关于中国潮汐能的未来发展前景

关于中国潮汐能的未来发展前景
关于中国潮汐能的未来发展前景

关于中国潮汐能的发展和利用前景

摘要:

浩瀚无边的海洋,约占地球表面的71%,它汇集了97%的水量,蕴藏着丰富的能源。但是随着陆地资源的不断消耗而逐渐减少,人类赖以生存与发展的能源,将越来越依赖于海洋。中国大陆的海岸线长达1.8万千米,海域面积470多万平方千米,潮汐能资源非常丰富。

关键词:潮汐能,能源,发电

(一) 潮汐能定义:

因月球引力的变化引起潮汐现象,抄袭导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量成为潮汐能。潮汐能是以势能形态出现的海洋能,是指海水潮涨和潮落形成的水的势能与动能。

海洋的潮汐中蕴藏着巨大的能量。在涨潮的过程中,汹涌而来的海水具有很大的动能,而随着海水水位的升高,就把海水的巨大动能转化为势能;在落潮的过程中,海水奔腾而去,水位逐渐降低,势能又转化为动能。潮汐能的能量与潮量和潮差成正比。就这样各种能量进行转换反复进行。或者说,与潮差的平方和水库的面积成正比。和水利发电相比,潮汐能的能量密度低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。潮汐能是因地而异的,不同的地区常常有不同的潮汐系统,他们都是从深海潮波获取能量,但具有各自独特的特征。景观抄袭很复杂,但对于任何地方的潮汐都可以进行准确预报。(二)潮汐能的利用方式主要是发电。潮汐发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水利发电厂房,通过水轮的地方发电机组进行发电。只有出现大潮,能量集中时,并且在地理条件适于建造潮汐电站,从潮汐中提取能量才有可能。虽然这样的场所并不是到处都有,但世界各国都已选定了相当数量的适宜开发潮汐电站的站址。

CO含量的增加速度减慢。潮发展像潮汐能这样的新能源,可以间接使大气中的

2

汐是一种世界性的海平面周期性变化的现象,由于受月亮和太阳这两个万有引力源的作用,海平面每昼夜有两次涨落。潮汐作为一种自然现象,为人类的航海、捕捞和晒盐提供了方便,更值得指出的是,它还可以转变成电能,给人带来光明和动力。(三)我国的潮汐能发展

在亚洲,菲律宾和印度尼西亚的各岛屿,以及我国和日本海岸流动的海流,都具有巨大的潜力。在欧洲,潮汐电站的场址达上百个。在美洲,墨西哥政府计划在未来几年将投资数十亿比索在该国西部潮汐较大的加利福尼亚湾沿海造上百座潮汐电站。

在1958年,我们国家“土法上马”建了40多座“土潮汐电站”,又在20世纪70年代再建十多座潮汐电站。后来,由于种种原因,许多潮汐电站废弃了。

目前,我国正在运行发电的潮汐电站共有8座:浙江乐清湾的江厦潮汐试验电站、海山潮汐电站、沙山潮汐电站、山东乳山县的白沙口潮汐电站、浙江象山县岳浦潮汐电站、江苏太仓县浏河潮汐电站、广西饮州湾果子山潮汐电站、福建平潭县幸福洋潮汐电站。这8座潮汐电站总装机容量为6000千瓦,年发电量1000万余度。

我国潮汐发电量仅次于法国、加拿大,位居世界第三。

江厦潮汐试验电站是我国最大的潮汐能电站,是潮汐发电的试验基地。电站位于浙江省温岭市西南的江厦港上,离城区16公里。电站于1972年经国家计委批准建设,电站工程列为“水利电力潮汐电站项目”,研究重点包括潮汐能特点研究、潮汐机组研制、海工建筑物技术问题、综合利用。电站安装了5台双向灯泡贯流式机组,1号机组1980年5月4日投

产发电,到1985年12月完成全部建设,总装机容量3200千瓦。规模至今仅次于法国郎斯潮汐电站、加拿大芬地湾安娜潮汐电站仍保持亚洲第一、世界第三,年发电量稳定在600

多万千瓦时,到2006年12月31曰,电站累计发电1.35亿千瓦时。2006年初,电站六号机被科技部列入国家“863”高新技术研究发展项目,装机容量为700千瓦,总投资约1千万元福建省综合历史各次普查结果,可开发的280千瓦以上的潮汐能电站共有79座。

位于福建宁德福鼎沙埕港八尺门、装机容量为2.4万千瓦的潮汐电站建设已列入福建省“十一五”期间新能源开发建设项目之一,目前已完成预可行性研究报告,一期电站装机为2.4万千瓦,工程静态投资2.46亿元,总投资为5.36亿元,争取2006~2010年动

表2(世界上已建和研究中的大型潮汐电站)(1)

(四)潮汐能发电原理

潮汐发电与水力发电的原理相似,它是利用潮水涨、落产生的水位差所具有势能来发电的,也就是把海水涨、落潮的能量变为机械能,再把机械能转变为电能(发电)的过程。具体地说,潮汐发电就是在海湾或有潮汐的河口建一拦水堤坝,将海湾或河口与海洋隔开构

成水库,再在坝内或坝房安装水轮发电机组,然后利用潮汐涨落时海水位的升降,使海水通过轮机转动水轮发电机组发电。故从能量的角度来看。就是将海水的势能和动能,通过水轮发电机组转化为电能的过程(2)(如下图)

潮汐能发电原理示意图

由于潮水的流动方向是不断改变的,因此就使得潮汐发电出现不同的类型,即单库单向型、单库双向型和双库单向型3种:

第一种是单库单向电站。即只用一个水库,仅在涨潮(或落潮)时发电,我国浙江省温岭县沙山潮汐电站就是这种类型。

第二种是单库双向电站。用一个水库,但是涨潮与落潮时均可发电,只是在平潮时不能发电,广东省东莞县的镇口潮汐电站及浙江省温岭县江厦潮汐电站,就是这种型式。

第三种是双库双向电站。它是用二个相邻的水库,使一个水库在涨潮时进水,另一个水库在落潮时放水,这样前一个水库的水位总比后一个水库的水位高,故前者称为上水库,后者称为下水库。水轮发电机组放在两水库之间的隔坝内,两水库始终保持着水位差,故可以全天发电

(五)潮汐能利用前景

全球有许多地方适于兴建潮汐电站。近海(距海岸1 km 以内),水深在20~30 m 的水域为理想海域。欧洲工会已探测出106处适于兴建潮汐电站的海域,英国就有42处。英国近海用水轮机研究所的专家弗兰克彼得认为,在菲律宾、印度尼西亚、中国、日本海域都适于兴建潮汐电站。而且随着技术的日臻完善,潮汐电站的发电成本在现有的基础上还将降低。伴随着经济的发展,能源危机是人类正在面临并将长期面临的一大生存问题。尤其是我国东部沿海地区为人口密集区,经济相当发达,是我国电力负荷中心之所在。在而这些地区煤,石油等常规能源极度贫乏,可再生能源蕴藏量大。因此,立足于本地区的可再生能源的合理开发利用,是解决该地区供电不足的有效途径。

我国海岸线曲折漫长,北起中朝交界的鸭绿江口,南达中越相交的北仑河口,大陆岸线长达18000km 多,加上6 500多个海岛的岸线,岸线长度超过32 000 km。据对全国可开发装机容量200 kW 以上的424处港湾坝址的调查资料表明,我国的潮汐能蕴藏量为1.1亿kw,可开发总装机容量为2 1 79万kW ,年发电量624亿kW·h,容量在500 kW 以上的站点共l91处,可开发总装机容量为2 l58万kW。主要集中在福建、浙江两省和上海市沿海,潮汐能资源占全国的92 %。这种分布趋势正与我国沿海能源供需形势相吻合。其巾浙汀省可开发潮汐能资源的装机容量为879.8万kW,占全国总量的40.8 %;可提供年发电量达264亿kW·h,占全国总量的42.7 %。该地区属基岩港湾海岸,峡湾相接,岸线曲折,海岸沉积物为粗砂和砾石。地形地质条件优越,利于堵港建站。潮差大,东海澉浦、杭州湾钱塘江和乐清湾江厦港最大潮差分别达到9.86,8.9和8.39 m。特别是乐清湾,潮汐能理论蕴藏量占浙江全省的17.2 %,可开发的装机容量为55万kWh。海湾呈袋形,口小肚大,含沙量少,平均潮差5.08 m,拥有建设潮汐电站的良好条件。湾内可供开发潮汐电站的地址有江岩山、清江、狗头门、乌沙门等处口(3)。

我国潮汐能资源蕴藏量很大,当前开发的程度与世界发达国家相比较还很落后,因此我国具有很广阔的潮汐能开发空间。尤其在东南沿海地区潮汐能具有很大的开发利用价值而且可以缓解该地区常规能源短缺,电力不足的问题。

(六)潮汐能发电的优点和缺点

优点:

1、潮汐能是一种清洁、不污染环境、不影响生态平衡的可再生能源。潮水每日涨落,周而复始,取之不尽,用之不竭。它完全可以发展成为沿海地区生活、生产和国防需要的重要补充能源

2、它是一种相对稳定的可靠能源,很少受气候、水文等自然因素的影响,全年总发电量稳定,不存在丰、枯水年和丰、枯水期影响。

3、潮汐电站不需淹没大量农田构成水库,因此,不存在人口迁移、淹没农田等复杂问题。而且可用拦海大坝,促淤围垦大片海涂地,把水产养殖、水利、海洋化工、交通运输结合起来,大搞综合利用。这对于人多地少、农田非常宝贵的沿海地区,更是个突出的优点。

4、潮汐电站不需筑高水坝,即使发生战争或地震等自然灾害,水坝受到破坏,也不至于对下游城市、农田、人民生命财产等造成严重灾害。

5、潮汐能开发一次能源和二次能源相结合,不用燃料,不受一次能源价格的影响,而且运行费用低,是一种经济能源。但也和河川水电站一样,存在一次投资大、发电成本低的特点。

6、机组台数多,不用设置备用机组。

缺点:

1、潮差和水头在一日内经常变化,在无特殊调节措施时,出力有间歇性,给用户带来不便。但可按潮汐预报提前制定运行计划,与大电网并网运行,以克服其间歇性。

2、潮汐存在半月变化,潮差可相差二倍,故保证出力、装机的年利用小时数也低。

3、潮汐电站建在港湾海口,通常水深坝长,施工、地基处理及防淤等问题较困难。故土建和机电投资大,造价较高。

4、潮汐电站是低水头、大流量的发电形式。涨落潮水流方向相反,敌水轮机体积大,耗钢量多,进出水建筑物结构复杂。而且因浸泡在海水中,海水、海生物对金属结构物和海工建筑物有腐蚀和沾污作用,放需作特殊的防腐和防海生物粘附处理。

5、潮汐变化周期为太阴日(24h50min),月循环约为14天多,每天高潮落后约50min,故与按太阳日给出之日需电负荷图配合较差。潮汐发电虽然存在以上不足之处,但随着现代技术水平的不断提高,是可以得到改善的。如采用双向或多水库发电、利用抽水蓄能、纳人电网调节等措施,可以弥补第一个缺点;采用现代化浮运沉箱进行施工,可以节约土建投资;应用不锈钢制作机组,选用乙烯树脂系列涂料,再采用阴极保护,可克服海水的腐蚀及海生物的粘附。

结束语

综合以上对潮汐能的定义,发电原理及其发展前景和发展现状的介绍,不难看出,潮汐能的原理很简单,但是在发电过程中还存在很多问题,比如单位电造价问题就是个很现实的问题,还有就是涡轮机在发电过程中被海水腐蚀的问题,我觉的在以后研究过程中要针对海水腐蚀上下功夫,应该加强研究涡轮机制造材料,防止海水腐蚀。还有单位电造价问题,我们基本从设备上减轻造价,尽可能以价格便宜的设备,创造更好的价值。

当今世界随着全球化能源危机的不断加剧,开发可再生资源的需要迫在眉睫。而潮汐能作为可再生资源的典型,具有无污染、清洁、储量大,效率高等优点。多年来我国对潮汐电站建设的研究和试点,不仅在技术上取得了很大的进步,并且在降低成本方面取得了可喜的成就,提高经济效益方面也取得了显著的成果。在当前大力提倡节约型社会的时代,潮汐能的发展前景将更为广阔。

参考文献

(1)万志军,冯子军,董付科中国矿业大学矿业工程学院(能源概论) 第105页

(2)李书恒,郭伟,朱大奎(南京大学海岸与海岛开发教育部重点实验室,江苏南京210093) 潮汐发电技术的现状与前景海洋科学2006年第30卷第12期

(3)李书恒,郭伟,朱大奎(南京大学海岸与海岛开发教育部重点实验室,江苏南京210093) 潮汐发电技术的现状与前景海洋科学2006年第30卷第12期

潮汐能的利用

潮汐能 tidal energy 热动0941 张超辉 0903411139 摘要能源对经济的发展有着举足轻重的作用,煤、石油、天然气等属不可再生的能源。随着世界经济的发展,能源需求也不断增长,世界各国都在寻求新能源,希望新能源既是可再生的又能避免像煤、石油、天然气等能源带来的环境污染问题。开发利用洁净的新能源是解决能源问题及环境问题的出路, 海洋被认为是地球的资源宝库,也被称作为能量之海。从技术及经济上的可行性,可持续发展的能源资源以及地球环境的生态平衡等方面分析,海洋能中的潮汐能作为成熟的技术将得到更大规模的利用。潮汐能作为洁净的、可再生的新能源,受到广泛的重视。世界海洋潮汐能蕴藏量约为27 亿kW,若全部转换成电能,每年发电量大约为1.2万亿kWh。 Abstract Energy for economic development has a very important role, such as oil and gas coal of non-renewable resources with the development of world economy, energy demand is also increasing, all countries in the world in search of new energy, hope the new energy is renewable and can avoid like such as oil and gas coal energy brings pollution problems of development and utilization of clean new energy is solve the energy problem and the environment a way around the problem The ocean is considered to be the earth's resources treasure, also known as the sea of energy from the technical and economic feasibility and the sustainable development of the energy resources and the earth's environment of the ecological balance analysis, the tidal power as the oceanic mature technology will get more extensive use of tidal power as a clean, renewable new energy, has been to the attention of the world ocean wave power reserves of about 2.7 billion kW, if all into electrical energy conversion, generating capacity every year about 1.2 trillion kWh 关键词潮汐能发电技术 Keywords Tidal power generation technology 一潮汐能的基本介绍 1.潮汐能的科技名词定义 中文名称:

关于中国潮汐能的未来发展前景

关于中国潮汐能的发展和利用前景 摘要: 浩瀚无边的海洋,约占地球表面的71%,它汇集了97%的水量,蕴藏着丰富的能源。但是随着陆地资源的不断消耗而逐渐减少,人类赖以生存与发展的能源,将越来越依赖于海洋。中国大陆的海岸线长达1.8万千米,海域面积470多万平方千米,潮汐能资源非常丰富。 关键词:潮汐能,能源,发电 (一) 潮汐能定义: 因月球引力的变化引起潮汐现象,抄袭导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量成为潮汐能。潮汐能是以势能形态出现的海洋能,是指海水潮涨和潮落形成的水的势能与动能。 海洋的潮汐中蕴藏着巨大的能量。在涨潮的过程中,汹涌而来的海水具有很大的动能,而随着海水水位的升高,就把海水的巨大动能转化为势能;在落潮的过程中,海水奔腾而去,水位逐渐降低,势能又转化为动能。潮汐能的能量与潮量和潮差成正比。就这样各种能量进行转换反复进行。或者说,与潮差的平方和水库的面积成正比。和水利发电相比,潮汐能的能量密度低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。潮汐能是因地而异的,不同的地区常常有不同的潮汐系统,他们都是从深海潮波获取能量,但具有各自独特的特征。景观抄袭很复杂,但对于任何地方的潮汐都可以进行准确预报。(二)潮汐能的利用方式主要是发电。潮汐发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水利发电厂房,通过水轮的地方发电机组进行发电。只有出现大潮,能量集中时,并且在地理条件适于建造潮汐电站,从潮汐中提取能量才有可能。虽然这样的场所并不是到处都有,但世界各国都已选定了相当数量的适宜开发潮汐电站的站址。 CO含量的增加速度减慢。潮发展像潮汐能这样的新能源,可以间接使大气中的 2 汐是一种世界性的海平面周期性变化的现象,由于受月亮和太阳这两个万有引力源的作用,海平面每昼夜有两次涨落。潮汐作为一种自然现象,为人类的航海、捕捞和晒盐提供了方便,更值得指出的是,它还可以转变成电能,给人带来光明和动力。(三)我国的潮汐能发展 在亚洲,菲律宾和印度尼西亚的各岛屿,以及我国和日本海岸流动的海流,都具有巨大的潜力。在欧洲,潮汐电站的场址达上百个。在美洲,墨西哥政府计划在未来几年将投资数十亿比索在该国西部潮汐较大的加利福尼亚湾沿海造上百座潮汐电站。 在1958年,我们国家“土法上马”建了40多座“土潮汐电站”,又在20世纪70年代再建十多座潮汐电站。后来,由于种种原因,许多潮汐电站废弃了。 目前,我国正在运行发电的潮汐电站共有8座:浙江乐清湾的江厦潮汐试验电站、海山潮汐电站、沙山潮汐电站、山东乳山县的白沙口潮汐电站、浙江象山县岳浦潮汐电站、江苏太仓县浏河潮汐电站、广西饮州湾果子山潮汐电站、福建平潭县幸福洋潮汐电站。这8座潮汐电站总装机容量为6000千瓦,年发电量1000万余度。 我国潮汐发电量仅次于法国、加拿大,位居世界第三。 江厦潮汐试验电站是我国最大的潮汐能电站,是潮汐发电的试验基地。电站位于浙江省温岭市西南的江厦港上,离城区16公里。电站于1972年经国家计委批准建设,电站工程列为“水利电力潮汐电站项目”,研究重点包括潮汐能特点研究、潮汐机组研制、海工建筑物技术问题、综合利用。电站安装了5台双向灯泡贯流式机组,1号机组1980年5月4日投

中国铁路现状与未来发展展望

中国铁路现状与发展 1. 中国铁路现状 1.1 概况 从1876年修建第一条铁路到现在,中国铁路已经走过了130年的历史。随着中国经济的快速发展,中国铁路的建设规模和技术水平不断提高。一个横贯东西、沟通南北、干支结合的具有相当规模的铁路运输网络已经形成并逐步趋于完善。中国铁路营业里程目前已达76,580 km,列世界第三(美国、俄罗斯之后),亚洲第一。其中国家铁路63,342km,合资铁路8,462km,地方铁路4,776km。 目前,中国铁路用占世界6%的营业里程完成了占世界24%的换算周转量,换算密度为世界平均水平的4倍,是世界上最繁忙的铁路。中国铁路客货运量在国内运输市场占有份额分别达到35 % 和55 %左右。 近十几年来中国铁路在客运提速、货运重载、铁路信息化和建立行车安全保障体系等方面取得重大发展,线路结构进一步优化。复线里程25,566km,复线率33.4%。电气化铁路里程21,604 km,电气化率28. 2%。提速线路里程16,500 km 占营业总里程21.6 %。 1.2 中国铁路设施与装备 1.2.1土建设施中国铁路在进行新线建设的同时,还对既有线进行了一系列

技术改造。 -- 对主要干线进行复线改造,增建第二线。 -- 对山区铁路和主要运输通道实行电气化改造。 -- 延长车站到发线有效长。 --换铺重型钢轨,60kg/m钢轨已成为主要繁忙干线正线的主型钢轨。 -- 采用全长淬火钢轨,主要繁忙干线正线均已铺设无缝线路。 京九铁路从北京至深圳,连接九龙,沿线经过京、冀、鲁、豫、皖、鄂、赣、粤九省市,正线全长2,381km,另加天津至霸州和麻城至黄石两条联络线,总长2,536km。京九铁路是中国铁路建设史上规模最大、投资最多、一次建成线路最长的铁路干线。 中国第一条重载铁路大同至秦皇岛运煤专线全长652km ,开行1 万t 级单元列车,已实施完成开行2万t级单元列车的技术改造,年运量达到2.03 亿吨。 已建成通车的秦皇岛至沈阳客运专线设计速度为200 km/h (基础设施250 km/h ),试验最高运行速度已达到321.5km/h,是目前国内速度最快的铁路。该线全长404.65km ,施工中采用了一次性铺设超长无缝线路技术,最长达188km ;采用了高质量路基填筑技术和桥上无碴轨道技术,有效保证了线路的平顺性;研制铺设了高速大号码道岔,使列车能够安全、快速、平稳地通过。 青藏铁路全长1,956 km,其中一期工程西宁至格尔木段814 km,二期工程格尔木至拉萨段1,142 km。青藏铁路地处青藏高原腹地,自然条件恶劣,全线海拔高度大于4,000 m以上的地段有965 km,经过连续多年冻土地段550 km, 是全球目前穿越高原、高寒、缺氧及连续性永久冻土地区最长的铁 路,是世界上海拔最高、线路最长的铁路,是世界铁路建设史上难度最大的工程。青藏铁路已于2006年7月1日建成通车。

第六章 海洋能及潮汐能发电技术xiti

第六章海洋能及潮汐能发电技术 一、选择题 1.利用波浪起伏运动所产生的压力变化,在气室、气袋等容器装置(也可能是天然的通道)中挤压或者抽吸气体,利用所得到的气流驱动汽轮机,带动发电机发电,这种发电方式称为【】。 A.机械传动式 B.空气涡轮式 C.液压式 D.蓄能水库式 2.潮汐到达高潮后,海面会有段时间不长不落的现象,此时的潮位称为【】。 A. 高潮低 B.低潮高 C.高潮高 D.低潮低 3.单库双向潮汐电站,每昼夜发电【】次。 A. 1 B.2 C. 4 D.8 4.目前世界上装机容量最大的潮汐电站,是【】电站。 A. 朗斯 B.布苏姆 C. 安纳波利斯 D.芬地湾坎伯兰 5.目前,制取氢的方法较多,包括【】。 A、生物质制氢 B、水分解制氢 C、太阳能制氢 D、化石燃料制氢 二、填空题 1.波浪能可以用、和等特征来描述。 2. 海洋能是指蕴藏在海洋中的___________。 3.海洋温差发电大多是指基于海洋热能转换的热动力发电技术,其工作方式分为循环、循环、循环三类。 4.按照潮水涨落的周期,潮汐可分为、和___三种类型。 5. 波浪能可以用、和等特征来描述。 6. 波浪能转换装置通常要经过____ 、____ 、___ 三级转换。 7. ___________是指海洋表面波浪所具有的动能和势能。 8. 海洋温差发电大多是指基于海洋热能转换的热动力发电技术,其工作方式分为循环、循环、循环三类。 9.按照潮水涨落的周期,潮汐可分为、和三种类型。

10. 潮汐能电站是综合的建设工程,主要由、和三部分组成。 11. 广义的潮汐发电,按能量利用的形式分为、两种。 12. 潮汐能是指海水涨潮和落潮形成的水的_________和_________。 三、简答题 1.什么是水能? 2.海洋能发电技术有哪些?

潮汐能

1.简介 因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量,称为潮汐能。 现代潮汐能的利用,主要是潮汐能发电。潮汐能发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水力发电厂房,通过水轮发电机组进行发电。 潮汐能发电与普通水力发电原理类似,差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐能发电的水轮机的结构要适合低水头、大流量的特点。利用潮汐能发电必须具备两个条件:首先潮汐的幅度必须大,至少要有几米;第二海岸地形必须能储蓄大量海水。由于潮水的流动与河水的流动不同,它是不断变换方向的,因此就使得潮汐能发电出现了不同的型式。 2.发展简史 由于常规电站廉价电费的竞争,建成投产的商业用潮汐电站不多。然而,由于潮汐能蕴藏量的巨大和潮汐发电的许多优点,人们还是非常重视对潮汐发电的研究和试验。据海洋学家计算,世界上潮汐能发电的资源量在10亿千瓦以上,也是一个天文数字。 20世纪初,欧、美一些国家开始研究潮汐发电。 1913年,德国在北海海岸建立了第一座潮汐发电站. 1957年,我国在山东建成了第一座潮汐发电站. 1968年,前苏联在基斯拉雅湾建成了一座800千瓦的试验潮汐电站。 1976年,法国建成第一座具有商业实用价值的潮汐电站。 1980年,加拿大在芬地湾兴建了一座2万干瓦的中间试验潮汐电站。 … 随着技术进步,潮汐发电成本的不断降低,进入21世纪以来,全球不断会有大型现代潮汐电站建成使用。 3.发电原理 潮汐发电与水力发电的原理相似,它是利用潮水涨落产生的水位差所具有势能来发电的,也就是把海水涨落潮等能量变为机械能,再把机械能转变为电能的过程。具体地说,潮汐发电就是在海湾或有潮汐的河口建一拦水坝地,将海湾或海口与海洋隔开构成水库,再在坝内或坝房安装水轮发电机组,然后利用潮汐涨落时海水的升降,使海水通过转机转动水轮发电机组发电。股从能量的角度来看。就是将海水的是能和动能,通过水轮发电机组转化为电能的过程。 4.发电形式 1.单库单向电站即只用一个水库,仅在涨潮(或落潮)时发电,我国浙江省温岭市沙山潮汐电站就是这种类型。

潮汐能资源开发利用研究进展

潮汐能资源开发利用研究进展 潮汐能资源开发利用研究进展 Tidal resources development research use progress [摘要]人类为了生存和发展,必须从自然资源中索取资源以供自身利用.人类进入工业化时代后,人口不断增长,对自然资源索取的规模越来越大,自然资源正以惊人的速度逐渐耗竭.海洋占地球面积的3/4左右,蕴藏着丰富的无污染的可再生能源,其可开发部分估计远远超出地球能源总消耗量.其中,潮汐能蕴藏丰富,利用潜力巨大,开发潮汐能已成为解决能源危机的一个重要方面.本文从潮汐能的自生特点出发,阐述潮汐发电的开发研究现状,并对潮汐能的发展前景给出简要评价. [abstract] humanity in order to survive and development, must from natural resources from resources for their use. Humanity into after industrialized times, growing population of natural resources is more and more big, the scale for natural resources are with amazing speed depleted. Oceans 3/4 of the earth around the area, rich in pollution-free renewable energy, it can be estimated far beyond earth development part. The total consumption of energy utilization, tidal rich, has great potential for development tidal power has become one of the important solve the energy crisis. This article from the tidal power, expounds the characteristics of the birth of the tidal power to develop research status and development prospects of tidal power briefly evaluation are given.关键词:潮汐能;潮汐发电;潮汐电站 Keywords:Tidal power;tidal power generation;Tidal power station 由于不合理的资源开发,恶化了人类的环境.因此发展清洁能源和可再生能源对可持续发展战略具有重大的意义.[1]潮汐能正是目前备受人们重视的清洁能源,对潮汐能的研究正如火如荼的进行. 一、潮汐能的概述

上海潮汐表

上海潮汐表 农历涨潮落潮涨潮落潮 初九、二十四07:12 13:24 19:36 01:48 初十、二十五08:00 14:12 20:24 02:36 初十一、二十六08:48 15:00 21:12 03:24 初十二、二十七09:36 15:48 22:00 04:12 初十三、二十八10:24 16:36 22:48 05:00 初十四、二十九11:12 17:24 23:36 05:48 初十五、三十12:00 18:12 00:24 06:36 初一、十六00:48 07:00 13:12 19:24 初二、十七01:36 07:48 14:00 20:12 初三、十八02:24 08:36 14:48 21:00 初四、十九03:12 09:24 15:36 21:48 初五、二十04:00 10:12 16:24 22:36 初六、二十一04:48 11:00 17:12 23:24 初七、二十二05:36 11:48 18:00 00:12 初八、二十三06:24 12:36 18:48 01:00 以上数据会有些许误差,但基本准确,红色为最大潮时间(鱼进来机率最大),紫色为小潮时间(鱼进来机率最小) 潮汐时间计算解析:

1.地球各点地方时与太阳的关系:由于地球一刻不停地自西向东自转,一般来说,东边比西边先看到日出,也就是东边的时刻比西边时刻早。古时候,各地都把当地太阳高度最大时刻定为12 点,因此各地的地方是不同的。如右图,在此光照图上我们可以确定此图中任一点的地方时。 2.潮汐与太阳和月球的关系:海洋的潮汐现象是因月球和太阳的引力在地球上分布不均造成的。引潮力是在地球朝向月球(或太阳)的一面和背向月球(或太阳)的一面同时发生的。朝向月球和太阳一面形成的潮汐称顺潮,背向月球和太阳一面形成的潮汐称对潮。据科学推测是:当月、日、地三者成一直线时引力最大,潮涨落的最大,形成大潮,这时是新月和望月(初一、十五)的时候;当日、月、地三者成直角三角形时引力最小,潮涨落的最小,形成小潮,这时是月上弦(初七、八)和下弦(廿二、廿三)的时候。 根据万有引力定律,月球的引潮力是太阳的 2.17 倍,可见,海洋潮汐主要是由月球引潮力引起的。如右图所示:(在一个周期的时间内,最常见到的是两涨两落)但在实际上形成大潮和小潮的时间,并不正好是上述时间,为方便起见,本文只从理论上探讨形成大潮和小潮的时间以及一日内潮汐涨落(高潮和低潮)时间。 3.从上可以看出,地球上各个地方的地方时当地与由太阳的相互位置所决定,而一个地方海水的涨落(潮汐)主要由此地与月球的相互位置决定。潮汐高潮的时间,在理论上应该在月亮的上、下中天

潮汐能的认识与感想

潮汐能的认识与感想 一、潮汐能定义 潮汐能是指海水潮涨和潮落形成的水的势能,其利用原理和水力发电相似。潮汐能是以势能形态出现的海洋能,是指海水潮涨和潮落形成的水的势能与动能。它包括潮汐和潮流两种运动方式所包含的能量,潮水在涨落中蕴藏着巨大能量,这种能量是永恒的、无污染的能量。 二、潮汐能的来源与形成 潮汐能是由潮汐现象产生的能源,它与天体引力有关,地球-月亮-太阳系统的吸引力和热能是形成潮汐能的来源。 潮汐能是由日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别产生的周期性的运动和变化的总称。固体地球在日、月引潮力作用下引起的弹性—塑性形变,称固体潮汐能。 作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐能一词狭义理解为海洋潮汐。 三、潮汐能的应用 海洋的潮汐中蕴藏着巨大的能量。在涨潮的过程中,汹涌而来的海水具有很大的动能,而随着海水水位的升高,就把海水的巨大动能转化为势能;在落潮的过程中,海水奔腾而去,水位逐渐降低,势能又转化为动能。世界上潮差的较大值约为13—15m,但一般说来,平均潮差在3m以上就有实际应用价值。潮汐能是因地而异的,不同的地区常常有不同的潮汐系统,他们都是从深海潮波获取能量,但具有各自独特的特征。尽管潮汐很复杂,但对于任何地方的潮汐都可以进行准确预报。潮汐能的利用方式主要是发电。潮汐发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水利发电厂房,通过水轮发电机组进行发电。只有出现大潮,能量集中时,并且在地理条件适于建造潮汐电站的地方,从潮汐中提取能量才有可能。虽然这样的场所并不是到处都有,但世界各国都已选定了相当数量的适宜开发潮汐电站的站址。潮汐能的主要利用方式是潮汐发电。1913年德国在北海海岸建立了第一座潮汐发电站。1957年我国在山东建成了第一座潮汐发电站。1978年8月1日山东乳山县白沙口潮汐电站开始发电,年发电量230万千瓦时。1980年8月4日我国第一座“单库双向”式潮汐电站──江厦潮汐试验电站正式发电,装机容量为3000千瓦,年平均发电1070万千瓦时,其规模仅次于法国朗斯潮汐电站(装机容量为24万千瓦,年发电5.4亿千瓦时),是当时世界第二大潮汐发电站。 四、潮汐能的意义 发展像潮汐能这样的新能源,可以间接使大气中的CO2含量的增加速度减慢。潮汐是一种世界性的海平面周期性变化的现象,由于受月亮和太阳这两个万有引力源的作用,海平面每昼夜有两次涨落。潮汐作为一种自然现象,为人类的航海、捕捞和晒盐提供了方便,更值得指出的是,它还可以转变成电能,给人带来光明和动力。

温州沿海潮汐时间表

说明:飞云江比瓯江涨潮和平潮平均提前约1小时。 补充回答: 说明:上面是瓯江的,飞云江比瓯江涨潮和平潮平均提前约1小时。瓯江潮汐时间表----浙江温州

教大家一个公式,误差不会太大,当然,离瓯江口远点的会稍微晚一些:平潮时间=(农历-3)*0.8,如:农历初十的平潮时间大约是:7*0.8=5.6,即5点(与17时)36分左右,初三、十八中午(半夜)平潮。 瓯江潮汐时间表----浙江温州 教大家一个公式,误差不会太大,当然,离瓯江口远点的会稍微晚一些:平潮时间=(农历-3)*0.8,如:农历初十的平潮时间大约是:7*0.8=5.6,即5点(与17时)36分左右,初三、十八中午(半夜)平潮。 潮汐是我国沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”,它的发生与太阳、月球对地球的吸引力而产生的。也和我国传统农历相对应。在农历每月的初一(十五、十六)即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”。在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”。故日照农谚中有“初一、十五涨大潮;初八、二十三,到处见海滩”和“初一十五明(天亮)了满,紧干慢干晌了天;初八二十三,一天两(早晚)个干”之说。由于月球每天在天球上东移13度多,合计为50分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。

潮汐的推算方式 农历上半月,即初一至十五,上午是当天的日子×0.8;下午是当天的日子×0.8+24。假如今天是初九,那么上午涨潮的时间是9x0.8=7.2 。即是7时12分。下午涨潮的时间是9×0.8+24=晚7时36分。下半月只要将农历当天的日子减去15,再按照前面的公式计算就可以了。 由于月亮每天升起来的时间比前一天晚48分钟,所以潮汐的涨落每天也推迟48分钟。 日照沿海赶海拾贝的时间,大约落潮时间后两小时至涨潮时间后一个半小时。 例:初一十六赶海拾贝的时间是:白天9:00——14:42 夜间21:24——3:06(转载) 潮汐是我国沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”,它的发生与太阳、月球对地球的吸引力而产生的。也和我国传统农历相对应。在农历每月的初一(十五、十六)即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”。在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”。故日照农谚中有“初一、十五涨大潮;初八、二十三,到处见海滩”和“初一十五明(天亮)了满,紧干慢干晌了天;初八二十三,一天两(早晚)个干”之说。由于月球每天在天球上东移13度多,合计为50分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。 农历上半月,即初一至十五,上午是当天的日子×0.8;下午是当天的日子×0.8+24。假如今天是初

潮汐能发电的发展现状与前景

潮汐能发电的发展现状与前景 姓名:樊书朋 学号:B10040411 班级:B100404 专业:电气工程及其自动化 时间:2013/10/28

潮汐能发电的发展现状与前景 潮汐能发电是利用海水的规律涨落拥有的能量来转换成电能的一种发电形式。其绿色无污染、储量巨大、不消耗燃料、不受洪水或枯水影响、适于沿海及远海发电需求等诸多好处将使得其在战略、民生等方面突出其应用的价值。国内外对潮汐能发电都有了近半个世纪的技术开拓,基本的技术障碍已经突破。海南是一个拥有广阔海洋面积和众多岛屿的省,拥有丰富的潮汐能资源。在建设国际旅游岛的同时,发展绿色能源会给海南省的未来带来更多的机会与实力。 国内现状:中国利用潮汐能的历史可追溯到距今约1000多年前,当时就有了潮汐磨而潮汐发电则是最近才慢慢发展起来的。我国在潮汐能发电开发利用过程中既有挫折也有喜悦。有半个多世纪的建设经验的我国今天的潮汐能发电量居世界第三。以下是我国潮汐发电发展大致的三个阶段: 一初始阶段 我国潮汐能的开发始于20世纪50年代,1957年在山东建成了第一座潮汐发电站。1956年,中国在福州市建成第1座小型潮汐电站。据1958年10月召开的全国第1次潮汐发电会议统计,全国建成了41座潮汐电站,总装机容量仅583kW的发潮汐电站。当时正在兴建的还有80多处,总装机容量7055kW。由于当时我国科学技术水平的限制,绝大多数的潮汐发电站总体质量低、装机容量小、设备维护欠缺故而基本废弃。 二继承改进阶段 20世纪70年代到80年代是我国开发利用潮汐能的第2个阶段。这个阶段,人们吸取了初始阶段潮汐发电的经验教训,注重科学和施工质量,建成了一批较高质量的潮汐电站(有的至今仍在运行)。1978年8月1日山东乳山县白沙口潮汐电站建成发电,年发电量230万千瓦时;20世纪80年代,建成江厦潮汐电站和幸福洋电站,并对以前建设的潮汐电站及其设备进行了治

未来铁路发展趋势

中国未来铁路发展趋势 姓名:李瑞 学号:20116447 专业班级:铁道车辆一班 指导老师:崔大宾

摘要: 铁路运输作为我国长距离、大运量、安全快捷、低耗环保的运输形式,已经成为交通运输体系的重要组成部分。尤其是铁路客运,每年要承担数以亿计的旅客运输,旅行高峰期和春运期间更是日均数以百万的客运量,使本来繁忙的铁路客运不堪重负,铁路旅客运输现状已经成为制约国民经济快速发展的瓶颈。所以未来铁路的发展方向就是高速铁路。 关键词:铁路运输、铁路客运、旅行高峰、瓶颈、未来铁路、高速铁路 高速铁路涉及很多的高新技术问题,作为铁路运输装备的高速动车组就是这些高新技术的综合和具体的体现。它涉及系统集成技术、车体技术、转向架技术、制动技术、牵引传动技术、自动控制技术、网络与信息技术等。 所谓高速铁路,通常是指最高运行时速在200公里以上的铁路。铁路作为一种经济的、大运量的交通工具,在许多国家的经济生活中占有非常重要的地位,并为本国经济和社会的发展做出了重大的贡献。但近年来,随着航空、海运和公路等运输方式在我国迅速崛起和发展,铁路运输受到了严峻的挑战,这种发展趋势就促使铁路必须进行内部体制改革以及运输手段的技术创新,进一步加速铁路的高速化、重载化和多式运输的立体化,进而实现铁路路网的现代化。 公元1964年日本首次成功的开行高速动车组以来,世界各国争相规划和修建高速铁路。如今法国、德国、意大利、瑞典、英国、西班牙、韩国等国家已经成功的开通了高速列车,为本国的经济发展做出了相应的贡献。而其中最具代表性的法国高速铁路,其最高商业运行时速已突破300公里,同时新一代的TGV 高速列车创造了时速515.3公里的超高速记录。2007年4月,随着我国实施铁路第六次大提速,我国研制的高速动车组也正式投入运营,铁路客运的运行速度已经达到200Km/h,这标志着我国已经进入高速铁路国家的行列。 据相关资料统计表明,到2000年底,世界高速铁路的总长已达6858公里。目前全世界已投入运行和正在修建的高速铁路里程超过1.4万公里,约占铁路 总营业里程的2%.欧洲有关部门做出的长远规划是到2015年,全欧高速铁路网总长达到3万公里,其中新建路段9100公里,约占30%.与此同时,世界上许多国家和地区也做出了自己相应的规划和目标。高速铁路的诸多特点和优势,使得传统的铁路运输重新焕发了生机,并在世界各地得到了蓬勃发展,从而加速了

中国铁路现状与未来发展展望

中国铁路现状与未来发展展望 中国铁路现状与发展 1. 中国铁路现状 1.1 概况 从1876年修建第一条铁路到现在,中国铁路已经走过了130年的历史。 随着中国经济的快速发展,中国铁路的建设规模和技术水平不断提高。一个横贯东西、沟通南北、干支结合的具有相当规模的铁路运输网络已经形成并逐步趋于完善。中国铁路营业里程目前已达 76,580 km,列世界第三(美中国铁路营业里程目前已达 76,580 km,列世界第三(美国、俄罗斯之后),亚洲第一。其中国家铁路63,342km,合资铁路8,462km,国、俄罗斯之后),亚洲第一。其中国家铁路 63,342km,合资铁路8,462km,地方铁路4,776km。地方铁路4,776km。 目前,中国铁路用占世界,,的营业里程完成了占世界,,,的换算周转量,换算密度为世界平均水平的,倍,是世界上最繁忙的铁路。中国铁路客货运量在国内运输市场占有份额分别达到35 % 和55 %左右。 近十几年来中国铁路在客运提速、货运重载、铁路信息化和建立行车安全保障体系等方面取得重大发展,线路结构进一步优化。复线里程25,566km,复线里程25,566km,复线率 33. 4 %。电气化铁路里程21,604 km,电气化率28. 2 %。提速线路复线率 33. 4 %。电气化铁路里程21,604 km,电气化率28. 2 %。提速线路里程16,500 km,占营业总里程21.6 %。里程 1.2 中国铁路设施与装备 1.2.1土建设施 中国铁路在进行新线建设的同时,还对既有线进行了一系列技术改造。 1

-- 对主要干线进行复线改造,增建第二线。 -- -- 对山区铁路和主要运输通道实行电气化改造。 -- -- 延长车站到发线有效长。 -- -- 换铺重型钢轨,60kg/m钢轨已成为主要繁忙干线正线的主型钢-- 轨。 -- 采用全长淬火钢轨,主要繁忙干线正线均已铺设无缝线路。 -- 京九铁路从北京至深圳,连接九龙,沿线经过京、冀、鲁、豫、皖、鄂、赣、粤九省市,正线全长2,381km,另加天津至霸州和麻城至黄石两条联络线,总长2,536km。京九铁路是中国铁路建设史上规模最大、投资最多、一次建成线路最长的铁路干线。 中国第一条重载铁路大同至秦皇岛运煤专线全长652km,开行1万t中国第一条重载铁路大同至秦皇岛运煤专线全长652km,开行1万t级单元列车,已实施完成开行2万t级单元列车的技术改造,年运量达到2.03级单元列车,已实施完成开行2万t级单元列车的技术改造,年运量达到2.03亿吨。亿吨。 已建成通车的秦皇岛至沈阳客运专线设计速度为200 km/h(基础设施已建成通车的秦皇岛至沈阳客运专线设计速度为200 km/h(基础设施250 km/h ),试验最高运行速度已达到321.5 km/h,是目前国内速度最快的250 km/h ),试验最高运行速度已达到321.5 km/h, 铁路。该线全长404.65 km ,施工中采用了一次性铺设超长无缝线路技术,km 最长达188 km ;采用了高质量路基填筑技术和桥上无碴轨道技术,有效保km 证了线路的平顺性;研制铺设了高速大号码道岔,使列车能够安全、快速、平 稳地通过。 青藏铁路全长1,956 km,其中一期工程西宁至格尔木段814 km,二期工程格 尔木至拉萨段1,142 km。青藏铁路地处青藏高原腹地,自然条件恶劣,全线海拔

中企情报—2011年版中国潮汐能发电设备产品与市场研究报告

2011年版中国潮汐能发电设备产品与市场研究报告 第一章潮汐能发电设备产品与技术发展 3 1.1 产品定义与分类 3 1.2 主要产品及其发展 5 1.3 主要技术发展展望 7 第二章中国潮汐能发电设备行业发展综合分析 9 2.1 中国潮汐能发电设备行业发展历程 9 2.2 中国潮汐能发电设备产业环境与原材料供应概述 11 2.2 中国潮汐能发电设备行业发展现状 13 2.3 中国潮汐能发电设备行业存在的问题 16 第三章中国潮汐能发电设备市场现状分析 18 3.1 中国潮汐能发电设备市场发展现状 18 3.2 中国潮汐能发电设备主要细分市场发展现状 22 3.3 中国潮汐能发电设备营销综合分析 27 第四章中国潮汐能发电设备产品产量分析 30 4.1 2005-2011年1-12月中国潮汐能发电设备产品产量与增长 30 4.2 2003-2011年1-12月全国分地区潮汐能发电设备产品产量与分布 33 4.3 2011-2013年估算潮汐能发电设备产品产量 35 4.4 潮汐能发电设备产品主要产区产量情况 36 第五章中国潮汐能发电设备产品进出口统计 40 5.1 2005-2011年1-12月中国潮汐能发电设备产品进出口统计与分析 40 5.2 进出口流向国统计与分析 43 5.3 进出口省份统计与分析 46 5.4 进出口海关口岸统计与分析 49 5.5 进出口综合分析 50 第六章中国潮汐能发电设备行业相关产业政策分析 51 6.1 产业促进政策分析 51 6.2 产业政策不利因素分析 52 第七章中国潮汐能发电设备行业的发展前景展望 54 7.1 潮汐能发电设备行业与市场发展前景 54 7.3 潮汐能发电设备产品与技术发展趋势 58 7.2 潮汐能发电设备产业发展前景展望 63

潮 汐 时 间 表

潮汐时间表(阴历日期) 初一、十六:满潮:10.36、23.00。干潮:4.24、16.48。大活汛 初二、十七:满潮:11.24、23.48。干潮:5.12、17.36。大活汛 初三、十八:满潮; 12.12、24.36。干潮:6.00、18.24。最大活汛初四、十九:满潮:1.24、 13.00。干潮:6.48、19.12。大活汛 初五、二十:满潮: 2.12、13.48。干潮;7.36、20.00。大活汛 初六、二十一:满潮:3.00、14.26。干潮:8.24、20.48。中活汛初七、二十二:满潮:3.48、15.24。干潮:9.12、21.36。中活汛初八、二十三:满潮:4.36、16.12。干潮:10.00、22.24。小死讯初九、二十四:满潮:5.24、17.00。干潮:10.48、23.12。最小** 初十、二十五:满潮:6.12、17.48。干潮:11.36、24.00。小死讯十一、二十六:满潮:7.00、18.36。干潮:12.24、0.48。小死讯十二、二十七:满潮:7.48、19.24。干潮:1.36、13.12。中死讯十三、二十八:满潮:8.36、20.12。干潮:2.24、14.00。中活汛十四、二十九:满潮:9.24、21.00。干潮:3.12、14.48。大活汛十五、三十:满潮:10.12、21.48。干潮:4.00、15.36。大活汛 潮汐的变化规律: 由于太阳与月亮对地球的引力作用,我国大部分沿海地区均有一昼夜各出现海水涨落两次的潮汐现象。每月的农历初一至初五(或农历十六至二十)为大潮汐(当地人称“大活汛”);农历初六至十二(或农历二十一至农历二十五)为小潮汐(当地人称“死汛”);而初九或二十四为最小潮(当地人称“死汛底”)。每天的潮汐时间均后延45分钟左右,如此周而复始.希望到海边去玩的朋友做参考,这样会使您玩的更愉快!

中国铁路现状未来发展展望

中国铁路现状与发展 1.中国铁路现状 1.1 概况 从1876年修建第一条铁路到现在,中国铁路已经走过了130年的历史。 随着中国经济的快速发展,中国铁路的建设规模和技术水平不断提高。一个横贯东西、沟通南北、干支结合的具有相当规模的铁路运输网络已经形成并逐步趋于完善。中国铁路营业里程目前已达76,580k m,列世界第三(美国、俄罗斯之后),亚洲第一。其中国家铁路63,342k m,合资铁路8,462k m,地方铁路4,776k m。 目前,中国铁路用占世界6%的营业里程完成了占世界24%的换算周转量,换算密度为世界平均水平的4倍,是世界上最繁忙的铁路。中国铁路客货运量在国运输市场占有份额分别达到35 % 和55 %左右。 近十几年来中国铁路在客运提速、货运重载、铁路信息化和建立行车安全保障体系等方面取得重大发展,线路结构进一步优化。复线里程25,566k m,复线率33.4%。电气化铁路里程21,604k m,电气化率28.2%。提速线路里程16,500 km,占营业总里程21.6 %。 1.2 中国铁路设施与装备 中国铁路在进行新线建设的同时,还对既有线进行了一系列技术改造。

--对主要干线进行复线改造,增建第二线。 --对山区铁路和主要运输通道实行电气化改造。 --延长车站到发线有效长。 --换铺重型钢轨,60kg/m钢轨已成为主要繁忙干线正线的主型钢轨。 --采用全长淬火钢轨,主要繁忙干线正线均已铺设无缝线路。 京九铁路从至,连接九龙,沿线经过京、冀、鲁、豫、皖、鄂、赣、粤九省市,正线全长2,381km,另加天津至霸州和麻城至两条联络线,总长2,536km。京九铁路是中国铁路建设史上规模最大、投资最多、一次建成线路最长的铁路干线。 中国第一条重载铁路至运煤专线全长652k m,开行1万t级单元列车,已实施完成开行2万t级单元列车的技术改造,年运量达到2.03亿吨。 已建成通车的至客运专线设计速度为200k m/h(基础设施250k m/h),试验最高运行速度已达到321.5k m/h,是目前国速度最快的铁路。该线全长404.65 k m,施工中采用了一次性铺设超长无缝线路技术,最长达188 k m;采用了高质量路基填筑技术和桥上无碴轨道技术,有效保证了线路的平顺性;研制铺设了高速大道岔,使列车能够安全、快速、平稳地通过。 青藏铁路全长1,956 km,其中一期工程至格尔木段814 km,二期工程格尔木至段1,142 km。青藏铁路地处青藏高原腹地,自然条件恶劣,全线海拔高度大于4,000 m以上的地段有965 km,经过连续多年冻土地段550 km,是全球目前穿越高原、高寒、缺氧及连续性永久冻土地区最长的铁路,是世界拔最高、线路最长的铁路,是世界铁路建设史上难度最大的工程。青藏铁路已于2006年7月1日建成通车。

潮汐能利用现状及发展前景

潮汐能的利用现状及发展前景 摘要:当今世界,能源问题已成为全世界的焦点,节约能源,开发利用可再生、无污染的新能源已成为人类亟待解决的问题。潮汐能作为其一种清洁的 新能源得到了广泛的重视。本文总结了国内外潮汐能利用利用状况,并 简要介绍我国潮汐能开发利用的意义及其开发可行性情况,同时指出我 国潮汐能大规模开发利用所面临的问题在此基础上提出未来研究的方 向并给出相应建议。 关键词:潮汐能;潮汐发电:潮汐能利用 世界经济的现代化,得益于化石能源,如石油、天然气煤炭与核裂变能的广泛的投入应用,因而它是建筑在化石能源基础之上的一种经济。然而由于化石能源属于不可再生资源随着其量的减少,能源供应的链条将会出现中断,这必将导致世界经济危机和冲突的加剧,最终葬送现代市场经济。化石燃料的使用对环境的破环效应日益受到人们的关注。 我国作为一个能源消耗大国近年来一直努力减少对化石燃料的依赖。寻求可替代性能源,同时积极改变经济增长模式降低环境污染,走可续发展道路。潮汐能作为一种洁净的,可再生资源对其进行开发利用可以有效的缓解我国能源紧缺问题和环境污染问题。针对该种情况,本文通过对潮汐发电现状的总结,结合我国自身开发潮汐能的可行性现状,指出我国拥有巨大的潮汐能开发利用潜力为我国今后的潮汐能开发利用研究提供合理参考。 1. 潮汐能概述 潮汐能是月球和太阳等天体的引力使海洋水位发生潮汐变化而产生的能量。潮汐能利用的主要方式是发电。潮汐发电的工作原理与常规水力发电的原理类似,它是利用潮水的涨落产生的水位差所具有的势能来发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机的结构是适合低水头、大流量的特点。具体的说,就是在有条件的海湾或感

中国高速铁路的发展现状与前景

xx高速铁路的发展现状与前景 众所周知,中国高速铁路在最近几年有了极大的发展,而我也非常荣幸可以聆听孙永福院士的讲座,进一步对我国的高速铁路有了了解。在此我也高速铁路谈谈我浅薄的了解和看法。 1.我国高铁发展现状 我国高速铁路网分骨干网、重要的区域网、大城市之间的城际高铁等三种类型,骨干网就是指规划的四纵四横干线网,“四纵”是指四条纵向铁路客运专线: 纵贯京津沪和冀鲁皖苏四省,连接环渤海和长江三角洲两大经济区,全长1 318公里的北京到上海客运专线;连接华北、华中和华南地区,全长2 260公里的北京经武汉、广州到深圳的客运专线;连接东北和关内地区,全长约1 700公里的北京经沈阳、大连到哈尔滨的客运专线;连接长江、珠江三角洲和东南沿海地区,全长约1600公里的杭州经宁波、福州到深圳的客运专线。“四横”则是连接西北和华东地区,全长约1 400公里的四条横向铁路客运专线: 徐州经郑州到兰州的客运专线;连接华中和华东地区,全长约880公里的杭州经南昌到长沙的客运专线;连接华北和华东地区,全长约770公里的青岛经石家庄到太原的客运专线;连接西南、华中和华东地区,全长约2 078公里的上海经南京、合肥、武汉、重庆到成都的客运专线。按高铁建设等级分为无砟道床的时速350公里/小时的高铁和时速250公里/小时的有砟道床的准高铁。 中国高铁的特点是大量采用高速桥梁和无砟道床技术,采用超大半径弯道,既消除平交道口和行人干扰,又保证路基的平顺,防止路基沉降。尤其是大量采用高速桥梁,使得一望无际的数十公里乃至数百公里的高速桥梁屹立在广阔平原上,非常雄伟壮观,成为一道靓丽的风景线。 2.xx高铁技术 目前中国所掌握的高铁技术有车体设计和空气动力学;高速道岔(250公里,部分进口);板式轨道;列控系统(部分芯片进口);逆变器,变流器,电动机(部分零件进口)。没有掌握的主要是轴承和车轮。中国铁路在高速动车组、高速铁路基础设施建造技术和既有线提速技术等方面都达到了世界先进

相关文档
最新文档