风电并网对电网的影响及其策略

风电并网对电网的影响及其策略
风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文

风电并网对电网的影响及其策略

李梦云

(武汉理工大学自动化学院,湖北武汉430070)

【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。

关键词风力发电;电网;稳态电压;影响;策略

0 前言

随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。

1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。

同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。

风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。

2 风电并网对电网电压的影响

配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。

2.1 风速变化对配电网电压的影响

将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为:

U1-U2=I(R1+R2+jX1+ jX2) (1)

上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

阻和电抗,R2、X2表示电网的电阻和电抗。取流入风电场的功率方向为正。由于风电场的视在功率S=P+jQ= U1I可以求得电流I。并进一步得到

U1-U2=[P(R1+R2)+Q(X1+X2)]/U1+j[P(X1+X2)-Q(R1+R2)]/U1 (2)上式中等号后的前一部分为电压降落的横向量,意义为电压幅值的大小;后一部分为纵向量,意义为电压相角的大小。

近似计算的时候,可以忽略电压降落的横分量。可得:

U1-U2=[P(R1+R2)+Q(X1+X2)]/U1 (3)

由于线路上流经的无功功率对电压的偏差产生影响。在配网中的线路的分布电容较小的情况下,若风电机组为恒速风电机组,风电机组的有功功率增大时,其吸收的无功功率也会随着增长。此时,线路电抗的无功功率会随着线路流经的有功功率的增加而增长,如果PR+QX0,电网侧电压高于风电场的电压。若风电机组为恒功率变速风电机组,可以通过解耦控制有功功率和无功功率,使风电场和电网实现有功功率的交换。不过电压也可以能在风电机组输出的有功功率大的时候降低,因为其有功功率经过线路时消耗了无功功率。在配网中的线路的分布电容较大的情况下,不管是基于恒速风电机组的风电场还是基于恒功率变速风电机组的风电场,若其风电机组发出的有功功率较小甚至停发,电网侧电压会在线路容性充电功率的影响下稍微低于风电场的电压。

由上述可知,当风电场的有功功率和无功功率变化时,会导致风电场侧的电压随之改变。而风电场侧也会进一步影响到全电力网络的潮流分布。

2.2不同功率因数对配电网电压的影响

目前国内主流风电机组为双馈式风电机组,由于其可以通过对变流器的控制源的触发角的改变来调节其在发电机的转子侧的逆变器的功率角,进而达到控制其

无功的目的。

因为风电机组的有功功率P跟功率因数有关,P可以用电压U、电流I和功率因数的乘积表示。假设P不变,在功率因数增大的情况下,若I增大,因为UI减小,则U减小。若I减小,因为电阻和电抗不变,功率因数角减小,则U减小。所以若风电场中的风电机组输出的有功功率不变,增大功率因数会引起风电场出口的电压的减小,从而影响电网中的潮流分布,改变电网中的其他节点的电压,反之亦然。

3 应对策略

由上述分析可知,风电场接入配电网时,造成配电网中有功功率和无功功率的不平衡是配电网中影响稳态电压的稳定性的主要原因。基于此,本章对于提出几点初步的应对策略。

(1)在建造风电场前,根据该地区的实际情况,如自然资源、电网的设备、用户负荷等方面,对风电机组做出合理的选择。不同类型的风电机组有不同的特点,接入配电网后也会对配电网的电压产生的影响也有区别。同时风电场内也可以通过一些无功补偿装置来使并网点的电压得到提高。

(2)考虑到风电机组的有功功率对配电网的电压的影响,通过对风电场的风速的预测、以及对其有功功率的控制与分配等,从而提高其电压质量,改善其对电压的影响。

(3)除了从风电场方面进行考虑外,对电力系统来说,在无功充足的情况下,应该通过一定的方式,主动对系统中的电压进行调节,比如增加一定的备用容量、改变有载变压器的变比的方式。

4 总结

风电场并入电网后对该电网内的各个节点的电压的作用影响着电力系统网络的正常稳定运行和良好的电能质量。因此,研究风电场并网后对配电网的稳态电压的稳定性影响具有十分重要的现实意义。本文简略介绍了风力发电的发展状况,以及风电接入电网后对电力系统带来的影响。并且从风速和风电机组的功率因数两方面,重点分析了风电场并网后对电网的稳态电压的稳定性的影响。最后针对其影响原理,提出初步的应对策略。

参考文献

[1]黄德琥,陈继军,张岚.大规模风电并网对电力系统的影响[J].广东电力,2010,07:27-30.

[2]孙磊.风电并网对系统电压稳定性的影响研究[D].华南理工大学,2012. [3]马琪.风电并网对系统电压稳定性影响研究[D].山东大学,2012.

[4]刘薇.风电并网对电能质量影响的评估与治理[D].北京交通大学,2014. [5]刘之华.风电并网电压稳定性研究[D].山东大学,2014.

[责任编辑:刘展]

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

风力发电场的主要环境问题

收稿日期:2004-05-24 作者简介:赵大庆(1963-),男,辽宁沈阳人,高级工程师。 ?问题探讨? 风力发电场的主要环境问题 Main Environmental Problem of Wind Electric Power Generation Field 赵大庆1 王 莹2 韩玺山1 (1.辽宁省气象局 沈阳 110001);(2.沈阳环境科学研究院 沈阳 110016) 摘要 本文介绍了风电场建设时周边环境的有利、不利影响及风力发电场选址的气象、社会自然条件,并就此提出建议。 关键词 风电场 影响 气象 Abstract The article introduces the construction of wind electric power generation field that is influenced by the ad 2vanced and disadvanced conditions surrounding and its conditions of meteorology 、society and nature ,then provides the sug 2gestions. K ey words Wind E lectric Power Generation Field E ffect Meteorology 目前从世界各地来看,利用风能发电是开发新 能源、改善环境的重要组成部分。从90年代起辽宁省在利用风能等新能源方面有较大的进展。从全省风能分布看,资源量较大区主要集中在沿海及西北部干旱地区,到目前已建成风场8处,在建风场4处,待建风场有6处。 1 风电场的环境问题 风电场建设对周边环境影响可分为有利影响和不利影响。1.1 有利影响 (1)充分利用风能资源,减少常规能源的消耗,符合国家能源改革的方向。而且风能又是可再生能源(即在同一地点相距6~8倍风轮高度的距离后风能又达到原值)。取之不尽,用之不竭。 (2)风力发电场对比同规模使用燃煤电厂其向大气排放的污染物为零,实现固体、气体零排放。对保护大气环境有积极作用。 (3)风力发电场比燃煤电厂可节省大量淡水资源,减少水环境污染。特别是对缺少淡水资源的沿海及干旱地区更重要。 (4)在沿海及旅游区风力机群也是一道风景线,可在一定程度上反映经济、文化、环境相融洽的程度。 (5)通过实物教育,可增强公众开发自然资源、 保护环境的意识。 (6)建设风力电场对发展沿海经济有重大意义。如建海产冷库、开展海水淡化、进行电量季节调峰等都起到关键作用。1.2 不利影响1.2.1 噪声是公众关心的一个重要问题 风力发电机的噪声是来源于经过叶片的气流和风轮产生的尾流所形成,其强度依赖于叶尖线速度和叶片的空气动力负荷,这种噪声源与风力发电机的机型及塔架设计有关。噪声影响分为单机影响和机群影响。 单机噪声:为了达到距风机150m 处的噪声值小于45dB (A )的要求,厂商在制造时就采取了以下措施,风电机选用隔音防震型,变速齿轮箱为减噪型,叶片用减速叶片等。一般所用风机风轮转速在27r/min ,产生的噪声较小,据厂家介绍,离风机50~150m 范围内,噪声级分别为53~33dB (A )。 机群噪声:风力发电机机群的排列,是经过风洞试验后确定的,即风机行距在6D (D 为风轮直径),间距在4D ~6D 风速又恢复到常态,即噪声强度也随着风速减小而明显衰减。因此不存在风力机群噪声总合影响的问题。 本底噪声:风力发电场因考虑风能资源,大多 — 66—环境保护科学 第31卷 总第129期 2005年6月

风电并网对电力系统稳定性的影响

风电并网对电力系统稳定性的影响 【摘要】风电作为一种重要的新能源,若能实现大规模利用对于解决当前全球性的能源危机有着重要意义。风电本身的波动性和间隙性给风电并网带来了很大的难度,本文将深入探究风电并网对电力系统的影响,旨在为同行进一步解决风电的合理并网问题提供一个有益的参考。 【关键词】风电并网;风电特性;电力系统稳定性 引言 保证电力系统的稳定性是电能生产、运输和利用的基本要求。风电作为一种新型能源,可控性较差,其本身的很多特性具有高度的随机性,因此,风电的大规模并网会对电力系统的安全运行产生很大的影响[1],风电并网已经成为制约风电发展的重要因素。 1.风电特性 风电特性是研究风电并网的基础。风电特性主要包括波动性和间歇性。波动性,又称脉动性,是指风电功率在时间尺度上具有沿某条均线不断上下跳变的特性,其特性可以通过波动幅值和波动频率表征。间歇性是指风电功率在时间尺度上具有不连续性。风电的这两个特性具有高度的随机性,从而是风电的可控性较差。风电功率的这些特性是由风力本身决定的,如风速,风向等。 2.风电并网对电力系统的影响 风电并网会使风电场对电力系统的安全稳定运行产生很大的影响。本文认为其主要影响包括以下几个方面: (1)对电压稳定的影响 由于风电功率具有波动性和间歇性,进而会导致电压出现波动和闪变。文献[2]详细研究了风电功率的间歇性对电力系统电压稳定性的影响,指出保证电压稳定性的关键问题是对风力发电机组的速度增量进行有效控制,对电压稳定性影响最大的区域分布在风电场及其附近的节点区域。 (2)对频率稳定的影响 风电的发电功率不稳定,具有间歇性和波动性,从而使其发电量也不稳定,输出功率不是恒定值。风速发生变化时其输出有功功率就会波动,进而导致电网内的有功也发生变化,有功会影响电网的频率。如果一个地区的风电所占份额过大,某一时刻有功频率变动过大将会导致频率崩溃,甚至会使得整个电网瘫痪。

风电大规模并网对电网的影响

由于风能具有随机性、间歇性、不稳 定性的特点,当风电装机容量占总电网容量的比例较大时会对电网的稳定和安全运行带来冲击。本文针对这一问题,阐述了大规模风电并网后对电力系统稳定性、电能质量、发电计划与调度、系统备用容量等方面的影响。并对风电的经济性进行了分析。 风电并网对电网影响主要表现为以下几方面: 1.电压闪变 风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时,风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。 2.谐波污染 风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。与电压闪变问题相比,风电并网带来的谐波问题不是很严重。 3.电压稳定性 大型风电场及其周围地区,常常会有电压波动大的情况。主要是因为以下三种情况。风力发电机组启动时仍然会产生较大的冲击电流。单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。 因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。

风力发电对电力系统的影响学习资料

风力发电对电力系统 的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能

发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

风电接入对电力系统的影响及控制措施

风电接入对电力系统的影响及控制措施 互联网环境下,电力网络日趋复杂,使电网维护和管理难度增加,很容易出现电网瘫痪情况,造成严重的经济损失。在电力系统中接入风电,能够减少停电损失和故障发生率,使电力网络管理效率得到明显提升。文章简要论述风电场特点及风力发电机组故障情况,分析风电接入对电力系统的影响,提出具体控制方法。 标签:风电接入;电力系统;保护装置 前言: 风力发电属于可再生能源发电技术,应用日益普遍。风力资源丰富,但开发难度大。一些地区虽然适合风电大规模开发,但都处于电网末端,网架结构简单,一旦把风电接入电网,不仅影响电能质量、继电保护等,还会导致电网稳定性差。明确风电接入对电力系统的影响,采取专业技术手段加以控制,优化电力系统性能,为客户提供优质电力服务。 1风电场及风力发电机组故障 1.1风电场特点 风能具备随机性和不可控性,也不能够存储,很难像常规火电厂一样,通过调节汽轮机汽门,对出力进行有效控制,故而,风电机组发出的电能具备波动性和随机性特征。因风能具备不可控特征,无法依据负荷调度风力发电,使调度难度增加。当前,风电机组以异步发电机为主,尽管把无功补偿电容器组装设在机端出口,有功功率输出过程中,发电机会以系统为载体,对无功功率进行吸收,而无功需求受有功输出变化影响。 1.2风力发电机组故障特征 风力发电机组应用时间并不是很长,尚存在诸多技术桎梏,其故障特征主要表现在以下方面。具体而言,将控制技术和运行特征作为划分依据,可把风力发电机细分为变速恒频和衡速衡频两类。前者有双馈式风力发电机、永磁直驱式风力发电机等,后者则以鼠笼式感应风力发电机为主[1]。在风电故障点、接入点位置已知,且保持不变时,短路电流会受接入的风电机组类型影响,表明不同类型风电机组故障特征存在差异。 2风电接入对电力系统的影响 在电力系统中接入风电,会对继电保护产生影响,还容易干扰电网稳定性、电能质量等,甚至影响电流保护。具体如下:

风电并网对电网影响浅析

风电并网对电网影响浅析 [摘要]介绍了风电场常用的风力发电机型,总结了目前风电对电网运行影响分析方法及初步结论,提出了改进建议。 [关键词]风力机;电能质量;风电并网; 近年来,特别是《可再生能源法》实施以来,中国的风电产业和风电市场发展十分迅速, 2007 年新增装机容量340万千瓦,累计装机容量达到604万千瓦,超过丹麦,成为世界第五风电大国,07年装机仅次于美国和西班牙,超过德国和印度,成为世界上最主要的风电市场之一。 风电场出力的主要特点是随机性、间歇性及不可控性,主要随风俗变化。因此,风电并网运行给电网带来诸多不利影响。随着风电场的容量越来越大,对系统的影响也越来越明显,研究风电并网对系统的影响已成为重要课题,本文将就风电并网研究中的一些问题进行浅述。 1 风力机主要形式 分析风电并网的影响,首先要考虑风力发电机类型的不同。不同风电机组工作原理、数学模型都不相同,因此,分析方法也有差异。目前国内风电场选用机组主要有3种: 1.1异步风力发电机 目前是我国主力机型,国内已运行风电场大部分机组是异步风力发电机。主要特点是结构简单,运行可靠,此种发电机为定速恒频机组,运行中转速基本不变,风力发电机组运行在风能转换最佳状态下的机率比较小,因而,发电能力比新型机组低。同时,运行中需要从

电力系统中吸收无功功率。为满足电网对风电场功率因素的要求,采用在机端并联补偿电容器的方法,其补偿策略是异步发电机配有若干组固定容量电容器。由于风速大小随机变化,驱动异步发电机的风机不可能经常在额定风速下运转。 1.2双馈异步风力发电机 兆瓦级风力发电机普遍采用双馈异步发电机形式,是目前世界主力机型,该机型称为变速恒频发电系统。由于风力机变速运行,其运行速度能在一个较宽的范围内调节,使风机风能利用系数C p得到优化,获得高的系统效率;可以实现发电机较平滑的电功率输出;与电网连接简单,发电机本身不需要另外附加的无功补偿设备,可实现功率因素一定范围内的调节,例如从0 .95领先到0 .95滞后范围内,因而具有调节无功功率出力的能力。 1.3直驱式交流永磁同步发电机 从大型风电机组实际运行经验中,齿轮箱是故障率较高部件。采用无齿轮箱结构则避免了这种故障的出现,可以大大提高风电机组的可利用率、可靠性,降低风电机组载荷,提高风力机组寿命。该机组采用直接驱动永磁式同步发电机,全部功率经A -D-A变换,接入电力系统并网运行。与其他机型比较,需考虑谐波治理问题。 2、风电并网对电网影响分析方法 由于风速变化是随机的,因此风电场出力也是随机的,风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。 在风电容量比较高的电网中,可能产生电能质量问题,例如电压

风电场对环境的影响研究进展_李国庆

风电场对环境的影响研究进展 李国庆1,李晓兵2,3 (1.鲁东大学资源与环境工程学院,山东烟台264025;2.地表过程与资源生态国家重点实验室,北京100875; 3.北京师范大学资源学院,北京100875) 摘要:风能作为清洁和环境友好的可再生能源,可以减少对化石燃料的依赖,因而近年来发展迅速。但风电设施 在安装和运行过程中,评价其对环境产生的影响却尚未得到足够的重视。本文综述了风电场施工和运行过程对气候变化及陆地生态系统的可能影响,同时探讨了风电设施所产生的噪声污染及辐射效应,认为未来风电研究的重要方向为:①评价风电场对气候的影响,还需要建立或改进更精细的气候模型;②探讨风电场对动物的影响,需要识别到底哪些环境因子对动物活动起到了决定性的作用,这些因子在不同风电场中是否具有普遍性;③分析风电场对植被的影响,需要综合利用遥感监测及生态学调查方法,才能准确识别不同陆地生态系统植被对风电场的响应机制;④研究风电场对生态系统碳、氮循环的影响,要加强地表实测数据的获取,尤其是连续多年的数据获取,形成长期的观测序列,进行时空尺度的分析;⑤风电场在全球不同区域,对各环境要素的影响并不完全一致,通过对典型区域的研究来反映风电场对环境影响的共性问题,是目前较为可行的方法;⑥在确保风能作为新能源发展重点的同时,还需保护整个陆地生态系统的生产力和生物多样性,在此基础上才能准确评价、处理风电场与可持续发展的关系;⑦在风电场建设前的环评阶段,需要补充完善现有环评导则和标准,充分考虑风能、太阳能等新兴能源对环境长期而复杂的影响;⑧中国作为世界风能利用的第一大国,需要适时建立长期定位观测试验站,以期开展风电场对环境影响的定量化、全过程、时空尺度的细致研究。本文可为人类科学合理的利用风能、处理风电场建设与可持续发展的关系是提供一些思路。 关键词:风电场;环境影响;全球变化;陆地生态系统;研究进展 1引言 由于化石能源的不可再生性及其燃烧带来的环境问题日益加剧,清洁能源越来越被各国政府和民众所接受(Dincer et al,2015)。从全球的清洁能源利用发展来看,风能作为一种清洁能源,越来越受到广泛重视(Garrigle et al,2015;Phillips,2015)。2010-2015年间,全球风能发电量以年均30%的速度增长,预计到2020年,风能将占全球总能源的5%(Herbert et al,2007)。中国的清洁能源政策也逐步向风能方向倾斜(McElroy et al,2009),自2008年 起,中国风力发电机的已有装机容量和装机速度一直稳居世界第一位,风能未来将在中国能源结构中占据重要地位(Xu et al,2010;Feng et al,2015)。风电场建立之初,研究人员和政府部门更关注于风电的节能减排作用,由于风电场对环境的影响是一个长期渐变和难以衡量的过程,致使风电场对环境的影响评价被人为忽视(Leung et al,2012;Sun et al,2015)。由此未来可能会造成灾难性的影响(Leung et al,2012;Armstrong et al,2014;Feng et al,2015)。风能在带来积极环境效应的同时,风电开发和运行对环境的负面影响还需认真思考。风电场对人类 收稿日期:2016-01;修订日期:2016-06。 基金项目:山东省高等学校科技计划项目(J16LH51,J16LH02);国家重点基础研究发展计划项目(2014CB138803);国家自然 科学基金项目(41601598)[Foundation:Higher Education Science and Technology Program of Shandong Province,No.J16LH51,No.J16LH02;National Key Basic Research Program of China,No.2014CB138803;National Natural Sci-ence Foundation of China,No.41601598]。 作者简介:李国庆(1982-),男,讲师,博士,主要从事草原生态遥感、湿地环境遥感等方面研究,E-mail:ligqing@https://www.360docs.net/doc/1f9367596.html, 。 1017-1026页 第35卷第8期2016年8月 地理科学进展 Progress in Geography V ol.35,No.8Aug.2016 网络出版时间:2016-08-22 11:10:49 网络出版地址:https://www.360docs.net/doc/1f9367596.html,/kcms/detail/11.3858.P.20160822.1110.022.html

GBT 19963 风电场接入电力系统技术规定--报批稿

ICS 中华人民共和国国家标准 风电场接入电力系统技术规定 Technical rule for connecting wind farm to power system 中华人民共和国国家质量监督检验检疫总局 发 布

GB/T 19963—200 目次 前言...................................................................................................................................................................... I I 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 风电场送出线路 (2) 5 风电场有功功率 (2) 6 风电场功率预测 (3) 7 风电场无功容量 (3) 8 风电场电压控制 (3) 9 风电场低电压穿越 (4) 10 风电场运行适应性 (5) 11 风电场电能质量 (6) 12 风电场仿真模型和参数 (6) 13 风电场二次系统 (6) 14 风电场接入系统测试 (7) 参考文献 (9) I

GB/T 19963—200 II 前言 本标准根据国家标准化管理委员会下达的国标委综合【2009】93号《2009年第二批国家标准计划 项目》标准计划修订。 本标准与能源行业标准《大型风电场并网设计技术规范》共同规定了风电场并网的相关技术要求,能源行业标准规定了大型风电场并网的设计技术要求,本标准规定了风电场并网的通用技术要求。 本标准规定了对通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场的技术要求。 本标准由全国电力监管标准化技术委员会提出并归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加编写单位:龙源电力集团股份有限公司、南方电网科学研究院有限责任公司、中国电力工程顾问集团公司。 本标准主要起草人:王伟胜、迟永宁、戴慧珠、赵海翔、石文辉、李琰、李庆、张博、范子超、陆志刚、胡玉峰、陈建斌、张琳、韩小琪。

大规模风电接入对电网的影响分析

大规模风电接入对电网的影响分析 发表时间:2019-03-12T10:53:52.117Z 来源:《电力设备》2018年第27期作者:贾成鹏 [导读] 摘要:近年来,科技的发展呈现出日新月异的态势,在这样的趋势之下,人们对于电力资源的需求也在不断地增加。 (华电国际宁夏新能源发电有限公司宁夏银川 750000) 摘要:近年来,科技的发展呈现出日新月异的态势,在这样的趋势之下,人们对于电力资源的需求也在不断地增加。但是,自然资源的有限性与人需求的无限性是相互对立的,在人们对自然资源的不断索取的情况下,自然环境进一步恶化,自然资源也在不断的减少。面对着这样的情况,人们开始寻找新的资源,这时候,可再生能源走入了人们的视线,人们开始越发重视可再生能源的开发与利用。对大规模风电接入情况下对电网的影响进行了分析,通过建模仿真验证了大规模风电对电网方面的影响,并提出改善措施,以期对大规模风电接入下的电网优化提供参考。 关键词:风力发电;电力系统;影响;对策 引言 近年来,世界各国大力发展清洁能源,实施可持续发展战略,取得较为显著的成效。在众多可再生能源中,风能的污染性最小,应用成本低,风力发电技术也较为成熟,在新能源发电领域得到了普遍应用。早期风力发电应用规模相对较小,对电网来说基本不会造成不良的影响,现在大规模风电接入,给电网带来许多问题,对这些问题进行分析研究具有很高的理论和实践价值。 1、概述 能源是社会发展的重要物质基础。人类从远古到现代几乎所有文明的重大进步都伴随着能源的重大改革,从薪柴到化石能源再到新能源无不伴随着生产力的巨大飞跃。能源作为现代化的动力,影响广泛,每一次世界能源危机,都会引发世界范围的经济动荡,甚至战争。由于传统的能源大多不可再生且高污染、高耗能,这使得全球的环境正在逐步恶化,直接威胁着人类的生存。于是在这样的大背景下,风能、太阳能、潮汐能、地热能、生物质能等这些可再生的、环境友好的清洁能源成为未来能源的发展方向。随着《中华人民共和国可再生能源法》的颁布,国家将可再生清洁能源的开发作为能源发展战略优先开展。风能资源是清洁的可再生能源,分布广泛且储量丰富,据全球风能协会统计截止到2016年我国风电累计装机容量达到1.6869×108kW,牢牢占据世界第一位。风能由于其无污染、可再生且具有规模化开发的潜质,今后它在电力系统中的比重还会持续增加,利用风能来发电不但节约了燃料成本还间接的为环境保护做出了贡献。但是风能是一种间歇性的能源,由于自然风的不确定性造成风电场的功率输出也有很大的不确定性,这是风力发电机组与传统的火电机组最大的区别。随着电力系统中风电渗透率的增加,风电机组与常规火电机组的这种区别给电力系统的安全稳定运行以及经济调度带来了新的挑战和要求。随着风电技术的不断成熟,无论是风机的单机容量还是风电场的总装机容量都有了很大的提高。目前在世界范围内,建设风电场所用的主流风机容量一般在0.6MW~2.5MW,但已有国家制造出容量为6MW的风力发电机,可见以后能建造出更大的风电基地,大规模风电集中并网已经是大势所趋。大规模风电并网引起的稳定性问题一直以来就是风电并网研究的一个热点,当电力系统风电装机容量过大时,风电场本身也可能是一个扰动源。自然风具有随机变化的特性,而风机的功率输出与风速的立方成正比[5],所以风机的功率输出也是随机变化的。由于风电场并网运行具有这样的不确定性,因此,有必要对风电并网后电力系统的稳定性进行分析,为大规模风电合理并网提供理论准备和技术支持。 2、风力发电的特性 传统的煤电,具有高污染,高能耗的特点,与现代的环保理念相冲突,不能实现现代社会高质量发展的需求。风力发电,是一种低污染、高环保的新型清洁能源,国家在风力发电行业进行了大力投入和支持,是未来新能源发展的主力军,它接入电网是必须的,也是发展的必然趋势。风力发电,就是利用风的动力,带动风车叶片的旋转运动,通过叶片旋转的传输设备来推动发电机进行发电。从这个特性可以看出,风力的大小是决定风力发电量多少的决定性因素。风,是因为空气的流动产生,但是空气的流动具有不确定性,因此,风也是一个时时变化的动态产物。风的变化,包括风向、风速的变化,风的随机性变化,导致风力发电的输出功率是不可控制的,输出电量的峰值、时间间隔都是随机变化的,由于风力发电这些不可控的随机性,促使我们在做大规模风电接入对电网时,必须充分考虑风力发电电能的不稳定,峰值的间歇性,科学做好电力传输网络。 3、大规模风电接入对电网的影响 伴随着国际上风力资源的开发和利用风力发电的发展热潮,国内外大规模风电建设规模逐渐增大,但面临的问题也非常严峻,对电网的影响也越来越突出,主要有4个方面。(1)电网方面。异步电机缺少独立的励磁装置,而异步电机广泛用于风力发电机的制造,这就导致发电机在并网时会产生一个冲击电流,其电流强度可达额定电流的数倍,持续时间一般为零点几秒,之后发电机才能转入稳定状态。对于大容量的地区电网来说,在风力发电机组接入时,瞬时冲击电流不会对发电机及电网的运行造成明显的影响,但对于容量比较小的电网来说,其影响就比较突出,容易导致电网电压大幅度下降,进而对连接在同一电网上的其他电气设备产生影响。(2)电压方面。在大规模风电场并网运行时,如果端电压升高或降低,会导致电网侧无功功率发生变化,这种现象容易造成电网局部发生电压失稳,导致电网出现电压波动、闪变、失衡、波形畸变等问题,从而影响电网的电压质量和稳定性。根据国内外大规模风电场并网运行情况来看,在大规模大规模风电接入电网的情况下更容易出现上述问题。(3)电能质量方面。风能具有很强的不确定性,这使得风力发电具有显著的波动性,对电网的电能质量产生影响,电压闪变和电压波动是最为主要的影响。导致电压闪变的几种主要因素有大规模风电机组的启动、退出、发电机切换、风速的紊流、风机的塔影效应等。另外,大规模风电接入点短路容量、网络阻抗角等因素,对电能质量也会带来极大的影响。(4)电网稳定性方面。大规模风电对电网稳定性的影响主要有2方面:一是由于风速本身具有不稳定性和随机性,导致大规模风电场出力随时间变化,不能很好地预测,如果大规模风电场出力太高,会降低电网的电压安全裕度,甚至导致电压崩溃;二是在相对薄弱的电网中,当大规模风电场投入功率过高时,电网会出现稳定性降低的情况。 4、大规模风电接入下的电网改善措施 (1)持续加大风力资源查询工作;为了避开风力发电中所遇到的多种不稳定因素以及由于恶劣的环境而导致机组的亚状态运行等问题,风能资源的普查工作必须得到更大力度的开展。这可以从不同地区的风电量和气相条件两个方面进行考察,从而保证风能资源的持续性和风力发电电量输出的稳定性。(2)试点低谷电价;如果低谷电价得到推广与实施,可以在很大程度上对电力资源的运用起到促进作用,在欧美日等发达国家,低谷电价已经得到广泛的运用,也证明了低谷电价对风电市场有非常紧密的联系。比如丹麦的风力发电电价就是与其他能源

风电并网对电网影响因素分析及解决措施

风电并网对电网影响因素分析及解决措施 发表时间:2018-11-02T17:24:59.847Z 来源:《知识-力量》2018年12月上作者:李祥 [导读] 随着科技的不断发展,风电技术日臻成熟,智能电网建设的普及度显著提升,未来风电技术将会在电网中承担更重要的角色。风力电场的不断推广及对电力网络的逐步渗透,对现代电力系统产生了显著影响。由此可见,对风电并网的影响和相关策略研究具备现实意义。关键词 (太原理工大学,山西太原 030001) 摘要:随着科技的不断发展,风电技术日臻成熟,智能电网建设的普及度显著提升,未来风电技术将会在电网中承担更重要的角色。风力电场的不断推广及对电力网络的逐步渗透,对现代电力系统产生了显著影响。由此可见,对风电并网的影响和相关策略研究具备现实意义。 关键词:风电并网;电压;影响 1.风力发电发展概况 在风力发电技术不断完善和成熟的前提下,风电并网成为了发展的重要趋势,而随着风电场在电力系统的作用不断提升,与并网后系统稳定性、电压波动和闪变、谐波等相关的研究不断增多。风电并网的自然属性较强,相比于其他常规类型的电源并网有很大的差异性,尤其是大型风电场并入电力系统后,对电力系统的正常运转而言是一个重大挑战,高水平风电背景下,原有电力系统的运作方式也将受到挑战。近些年来,随着变速恒频风力发电技术的不断发展和成熟,风力发电技术逐步取代了传统发电技术成为了主流。 现阶段,世界范围内对风电并网技术的关注度显著提升,主要表现在以下几个方面:系统应用方面的风电功率预测,风电波动性对系统工作的影响,风电应用后的电能质量问题,风电动态运作的特性问题,风电无功电压和参与电网的电压控制问题等。 2.风电并网对电网的影响因素 2.1对电网频率的影响 风速是一项不可控的因素,而风速的不稳定性也决定了风力的随机性。风电并网后可能会出现电源稳定性差的问题,并网后可能出现的问题也是难以预测的,需要提前对相关问题做好防范。系统中的风电容量处于较大比重时,如果出现了功率的随机性波动,将会对系统电量和功率的稳定性产生影响,不利于电力资源的质量控制,甚至导致敏感符合单元的非正常运转。因此,风电并网后,电网的其他常规机组必须保持较高的响应能力,及时进行跟进调节,防止出现频率和电量的较大波动。风电并网具备很大的不稳定性,一旦出现了停风或风速过大等突发情况,将会导致电网的频率不稳定,尤其是电网中的风电比重较高时,会威胁系统的输出稳定性。电力系统运作要保持频率稳定性,基本原则为失去了风电后,电网频率要保持高于最低频率允许值状态。为消除风力发电不稳定性导致的系统电力频率不稳,可以采用优化调度运行和提高系统备用电容量的方式加以解决。如果电力系统之间的联系紧密,频率问题基本上不会导致显著影响。 2.2对电网电压的影响 风速大小会对风力发电的状况产生显著影响,此外,风力资源的分布也存在很大的差异性,风电场大多建立在山区或者相对偏僻的地区,网络结构薄弱,风电场的运行势必会对正常系统的功能尤其是电压稳定性产生影响。此外,风力发电机采用的是感应发电,风电并网对于电网而言也是无功负荷的状态。为了防止出现极端情况导致风力发电输出丧失,每台风力发电机都要配备无功补偿装置。现阶段,最常见的无功补偿设备为分组投切电容器,根据异步发电机在额定功率下的因数进行设计。风电并网后,风力发电对电网电压的影响可以分为波形畸变、快电压波形和电压不平衡等。 2.3对电网稳定性的影响 风电并网后,最大的问题是电网的电压稳定性受到影响。主要由以下几方面导致:1.电容器补偿是最常见的无功补偿方式,接入电压量和补偿量之间存在正相关性,随着系统电压的降低,无功补偿量下降,而风电场对电网的无功需求则随之增加,导致电压水平进一步不稳定,从而诱发风机停止工作,严重可出现电力系统瘫痪。2.故障后,未出现功角失稳时,风电机组为保护自身而停机,风电场的输出减少或完全丧失,系统失去了无功负荷,电压水平相对偏高,风电场的母线电压超出最高警戒指标。3.故障未及时切除,导致电压稳定性不足。4.风电场出力过高,降低电网的安全阈值,容易出现系统崩溃,电压失衡。 3.风电并网对电网影响的解决措施 3.1确定风电场最大接入容量 风电场与电网的最大接入容量指标与自身的无功补偿状态和运行特性等密切相关,此外,还要考虑电压等级、负荷情况和电网结构等因素的影响。 (1)系统的网络结构 保持系统电压负荷不变的情况下,网络连接的紧密性直接影响风电最大接入容量。选择不同的接入点,将会导致风电场的最大接入容量存在很大差异性。 (2)常规机组的旋转备用水平 为满足风电最大接入容量增加的配备要求,可提升常会机电组的设备旋转水平。 (3)风电场与电网的联结方式 风电场和电网联合将直接影响电压分布节点和潮流,从而直接改变最大接入容量。 (4)风电机组的类型 恒速恒频发电机形成的风电场自身不具备无功补偿,必须配备外接的补偿装置,无形中增加了电力系统的负担,会导致最大接入容量受到直接影响。变速恒频的风电机组形成的风电场,可以对风电机组的状况进行适当调节,从而达到提升最大接入容量的目的。 3.2制定风电场的无功补偿方案 (1)基于异步机组的无功控制 在具体运行的过程中,风电场会议更高功率运转,这对解决风电场可能存在的突发状况有重要意义,满足了无功需求下风电场保持基功率的要求,同时也降低了由于风电场减少或完全消失对电网稳定性和输出电压产生的影响。为解决相关问题可以采用配备专门电容器组的方式,或者采用SVC系统改善电能质量,该系统相比于传统的设备能够提供更加稳定的功率因素和电压支援,从而提升系统的稳定性。

风电场开发的环境效益及环境影响

风电场开发的环境效益及环境影响 摘要本文主要研究风电开发的环境影响问题,从三个方面进行了分析阐述:1、风电场建设对环境的有利影响;2、风电场建设对环境的不利影响,根据建设过程,分为建设期和运行期2个阶段对产生的主要环境问题进行了分析;3、风电场开发建设对环境影响评估的现状及需要解决的问题。 关键词风电场;环境影响;环境保护 煤炭、石油等能源资源的大量开发利用,不仅严重破坏开采区域的生态环境,而且因大量燃烧化石燃料而排放二氧化碳所引发的全球性气候变化问题,已经引起国际社会的广泛关注。随着社会经济发展水平的提高,人们对环境质量越来越重视,清洁生产和能源规划日益受到人们的重视,特别是自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,做为可再生能源的风力资源以其蕴量巨大、可再生、分布广泛、无污染等优势而在各国迅速发展!1?。 我国是世界上风力资源较为丰富的国家之一,可开发风能资源总量约为10亿千瓦,主要集中在北部、西北和东北的草原、戈壁滩以及东部、东南部的沿海地带和岛屿上!2?。我国有海岸线18000多km,岛屿6000多个,由于沿海一带及岛屿风速大,风能蕴藏量丰富,据估计近海风能资源约为陆地的3倍,因此,近海风电开发前景尤为广阔。 随着人类社会的不断进步,人们对风能的利用目的也经历了一个逐步发展的过程。风力发电最初发展的重要推动力是能源危机引起的经济性,现阶段对风电发展最为重要的支持就是人们环境保护的意识进一步加强。人们在可再生清洁能源的利用问题上往往存在一个误区,认为清洁可再生能源的利用当然就是清洁、无污染的,实际上,风电开发在建设和运行过程中都会对环境产生直接和间接的环境的污染和破坏,例如风机噪音、风机对鸟类迁移的影响、风机与周围景观融合等。但是目前风电开发对环境的影响评价分析却建立在很多主观的判断上,缺乏一个相对量化的、比较准确的评价标准。1 风电开发环境影响评估及研究现状 1998年6月1日开始实施的#环境影响评价技术导则非污染生态影响HJ T19-1997?适用于海洋及海岸带开发项目环境影响评价工作中的生态影响评价。 2003年9月1日开始实施的#中华人民共和国环境影响评价法?中明确要求对海域开发规划进行环境影响评价,这是对我国环境影响评价制度的重大完善。 #海洋工程环境影响评价技术导则?(GB T19485% 2004)于2004年9月1日正式实施。#导则?为规范和评价我国的海洋工程环境影响评价技术工作提供了科学依据,对我们进行近海风电场建设的环境影响评价工作具有指导意义。 电力&九五?规划中有关风电等能源开发对生态环境影响的内容较少,无法满足环境评价的要求。 近年来,世界上许多国家在总结环境保护经验教训的基础上,逐步认识到单纯对建设项目进行环境影响评价已经适应不了全面保护环境和自然资源可持续利用的需要。在一些国家所制定的能源规划和战略中已经充分考虑了环境因素,特别是英国的能源政策白皮书,把创造低排放经济作为能源政策的主要目标和出发点。但迄今为止,并没有一个国家对不同类型的规划、尤其是能源规划的环境影响提出一套科学、系统的环境影响评价方法和指标体系。 作为可再生能源,随着国际国内能源日益紧张,风能将在国内,乃至世界能源规划中逐步占据重要位置,为此,对风电开发提出一套科学、系统的环境影响评价方法和指标体系具有重要意义。

风电场模型及其对电力系统的影响

第31卷增刊2 电 网 技 术V ol. 31 Supplement 2 2007年12月Power System Technology Dec. 2007 文章编号:1000-3673(2007)S2-0330-05中图分类号:TM938文献标识码:A学科代码:470·4017 风电场模型及其对电力系统的影响 娄素华1,李志恒1,高苏杰2,吴耀武1 (1.华中科技大学电气与电子工程学院,湖北省武汉市 430074; 2.国网新源控股有限公司,北京市东城区 100005) Wind Farms Models and Its Impacts on Wind Farms Integration into Power System LOU Su-hua1,LI Zhi-heng1,GAO Su-jie2,WU Yao-wu1 (1.School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,Hubei Province,China;2.State Grid Xin Yuan Company Limited,Dongcheng District,Beijing 100005,China) 摘要:介绍了风力发电系统建模的一般思路及常用的风电场模型,然后对风电并网几个重要课题的分析方法进行了研究,比较了适用于不同研究目的的风电场模型的优劣及相应的分析方法,指出了风电场建模方法存在的主要文体,总结了风电接入对系统影响的几个主要方面。 关键词:风力发电;风电场模型;潮流;电能质量;稳定性0引言 作为一种可再生能源,风电由于其分布较广的特点及其相对成熟的开发技术而在全世界得到了长足的发展。风电的优势在于其环境友好性,但它的缺点也是很明显的:风力的随机性和间歇性不能保证输出平稳的电力,这对电力系统的稳定性以及发电和运行计划的制定带来很多困难;风电场一般远离负荷中心,承受冲击的能力很弱,随着风电装机规模的扩大,风电的不可控性将给电力系统带来新的挑战。因此,合理地对风电场建模、分析风电的容量可信度[1-2]、研究风电与其它电源的配合问题对于保证含风电系统的安全经济运行十分重要。 本文对风电并网的不同研究领域所采用的风电模型及其分析方法作了系统地对比和分析,指出了上述模型和分析方法的优点和局限性;总结了风电接入对系统影响的几个主要方面,这将会有助于分析系统中其它电源与风电的配合问题。 1风电场模型 1.1 风力发电机组动态建模的基本理论 1.1.1 风的统计理论与风速建模 风是风力发电的源动力,与发电部分具有独立性。风的自然特性包括风向和风速,具有间歇性、随机性和难以预测性。风向与风速的建模是风力发电机组建模的重要组成部分。在风力发电系统的研究中,人们更多地关注风速的特性,而弱化风向的影响。在描述风速的分布函数中,最常见的是Weibull分布[3-4],其分布函数为 w ()1exp(/)k F V V C =??(1) 式中:C为尺度参数;k为形状参数;V为风速。 文献[3]以Weibull分布为基础,使用时间序列自动回归和移动平均技术模拟风速。文献[4]借助于马尔科夫链和Weibull分布对风速、风向进行随机性分析建模,并在模型中考虑了风速和风向的相关性。Weibull分布侧重于对风能资源的统计描述,它表示的是风速在10min或更长时间内的平均值。在与风速相关的动态建模中,经常使用4分量模型,该模型将风分为基本风、阵风、渐变风和随机风4个部分[5],PSCAD仿真软件使用的就是这种模型。目前,这种模型的局限性在于没有给出确定阵风分量参数的方法,仅适用于简单的模拟计算。现在的风力发电系统研究中,更多采用的是平均风速与湍流分量相叠加的风速模型。在这种模型中,风速均值在数分钟至数十分钟的时间尺度内保持不变,风速的变化由湍流分量给出,而湍流分量作为一个平稳的随机过程来处理。 1.1.2风力发电机组模型 一个典型的风力发电系统主要包括风力机、传动机构、发电机和相应的控制系统4个模块。风力机结构复杂,在模型中人们关注的主要问题是风速与机械出力的关系,一种常见的处理方法是由风力机铭牌数据得到风力驱动产生的动力转矩[6],或通

相关文档
最新文档