启动的情况) 第二步:启动内核kernel 1) 源码:kernel/* 2) 说明:kernel由bootloader加载 第三步:文件系统(rootfs)及应用初始化(init) 1) 源码:system/core/init/* 2) 配置文件:system/rootdir/init.rc, 3) 说明:init是一个由内核启动的用户级进程,它按照init.rc中的设置执行:启动服务(这里的服务指linux底层服务,如adbd提供adb支持,vold提供SD卡挂载等),执行 命令和按其中的配置语句执行相应功能 第四步:重要的后台程序zygote 1) 源码:frameworks/base/cmds/app_main.cpp等 2) 说明:zygote是一个在init.rc中被指定启动的服务,该服务对应的命令是 /system/bin/app_process a) 建立Java Runtime,建立虚拟机

Android SystemBar启动流程分析

Android SystemBar启动流程分析 SystemBars的服务被start时,最终会调用该类的onNoService()方法。 @Override public void start() { if (DEBUG) Log.d(TAG, "start"); ServiceMonitor mServiceMonitor = new ServiceMonitor(TAG, DEBUG, mContext, Settings.Secure.BAR_SERVICE_COMPONENT, this); mServiceMonitor.start(); // will call onNoService if no remote service is found } @Override public void onNoService() { if (DEBUG) Log.d(TAG, "onNoService"); createStatusBarFromConfig(); // fallback to using an in-process implementation } private void createStatusBarFromConfig() { … mStatusBar = (BaseStatusBar) cls.newInstance(); … mStatusBar.start(); } BaseStatusBar是一个抽象类,故调用其子类的PhoneStatusBar的start 函数。 @Override public void start() { … super.start(); … } 子类的start又调用了父类的start public void start() { … createAndAddWindows(); … }

AndroidL系统启动及加载流程分析

Android L系统启动及加载流程分析 1、概述 Android L的启动可以分为几个步骤:Linux内核启动、init进程启动、native系统服务及java系统服务启动、Home启动,主要过程如下图: 图1 整个启动流程跟4.4及之前的版本相差不多,只是有个别不同之处,本文我们主要分析Linux内核启动之后的过程。

2、启动过程分析 2.1 init进程启动 当系统内核加载完成之后,会启动init守护进程,它是内核启动的第一个用户级进程,是Android的一个进程,进程号为1,init进程启动后执行入口函数main(),主要操作为: 图2 AndroidL上将selinux的安全等级提高了,设为了enforcing模式,4.4上是permissive模式。 解析rc脚本文件,即init.rc脚本,该文件是Android初始化脚本,定义了一系列的动作和执行这些动作的时间阶段e aryl-init、init、early-boot、boot、post-fs等阶段。init进程main 函数中会根据这些阶段进行解析执行。AndroidL上为了流程更清晰,增加了charger(充电开机)、ffbm(工厂模式)、以及late-init阶段,实际上这些阶段是对其他阶段的组合执行,比如late-init:

2.2 ServiceManager的启动 servicemanager的启动就是init进程通过init.rc脚本启动的: 源码在frameworks/native/cmds/servicemanager/service_manager.c中,servicemanager是服务管理器,它本身也是一个服务(handle=0),通过binder调用,为native和Java系统服务提供注册和查询服务的,即某个服务启动后,需要将自己注册到servicemanager中,供其他服务或者应用查询使用。AndroidL上servicemanger中在处理注册和查询动作之前添加了selinux安全检测相关的处理。 2.3 SurfaceFinger、MediaServer进程启动 Android4.4以前,surfacefinger的启动根据属性system_init.startsurfaceflinger,决定是通过init.rc启动还是systemserver进程启动,之后的版本包括AndoridL都是通过init.rc启动的: 启动后会向servicemanager进程注册服务中,该服务启动时主要功能是初始化整个显

BOOTCHART ANDROID文档(开机慢)

BootChart在Android中的应用 1简介 Bootchart是一个能对GNU/Linux boot过程进行性能分析并把结果直观化的工具。它在boot过程中搜集资源利用情况及进程信息然后以PNG,SVG或EPS格式来显示结果。BootChart包含数据收集工具和图像产生工具,数据收集工具在原始的BootChart中是独立的shell程序,但在Android中,数据收集工具被集成到了init程序中。 2BootChart使用步骤概述 ?在主机上安装BootChart ?建立有BootChart支持的init文件 ?安装init到系统镜像 ?使能启动时的BootChart功能 ?收集系统产生的数据 ?根据产生的数据生成图表 ?结果分析 以下部分将对这些步骤进行详细描述(环境:Ubuntu9.04,Android1.6)。 3详细说明 ?在主机上安装BootChart $sudo apt-get install bootchart 注:由于BootChart是用Java语言实现,所以要求其所运行的主机安装Java包。 ?创建支持BootChart功能的‘init’文件 Andoid系统中运行的第一个程序是'init',其所在的目录为Andoid文件系统的根目录下(即/)。'init'是一个由内核启动的用户级进程,主要是对系统进行初始化和根据init.rc与init.xxx.rc文件建立几个基本的服务。 创建'init'时对BootChart的数据收集功能是可选的,默认的'init'是不支持BootChart 的数据收集功能的。要想在Andoid中应用BootChart,必须创建支持BootChart数据收集功能的'init'。 $cd~/myandroid $export INIT_BOOTCHART=true #vim system/core/init/Android.mk 20ifeq($(strip$(INIT_BOOTCHART)),true) 21LOCAL_SRC_FILES+=bootchart.c

android开机启动流程简单分析

android开机启动流程简单分析 android启动 当引导程序启动Linux内核后,会加载各种驱动和数据结构,当有了驱动以后,开始启动Android系统同时会加载用户级别的第一个进程init(system\core\init\init.cpp)代码如下: int main(int argc, char** argv) { ..... //创建文件夹,挂载 // Get the basic filesystem setup we need put together in the initramdisk // on / and then we'll let the rc file figure out the rest. if (is_first_stage) { mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); #define MAKE_STR(x) __STRING(x) mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)); mount("sysfs", "/sys", "sysfs", 0, NULL); } ..... //打印日志,设置log的级别 klog_init(); klog_set_level(KLOG_NOTICE_LEVEL); ..... Parser& parser = Parser::GetInstance(); parser.AddSectionParser("service",std::make_unique()); parser.AddSectionParser("on", std::make_unique()); parser.AddSectionParser("import", std::make_unique()); // 加载init.rc配置文件 parser.ParseConfig("/init.rc"); } 加载init.rc文件,会启动一个Zygote进程,此进程是Android系统的一个母进程,用来启动Android的其他服务进程,代码: 从Android L开始,在/system/core/rootdir 目录中有4 个zygote 相关的启动脚本如下图:

Android ninja 编译启动过程分析

Android ninja编译启动过程分析 ---make是如何转换到到ninja编译的 1.首先你的得对make的工作机制有个大概的了解: 运行的命令在要编译的目录下运行make,或者make target_name a.分析处理保存阶段(没有实际编译动作):它首先对当前目录下的Makefile文件的做一次扫描,语法分析,还有处理,主要是变量的保存,目标依赖列表生成,目标下的action列表的生成,然后记住 b.然后按记住的目标执行action列表动作(有实际编译动作). 编译启动的入口方式还是运行make: 2开始make-jxxx方式进入.....(xxx是本机cpu的数量) make开始做进行第一次扫描.... 目前USE_NINJA还是没有定义,估计以后很久很久才能启用的了! BUILDING_WITH_NINJA开始也是没定义的 看make扫描入口文件: Makefile: include build/core/main.mk 在build/core/main.mk: 在ninia之前都有include help.mk和config.mk 97include$(BUILD_SYSTEM)/help.mk 98 99#Set up various standard variables based on configuration 100#and host information. 101include$(BUILD_SYSTEM)/config.mk 说明make help//显示make帮助make config//当前显示配置 103relaunch_with_ninja:= 104ifneq($(USE_NINJA),false) 105ifndef BUILDING_WITH_NINJA<==第二次扫描不会到这里了 106relaunch_with_ninja:=true 107endif 108endif 116ifeq($(relaunch_with_ninja),true)<===第一次扫描入这里了 117#Mark this is a ninja build. 118$(shell mkdir-p$(OUT_DIR)&&touch$(OUT_DIR)/ninja_build) 119include build/core/ninja.mk//---进入ninja.mk 第一次扫描到此为止就结束掉了,因为在当前ifeq else endif后面没有代码了 120else#///!relaunch_with_ninja<===第二次扫描入这里了

Android Service如何开机自启动以及自启动失败原因

Android Service如何开机自启动以及自启动失败原因 本文主要介绍Android Service如何开机自启动、自启动失败的原因、adb命令发送 BOOT_COMPLETED。 应用程序是否可以在安装后自启动,没有ui的纯service应用如何启动? 1、Android应用如何开机自启动 (1)、在AndroidManifest.xml中注册 AndroidManifest.xml中注册BOOT_COMPLETED Action注意不仅要添加 android.intent.action.BOOT_COMPLETED对应的action,还需要添加对应的uses-permission (2)、Receiver接收广播进行处理 public class BootBroadcastReceiver extends BroadcastReceiver { public static final String TAG = "BootBroadcastReceiver"; @Override public void onReceive(Context context, Intent intent) { String action = intent.getAction().toString(); if (action.equals(Intent.ACTION_BOOT_COMPLETED)) { // u can start your service here Toast.makeText(context, "boot completed action has got", Toast.LENGTH_LONG).show(); return; } } } 2、自启动失败的原因 接收不到BOOT_COMPLETED广播可能的原因 (1)、BOOT_COMPLETED对应的action和uses-permission没有一起添加 (2)、应用安装到了sd卡内,安装在sd卡内的应用是收不到BOOT_COMPLETED广播的 (3)、系统开启了Fast Boot模式,这种模式下系统启动并不会发送BOOT_COMPLETED广播 (4)、应用程序安装后重来没有启动过,这种情况下应用程序接收不到任何广播,包括 BOOT_COMPLETED、ACTION_PACKAGE_ADDED、CONNECTIVITY_ACTION等等。 Android3.1之后,系统为了加强了安全性控制,应用程序安装后或是(设置)应用管理中被强制关闭后处于stopped状态,在这种状态下接收不到任何广播,除非广播带有 FLAG_INCLUDE_STOPPED_PACKAGES标志,而默认所有系统广播都是 FLAG_EXCLUDE_STOPPED_PACKAGES的,所以就没法通过系统广播自启动了。所以Android3.1之后 (1)、应用程序无法在安装后自己启动 (2)、没有ui的程序必须通过其他应用激活才能启动,如它的Activity、Service、Content Provider被其他应用调用。 存在一种例外,就是应用程序被adb push you.apk /system/app/下是会自动启动的,不处于stopped状态。

android开机过程

一、Android开机启动流程简介 1、OS-level: 由bootloader载入linux kernel后kernel开始初始化, 并载入built-in 的驱动程序。Kernel完成开机后,载入init process,切换至user-space。 Init进程是第一个在user-space启动的进程。 2、Android-level: 由init process读取init.rc,Native 服务启动,并启动重要的外部程序,例如:servicemanager、Zygote以及System Server等。 由 init process 根据硬件类型读取init.xxx.rc。由init.xxx.rc加载init.xxx.sh。 由 init.xxx.sh 加载特定的硬件驱动。如hi_tuner.ko、hi_demux.ko等。 3、Zygote-Mode: Zygote 启动完SystemServer 后,进入Zygote Mode,在Socket 等候命令。 随后,使用者将看到一个桌面环境(Home Screen)。桌面环境由一个名为[Launcher]的应用程序负责提供。 本文档重点研究Android-level中的启动流程。 启动流程如下图所示:

二、init process流程分析 init进程简介 init进程是第一个在user-space启动的进程。由内核启动参数[init]传递给内核,如果该项没有设置,内核会按 /etc/init,/bin/init,/sbin/init,/bin/sh的顺序进行尝试,如果都有的都没找到,内核会抛出 kernel panic:的错误。

Android系统启动升级流程

A n d r o i d系统启动升级 流程 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

摘要 本文首先介绍了Android系统更新要用到的一些概念:硬件、三种模式及相互之间的通信。然后介绍了Android系统的启动和升级流程。 概述 通常,Android系统的升级包名称为update.zip。Android系统内部自带了烧写升级包的工具,我们可以手动烧写,也可以通过某些机制自动更新系统。同时,我们可以手动修改和制作升级包。本文主要阐述在Android系统升级中用到的一些概念,本文只是作为索引,并不涉及到具体的烧写工作。本文基于Android系统的版本:4.0.4。 硬件 Android系统的烧写,是非常贴近硬件的。一是,烧写是在实实在在的硬件上操作的。二则,有时在翻阅源码的时候,需要知道硬件的类型,以便找到和硬件相对应的源码。 烧写相关的硬件主要有三部分:CPU、内存和nand flash。当然,只是相对本文而言。CPU用来执行程序中的指令。内存只是在运行中,将需要运行的程序加载其中并运行,关机后即消失。nandflash用来存储程序的数据,它会一直存在。系统启动时,会将nand flash上的操作系统加载到内存,然后运行在CPU 中,对于非系统程序,按需加载到内存中运行。了解这些,有助于了解整个烧写的过程。 在板子上,可以通过下面的命令,查看CPU的信息: [plain] cat /proc/cpuinfo 通过如下命令查看内存的信息: [plain] cat /proc/meminfo nand flash是需要分区的,每个分区中对应了Android系统烧写包中不同的image,比如:boot、system分区等。可以通过如下命令来查看nand flash 的分区情况: [plain] cat /proc/mtd # 查看分区状况 通常,nand flash包含了以下分区: 开机动画:用于在开机或者升级过程中显示在屏幕上的内容。 boot:用于Android系统的正常启动 recovery:用于Android系统进入recovery模式下,参见本文后续介绍。 misc:用于保存BCB的内容,参见本文后续介绍。

Android应用程序内部启动Activity过程(startActivity)的源代码分析

上文介绍了Android应用程序的启动过程,即应用程序默认Activity的启动过程,一般来说,这种默认Activity是在新的进程和任务中启动的;本文将继续分析在应用程序内部启动非默认Activity的过程的源代码,这种非默认Activity一般是在原来的进程和任务中启动的。 这里,我们像上一篇文章Android应用程序启动过程源代码分析一样,采用再上一篇文章Android 应用程序的Activity启动过程简要介绍和学习计划所举的例子来分析在应用程序内部启动非默认Activity的过程。 在应用程序内部启动非默认Activity的过程与在应用程序启动器Launcher中启动另外一个应用程序的默认Activity的过程大体上一致的,因此,这里不会像上文Android应用程序启动过程源代码分析一样详细分析每一个步骤,我们着重关注有差别的地方。 回忆一下Android应用程序的Activity启动过程简要介绍和学习计划一文所用的应用程序Activity,它包含两个Activity,分别是MainActivity和SubActivity,前者是应用程序的默认Activity,后者是非默认Activity。MainActivity启动起来,通过点击它界面上的按钮,便可以在应用程序内部启动SubActivity。 我们先来看一下应用程序的配置文件AndroidManifest.xml,看看这两个Activity是如何配置的:view plain 1. 2. 6. 7. 9. 10. 11. 12. 13. 14. 16. 17. 18. 19. 20. 21. 22.

相关文档
最新文档