进程间基于消息队列的通信

进程间基于消息队列的通信
进程间基于消息队列的通信

进程的消息通信-带标准答案版

实验二进程管理 2.2 进程的消息通信 1.实验目的 (1) 加深对进程通信的理解,理解进程消息传递机制。 (2) 掌握进程通信相关系统调用。 (3) 理解系统调用和用户命令的区别。 2.实验类型:验证型 3.实验学时:2 4.实验原理和知识点 (1) 实验原理:消息通信机制允许进程之间大批量交换数据。消息通信机制是以消息队列为基础的,消息队列是消息的链表。发送进程将消息挂入接收进程的消息队列,接收进程从消息队列中接收消息。消息队列有一个消息描述符。对消息队列的操作是通过描述符进行的。任何进程,只要有访问权并且知道描述符,就可以访问消息队列。每个消息包括一个正长整型的类型字段,和一个非负长度的数据。进程读或写消息时,要给出消息的类型。若队列中使用的消息类型为0,则读取队列中的第一个消息。 (2) 知识点:消息、消息队列 5.实验环境(硬件环境、软件环境): (1)硬件环境:Intel Pentium III 以上CPU,128MB以上内存,2GB以上硬盘 (2)软件环境:linux操作系统。 6. 预备知识 (1) msgget()系统调用: 头文件 #include 函数原型int msgget(key_t key, int flag); 功能:创建消息队列,或返回与key对应的队列描述符。成功返回消息描述符,失败则返回-1。 参数:key是通信双方约定的队列关键字,为长整型数。flag是访问控制命令,它的低9位为访问权限(代表用户、组用户、其他用户的读、写、执行访问权),其它位为队列建立方式。(例:rwxrwx---:111111000) (2) msgsnd()系统调用: 头文件 #include 函数原型 int msgsnd(int id, struct msgbuf *msgp,int size,int flag); 功能:发送一个消息。成功返回0,失败返回-1。 参数:id是队列描述符。msgp是用户定义的缓冲区。size是消息长度。flag是操作行为,若(flag&IPC_NOWAIT)为真,调用进程立即返回;若(flag&IPC_NOWAIT)为假,调用进程阻塞,直到消息被发送出去或队列描述符被删除或收到中断信号为止。缓冲区结构定义如下:struct msgbuf{ long mtype; char mtext[n]; };

进程同步与通信作业习题与答案

第三章 一.选择题(50题) 1.以下_B__操作系统中的技术是用来解决进程同步的。 A.管道 B.管程 C.通道 2.以下_B__不是操作系统的进程通信手段。 A.管道 B.原语 C.套接字 D.文件映射 3.如果有3个进程共享同一程序段,而且每次最多允许两个进程进入该程序段,则信号量的初值应设置为_B__。 4.设有4个进程共享一个资源,如果每次只允许一个进程使用该资源,则用P、V操作管理时信号量S的可能取值是_C__。 ,2,1,0,-1 ,1,0,-1,-2 C. 1,0,-1,-2,-3 ,3,2,1,0 5.下面有关进程的描述,是正确的__A__。 A.进程执行的相对速度不能由进程自己来控制 B.进程利用信号量的P、V 操作可以交换大量的信息 C.并发进程在访问共享资源时,不可能出现与时间有关的错误 、V操作不是原语操作 6.信号灯可以用来实现进程之间的_B__。 A.调度 B.同步与互斥 C.同步 D.互斥 7.对于两个并发进程都想进入临界区,设互斥信号量为S,若某时S=0,表示_B__。 A.没有进程进入临界区 B.有1个进程进入了临界区 C. 有2个进程进入了临界区 D. 有1个进程进入了临界区并且另一个进程正等待进入 8. 信箱通信是一种_B__方式 A.直接通信 B.间接通信 C.低级通信 D.信号量 9.以下关于临界区的说法,是正确的_C__。

A.对于临界区,最重要的是判断哪个进程先进入 B.若进程A已进入临界区,而进程B的优先级高于进程A,则进程B可以 打断进程A而自己进入临界区 C. 信号量的初值非负,在其上只能做PV操作 D.两个互斥进程在临界区内,对共享变量的操作是相同的 10. 并发是指_C__。 A.可平行执行的进程 B.可先后执行的进程 C.可同时执行的进程 D.不可中断的进程 11. 临界区是_C__。 A.一个缓冲区 B.一段数据区 C.一段程序 D.栈 12.进程在处理机上执行,它们的关系是_C__。 A.进程之间无关,系统是封闭的 B.进程之间相互依赖相互制约 C.进程之间可能有关,也可能无关 D.以上都不对 13. 在消息缓冲通信中,消息队列是一种__A__资源。 A.临界 B.共享 C.永久 D.可剥夺 14. 以下关于P、V操作的描述正确的是__D_。 A.机器指令 B. 系统调用 C.高级通信原语 D.低级通信原语 15.当对信号量进行V源语操作之后,_C__。 A.当S<0,进程继续执行 B.当S>0,要唤醒一个就绪进程 C. 当S<= 0,要唤醒一个阻塞进程 D. 当S<=0,要唤醒一个就绪 16.对临界区的正确论述是__D_。 A.临界区是指进程中用于实现进程互斥的那段代码 B. 临界区是指进程中用于实现进程同步的那段代码 C. 临界区是指进程中用于实现进程通信的那段代码 D. 临界区是指进程中访问临界资源的那段代码 17. __A__不是进程之间的通信方式。 A.过程调用 B.消息传递 C.共享存储器 D.信箱通信 18. 同步是指进程之间逻辑上的__A__关系。

进程和进程间的通信

1、进程概念; 2、进程的控制: (1)生成一个进程:fork (2)进程的同步:wait waitpid (3)进程的退出:exit _exit (4)进程“脱胎换骨”:exec函数族 3、进程通信 (1)进程为什么需要通信? (2)linux下进程如何通信 ●早期的unix通信方式 无名管道;有名管道;信号 ●sysem v的通信方式:共享内存、消息队列、信号量 ●BSD的通信方式:socket 4、无名管道:适用于有血缘关系进程通信 小任务1:父进程通过无名管道向子进程发送字符串“Hello,you man!”,子进程接收到后显示出来,然后子进程退出,最后父进程退出。 (1)创建子进程:fork (2)创建管道 #include int pipe(int pipefd[2]); 参数说明(当管道创建成功后): pipefd[0]:读端的文件描述符; pipefd[1]:写端的文件描述 返回值:0表示创建成功,-1表示创建失败 (3)父亲写管道 write (4)儿子读管道 read (5)父亲等待儿子退出 wait 参考代码: #include #include #include #include #include int main() { int pid; int pipefd[2]; int ret;

char buf[]="Hello,young man!"; ret=pipe(pipefd);//创建管道(1) if(ret<0) { perror("Failed to create pipe:"); return -1; } pid=fork(); //能够把(1)语句放此注释的下一样?? if(pid<0) { perror("Failed to create child process:"); return -1; } if(pid>0) { close(pipefd[0]);//父进程中关闭无关的读端 write(pipefd[1],buf,strlen(buf)); wait(NULL); printf("Parent process exit!\n"); } else { char receive_buf[100]; int count; close(pipefd[1]);//子进程中关闭无关的写端 count=read(pipefd[0],receive_buf,100); if(count>0) { receive_buf[count]='\0'; printf("Child process receive a string:%s\n",receive_buf); } printf("Child process exit!\n"); } return 0; } 5、有名管道(fifo) (1)文件系统中可见,可以通过mkfifo 命令来创建一个有名管道 eg: mkfifo -m 0666 myfifo (2)有名管道的使用跟普通文件一样:open read write close,不用使用lseek!!!! 任务2: 进程1通过有名管道把键盘输入字符串发送给进程2,进程2收到后显

进程间通信方式比较

进程间的通信方式: 1.管道(pipe)及有名管道(named pipe): 管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。 2.信号(signal): 信号是在软件层次上对中断机制的一种模拟,它是比较复杂的通信方式,用于通知进程有某事件发生,一个进程收到一个信号与处理器收到一个中断请求效果上可以说是一致得。 3.消息队列(message queue): 消息队列是消息的链接表,它克服了上两种通信方式中信号量有限的缺点,具有写权限得进程可以按照一定得规则向消息队列中添加新信息;对消息队列有读权限得进程则可以从消息队列中读取信息。 消息缓冲通信技术是由Hansen首先提出的,其基本思想是:根据”生产者-消费者”原理,利用内存中公用消息缓冲区实现进程之间的信息交换. 内存中开辟了若干消息缓冲区,用以存放消息.每当一个进程向另一个进程发送消息时,便申请一个消息缓冲区,并把已准备好的消息送到缓冲区,然后把该消息缓冲区插入到接收进程的消息队列中,最后通知接收进程.接收进程收到发送里程发来的通知后,从本进程的消息队列中摘下一消息缓冲区,取出所需的信息,然后把消息缓冲区不定期给系统.系统负责管理公用消息缓冲区以及消息的传递. 一个进程可以给若干个进程发送消息,反之,一个进程可以接收不同进程发来的消息.显然,进程中关于消息队列的操作是临界区.当发送进程正往接收进程的消息队列中添加一条消息时,接收进程不能同时从该消息队列中到出消息:反之也一样. 消息缓冲区通信机制包含以下列内容:

(1) 消息缓冲区,这是一个由以下几项组成的数据结构: 1、消息长度 2、消息正文 3、发送者 4、消息队列指针 (2)消息队列首指针m-q,一般保存在PCB中。 (1)互斥信号量m-mutex,初值为1,用于互斥访问消息队列,在PCB中设置。 (2)同步信号量m-syn,初值为0,用于消息计数,在PCB中设置。(3)发送消息原语send (4)接收消息原语receive(a) 4.共享内存(shared memory): 可以说这是最有用的进程间通信方式。它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等。 这种通信模式需要解决两个问题:第一个问题是怎样提供共享内存;第二个是公共内存的互斥关系则是程序开发人员的责任。 5.信号量(semaphore): 主要作为进程之间及同一种进程的不同线程之间得同步和互斥手段。 6.套接字(socket); 这是一种更为一般得进程间通信机制,它可用于网络中不同机器之间的进程间通信,应用非常广泛。 https://www.360docs.net/doc/2011219067.html,/eroswang/archive/2007/09/04/1772350.aspx linux下的进程间通信-详解

进程间通信的四种方式

一、剪贴板 1、基础知识 剪贴板实际上是系统维护管理的一块内存区域,当在一个进程中复制数据时,是将这个数据放到该块内存区域中,当在另一个进程中粘贴数据时,是从该内存区域中取出数据。 2、函数说明: (1)、BOOL OpenClipboard( ) CWnd类的OpenClipboard函数用于打开剪贴板。若打开剪贴板成功,则返回非0值。若其他程序或当前窗口已经打开了剪贴板,则该函数返回0值,表示打开失败。若某个程序已经打开了剪贴板,则其他应用程序将不能修改剪贴板,直到前者调用了CloseClipboard函数。 (2)、BOOL EmptyClipboard(void) EmptyClipboard函数将清空剪贴板,并释放剪贴板中数据的句柄,然后将剪贴板的所有权分配给当前打开剪贴板的窗口。 (3)、HANDLE SetClipboardData(UINT uFormat, HANDLE hMem) SetClipboardData函数是以指定的剪贴板格式向剪贴板上放置数据。uFormat指定剪贴板格式,这个格式可以是已注册的格式,或是任一种标准的剪贴板格式。CF_TEXT表示文本格式,表示每行数据以回车换行(0x0a0x0d)终止,空字符作为数据的结尾。hMem指定具有指定格式的数据的句柄。hMem参数可以是NULL,指示采用延迟提交技术,则该程序必须处理WM_RENDERFORMA T和WM_RENDERALLFORMATS消息。应用程序在调用SetClipboardData函数之后,就拥有了hMem参数所标识的数据对象,该应用程序可以读取该数据对象,但在应用程序调用CloseClipboard函数之前,它不能释放该对象的句柄,或者锁定这个句柄。若hMem标识了一个内存对象,那么这个对象必须是利用GMEM_MOVEABLE标志调用GlobalAlloc函数为其分配内存。 注意:调用SetClipboardData函数的程序必须是剪贴板的拥有者,且在这之前已经打开了剪贴板。 延迟提交技术:当一个提供数据的进程创建了剪贴板数据之后,直到其他进程获取剪贴板数据之前,这些数据都要占据内存空间。若在剪贴板上放置的数据过大,就会浪费内存空间,降低对资源的利用率。为了避免这种浪费,就可以采用延迟提交计数,也就是由数据提供进程先提供一个指定格式的空剪贴板数据块,即把SetClipboardData函数的hMem参数设置为NULL。当需要获取数据的进程想要从剪贴板上得到数据时,操作系统会向数据提供进程发送WM_RENDERFORMA T消息,而数据提供进程可以响应这个消息,并在此消息的响应函数中,再一次调用SetClipboardData函数,将实际的数据放到剪贴板上。当再次调用SetClipboardData函数时,就不再需要调用OpenClipboard函数,也不再需要调用EmptyClipboard函数。也就是说,为了提高资源利用率,避免浪费内存空间,可以采用延迟提交技术。第一次调用SetClipboardData函数时,将其hMem参数设置为NULL,在剪贴板上以指定的剪贴板格式放置一个空剪贴板数据块。然后直到有其他进程需要数据或自身进程需要终止运行时再次调用SetClipboardData函数,这时才真正提交数据。 (4)、HGLOBAL GlobalAlloc( UINT uFlags,SIZE_T dwBytes); GlobalAlloc函数从堆上分配指定数目的字节。uFlags是一个标记,用来指定分配内存的方式,uFlags为0,则该标记就是默认的GMEM_FIXED。dwBytes指定分配的字节数。

linux进程间通讯的几种方式的特点和优缺点

1. # 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 # 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 # 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。#共享内存( shared memory):共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。 # 套接字( socket ) :套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。 管道的主要局限性正体现在它的特点上: 只支持单向数据流; 只能用于具有亲缘关系的进程之间; 没有名字; 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等; 2. 用于进程间通讯(IPC)的四种不同技术: 1. 消息传递(管道,FIFO,posix和system v消息队列) 2. 同步(互斥锁,条件变量,读写锁,文件和记录锁,Posix和System V信号灯) 3. 共享内存区(匿名共享内存区,有名Posix共享内存区,有名System V共享内存区) 4. 过程调用(Solaris门,Sun RPC) 消息队列和过程调用往往单独使用,也就是说它们通常提供了自己的同步机制.相反,共享内存区

OSAL中的消息机制

OSAL中的消息机制 学习了zstack的整体框架后,会发现,每个zstack的工程中都有若干个任务,每个任务对应着任务事件,如: macEventLoop, nwk_event_loop, Hal_ProcessEvent, APS_event_loop, ZDApp_event_loop, SerialApp_ProcessEvent 通常最后一个是我们自定义的应用层任务事件(我用串口例子上手,在此以它为例) 为了方便搞懂,可以暂时这么理解: 把每个任务看成是一个小区中的某户人家,比如上例中一个小区7户,每户一个邮箱,那么小区就有7个任务,7个邮箱构成事件数组。 消息是包裹,SYS_EVENT_MSG事件(邮箱里收到的除了这种类型的事件,还有一些其他的,比如自定义的SERIALAPP_SEND_EVT SERIALAPP_RESP_EVT 等)就是包裹通知单,包裹通知单送达某户的邮箱(SYS_EVENT_MSG消息被发送到某个任务事件处理函数),这户人家查看邮箱,发现有包裹通知单,就去领出包裹(即执行osal_msg_receive( TaskID )函数),领出包裹后拆开其实就是解析消息后再决定是吃掉它,用掉它,回覆它还是丢掉它等等。 在学习的过程中, 如果有进入过这个函数: osal_msg_send( uint8 destination_task, uint8 *msg_ptr ),你会发现函数里有一下几句执行语句OSAL_MSG_NEXT(msg_ptr)、OSAL_MSG_ID( msg_ptr ),跟踪进去后,发现他们是个宏定义,如#define OSAL_MSG_ID( msg_ptr ) ((osal_msg_hdr_t *) (msg_ptr) - 1)->dest_id 意思是把msg_ptr强制转化为osal_msg_hdr_t的指针,但是,发现有个-1,我也是因为看到这个奇怪的-1才最终总结了这个消息机制。 先看一下OSAL消息结构:消息头结构+消息数据结构(Key)

进程的管道通信

计算机操作系统实验第六次实验报告 学院:计算机科学与信息学院专业:通信工程班级:081姓名学号 实验 组 实验时间2010年11月17日指导教师成绩 实验项目名称进程的管道通信实 验目的 1、了解什么是管道; 2、熟悉UNIX/LINUX支持的管道通信方式。 实 验要求 1、了解管道的概念和管道的类型; 2、熟悉UNIX/LINUX支持的管道通信方式。 实 验 原 理 在管道通信时系统会调用:pipe( )建立一无名管道;read( );write( ) 。 实 验 仪 器 PC机或工作站一台; RedHat9.0操作系统;

实验步骤一、什么是管道 UNIX系统在OS的发展上,最重要的贡献之一便是该系统首创了管道(pipe)。这也是UNIX系统的一大特色。 所谓管道,是指能够连接一个写进程和一个读进程的、并允许它们以生产者—消费者方式进行通信的一个共享文件,又称为pipe文件。由写进程从管道的写入端(句柄1)将数据写入管道,而读进程则从管道的读出端(句柄0)读出数据。 句柄fd[0] 句柄fd[1] 读出端 写入端 二、管道的类型: 1、有名管道 一个可以在文件系统中长期存在的、具有路径名的文件。用系统调用mknod( )建立。它克服无名管道使用上的局限性,可让更多的进程也能利用管道进行通信。因而其它进程可以知道它的存在,并能利用路径名来访问该文件。对有名管道的访问方式与访问其他文件一样,需先用open( )打开。 2、无名管道 一个临时文件。利用pipe( )建立起来的无名文件(无路径名)。只用该系统调用所返回的文件描述符来标识该文件,故只有调用pipe( )的进程及其子孙进程才能识别此文件描述符,才能利用该文件(管道)进行通信。当这些进程不再使用此管道时,核心收回其索引结点。 二种管道的读写方式是相同的,本文只讲无名管道。 3、pipe文件的建立 分配磁盘和内存索引结点、为读进程分配文件表项、为写进程分配文件表项、分配用户文件描述符 4、读/写进程互斥 内核为地址设置一个读指针和一个写指针,按先进先出顺序读、写。 为使读、写进程互斥地访问pipe文件,需使各进程互斥地访问pipe文件索引结点中的直接地址项。因此,每次进程在访问pipe文件前,都需检查该索引文件是否已被上锁。若是,进程便睡眠等待,否则,将其上锁,进行读/写。操作结束后解锁,并唤醒因该索引结点上锁而睡眠的进程。 三、所涉及的系统调用 1、pipe( ) 建立一无名管道。 系统调用格式 pipe(filedes) 参数定义 int pipe(filedes); int filedes[2]; 其中,filedes[1]是写入端,filedes[0]是读出端。 该函数使用头文件如下: #include #inlcude #include 2、read( ) 系统调用格式

IEC 通讯机制

RTU上行通信IEC104协议简述

目录 1.RTU IEC104协议基本参数 (1) 2.应用规约控制单元(APDU)格式 (1) 2.1应用规约控制信息(APCI)格式 (1) 2.2应用服务数据单元(ASDU)格式 (3) 3.定时器定义 (7) 4.未被确认的I帧最大数目k和最迟确认数目W (7) 5.总召唤机制 (7) 6.电度总召唤机制 (8) 7.时钟同步机制 (8) 8.遥控机制 (8) 8.1正常遥控 (8) 8.2从站拒绝 (9) 8.3主站撤销 (9) 9.遥调机制 (9) 9.1正常遥调 (9) 9.2从站拒绝 (10) 9.3主站撤销 (10) 10.非标召唤机制 (10) 11.变位遥信机制 (11) 12.历史数据召唤机制 (11) 12.1RTU没有历史数据 (12) 13.地址分配 (12)

1.RTU IEC104协议基本参数 ●基于IEC60870-5-104协议; ●最大帧长度为255Byte; ●帧间隔:50ms; ●TCP/IP 网络通信端口号2404; ●采用平衡传输,每个节点(包括主站、厂站)均可以启动报文发送。 2.应用规约控制单元(APDU)格式 ●应用规约数据单元:APDU(Application protocol data unit) ●应用规约控制信息:APCI(Application protocol control information) ●应用服务数据单元:ASDU(Application protocol control unit) 2.1应用规约控制信息(APCI)格式 为了检出ASDU的启动和结束,每个APCI包括下列的定界元素:一个启动字符,ASDU 的规定长度,以及控制域(见下图)。可以传送一个完整的APDU(或者,出于控制目的,仅仅是传送APCI域)。

实验4 进程的管道通信

实验4 进程的管道通信 1. 目的 1)加深对进程概念的理解,明确进程和程序的区别。 2)进一步认识并发执行的实质。 3)分析进程争用资源的现象,学习解决进程互斥的方法。 4)学习解决进程同步的方法。 5)了解Linux系统中进程通信的基本原理。 进程是操作系统中最重要的概念,贯穿始终,也是学习现代操作系统的关键。通过本次实验,要求理解进程的实质和进程管理的机制。在Linux系统下实现进程从创建到终止的全过程,从中体会进程的创建过程、父进程和子进程之间的关系、进程状态的变化、进程之间的互斥、同步机制、进程调度的原理和以管道为代表的进程间的通信方式的实现。 2. 内容及要求 这是一个设计型实验,要求自行编制程序。 使用系统调用pipe()建立一条管道,两个子进程分别向管道写一句话: Child process1 is sending a message! Child process2 is sending a message! 父进程从管道读出来自两个子进程的信息,显示在屏幕上。 要求: 1)父进程先接收子进程1发来的消息,然后再接收子进程2发来的消息。 2)实现管道的互斥使用,当一个子进程正在对管道进行写操作时,另一子进程必须等待。使用系统调用lockf(fd[1],1,0)实现对管道的加锁操作,用lockf(fd[1],0,0)解除对 管道的锁定。 3)实现父子进程的同步,当子进程把数据写入管道后,便去睡眠等待;当父进程试图从一空管道中读取数据时,也应等待,直到子进程将数据写入管道后,才将其唤醒。 3.相关的系统调用 1)fork() 用于创建一个子进程。 格式:int fork(); 返回值:在子进程中返回0;在父进程中返回所创建的子进程的ID值;当返回-1时,创建失败。 2)wait() 常用来控制父进程与子进程的同步。 在父进程中调用wait(),则父进程被阻塞,进入等待队列,等待子进程结束。当子进程结束时,父进程从wait()返回继续执行原来的程序。 返回值:大于0时,为子进程的ID值;等于-1时,调用失败。 3)exit() 是进程结束时最常调用的。 格式:void exit( int status); 其中,status为进程结束状态。 4)pipe() 用于创建一个管道 格式:pipe(int fd); 其中fd是一个由两个数组元素fd[0]和fd[1]组成的整型数组,fd[0]是管道的读端口,用

进程间通信实验报告

进程间通信实验报告 班级:10网工三班学生姓名:谢昊天学号:1215134046 实验目的和要求: Linux系统的进程通信机构 (IPC) 允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的消息通讯机制及信息量机制。 实验内容与分析设计: (1)消息的创建,发送和接收。 ①使用系统调用msgget (), msgsnd (), msgrev (), 及msgctl () 编制一长度为1k 的消息的发送和接收程序。 ②观察上面的程序,说明控制消息队列系统调用msgctl () 在此起什么作用? (2)共享存储区的创建、附接和段接。 使用系统调用shmget(),shmat(),sgmdt(),shmctl(),编制一个与上述功能相同的程序。(3)比较上述(1),(2)两种消息通信机制中数据传输的时间。 实验步骤与调试过程: 1.消息的创建,发送和接收: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)在SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER 。SERVER每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,既是 SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。 (4)父进程在 SERVER和 CLIENT均退出后结束。 2.共享存储区的创建,附接和断接: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)SERVER端建立一个KEY为75的共享区,并将第一个字节置为-1。作为数据空的标志.等待其他进程发来的消息.当该字节的值发生变化时,表示收到了该消息,进行处理.然后再次把它的值设为-1.如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER.SERVER 每接收到一次数据后显示”(server)received”. (3)CLIENT端建立一个为75的共享区,当共享取得第一个字节为-1时, Server端空闲,可发送请求. CLIENT 随即填入9到0.期间等待Server端再次空闲.进行完这些操作后, CLIENT退出. CLIENT每发送一次数据后显示”(client)sent”. (4)父进程在SERVER和CLIENT均退出后结束。 实验结果: 1.消息的创建,发送和接收: 由 Client 发送两条消息,然后Server接收一条消息。此后Client Server交替发送和接收消息。最后一次接收两条消息。Client 和Server 分别发送和接收了10条消息。message 的传送和控制并不保证完全同步,当一个程序不再激活状态的时候,它完全可能继续睡眠,造成上面现象。在多次send message 后才 receive message.这一点有助于理解消息转送的实现机理。

特别重大灾害应急通信响应机制

**市特别重大灾害应急通信响应机制(稿) 为做好特别重大灾害期间应急通信保障工作,依据应急管理部《特别重大灾害应急响应工作手册》,制定本文件。 一、应急响应 灾害发生后,**市消防救援支队指挥中心(以下简称“消防指挥中心”)汇总相关信息,根据事故灾害态势,通报有关地区和部门,通知**市消防应急通信保障分队(以下简称“应急通信保障分队”)启动特别重大灾害应急通信响应,调动属地或跨区域增援应急通信保障队启动应急响应。 (一)应急通信保障分队 应急通信保障分队以**市消防救援支队信息通信保障力量为主体,安全生产应急救援指挥中心、市通信信息中心、抗震救灾、森林防火、市防汛抗旱等部门通信保障人员共同参加,负责**市在重大灾害响应及处置过程中的应急通信保障工作,内设后方通信保障组、前方通信保障组。 1.后方通信保障组 后方通信保障组负责消防指挥中心的通信值守、通信力量调度与协调工作,主要任务: (1)启动消防指挥中心各类应急通信指挥系统,进行席位值守,并保障各通信网络畅通,根据灾害类型,通知安全生产、抗

震救灾、森林防火等相应救灾部门的人员到消防指挥中心协调通信保障。 (2)根据灾害类型调派属地消防、安全生产、地震、森林防火等部门的应急通信保障队伍赶赴灾害现场,明确出动人员、装备器材、通信车辆等数量、类型要求。 (3)根据灾害范围和通信保障需求,跨区域调派增援通信保障力量,视情调集消防、安全生产、抗震救灾、森林防火等部门的增援通信保障队伍。 (4)制定应急通信保障力量,由消防指挥中心协调**市应急响应交通保障组组织实施。 (5)建立并保持与各通信保障队伍和前方通信保障组、遂行地方领导同志的音视频通信联络。 (6)保障消防指挥中心与自然资源、生态环境、气象等部门的音视频通信畅通。 (7)保障消防指挥中心与**市各应急响应保障组及部内设机构和主要防灾救灾部门的通信联系。 (8)根据任务需要,调派应急通信保障分队的机动预备力量,为**市各应急响应保障组提供应急通信保障装备或通信人员保障。 2.前方通信保障组 前方通信保障组主要负责赴灾害现场统筹协调应急通信保障工作,应急响应阶段的任务为: (1)联系**市应急响应交通保障组确认出动交通方式。 (2)了解灾情及灾区通信保障需求,准备通信车辆或装备器

实验三 进程间通信

实验三进程间通信(2学时) 一、实验目的 (1)了解什么是信号。 (2)熟悉LINUX系统中进程之间软中断通信的基本原理。 (3)熟悉LINUX支持的管道通信方式。 二、实验内容 (1)编写一段程序,使其现实进程的软中断通信。 即:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按 ctrl+c 键);当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止: Child Process11 is killed by Parent! Child Process12 is killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止 Parent Process is killed! 要求:运行以下参考程序并分析结果。 <参考程序> #include #include #include #include void waiting(),stop(),alarming(); int wait_mark; main() { int p1,p2; if(p1=fork()) /*创建子进程p1*/ { if(p2=fork()) /*创建子进程p2*/ { //父进程 wait_mark=1; signal(SIGINT,stop); /*接收到^c信号,转stop*/

signal(SIGALRM,alarming);/*接受SIGALRM*/ waiting(); kill(p1,16); /*向p1发软中断信号16*/ kill(p2,17); /*向p2发软中断信号17*/ wait(0); /*同步*/ wait(0); printf("parent process is killed!\n"); exit(0); //会暂时停止目前进程的执行,直到有信号来到或子进程结束。 } else { wait_mark=1; signal(17,stop); signal(SIGINT,SIG_IGN); /*忽略 ^c信号*/ while (wait_mark!=0); lockf(1,1,0); printf("child process2 is killed by parent!\n"); lockf(1,0,0); exit(0); } } else { wait_mark=1; signal(16,stop); signal(SIGINT,SIG_IGN); /*忽略^c信号*/ while (wait_mark!=0); lockf(1,1,0); printf("child process1 is killed by parent!\n"); lockf(1,0,0); exit(0); } } void waiting() { sleep(5); if (wait_mark!=0) kill(getpid(),SIGALRM); } void alarming()

实验四进程的管道通信

实验四:进程的管道通信 1.实验目的 1)加深对进程概念的理解,明确进程和程序的区别。 2)学习进程创建的过程,进一步认识进程并发执行的实质。 3)分析进程争用资源的现象,学习解决进程互斥的方法。 4)学习解决进程同步的方法。 5)掌握Linux系统中进程间通过管道通信的具体实现。 2.实验内容 使用系统调用pipe()建立一条管道,系统调用fork()分别创建两个子进程,它们分别向管道写一句话,如: Child process1 is sending a message! Child process2 is sending a message! 父进程分别从管道读出来自两个子进程的信息,显示在屏幕上。 3.实验要求 这是一个设计型实验,要求自行、独立编制程序。 两个子进程要并发执行。 实现管道的互斥使用。当一个子进程正在对管道进行写操作时,另一个欲写入管道的子进程必须等待。 使用系统调用lockf(fd[1],1,0)实现对管道的加锁操作,用lockf(fd[1],0,0)解除对管道的锁定。 实现父子进程的同步,当父进程试图从一空管道中读取数据时,便进入等待状态,直到子进程将数据写入管道返回后,才将其唤醒。 fork() 用于创一个子进程。格式:int fork();返回值:在子进程中返回0;在父进程中返回所创建的子进程的ID值;当返回-1时,创建失败。 wait() 常用来控制父进程与子进程的同步。在父进程中调用wait(),则父进程被阻塞,进入等待队列,等待子进程结束。当子进程结束时,父进程从wait()返回继续执行原来的程序。返回值:大于0时,为子进程的ID值;等于-1时,调用失败。 exit() 是进程结束时最常调用的。格式:void exit( int status); 其中,status为进程结束状态。 pipe() 用于创建一个管道格式:pipe(int fd);其中fd是一个由两个数组元素fd[0]和fd[1]组成的整型数组,fd[0]是管道的读端口,用于从管道读出数据,fd[1]是管道的写端口,用于向管道写入数据。返回值:0 调用成功;-1 调用失败。 sleep() 使调用进程睡眠若干时间,之后唤醒。格式:sleep(int t);其中t为睡眠时间。 lockf() 用于对互斥资源加锁和解锁。在本实验中该调用的格式为: lockf(fd[1],1,0);/* 表示对管道的写入端口加锁。 lockf(fd[1],0,0);/* 表示对管道的写入端口解锁。

进程控制与进程间通信操作系统实验报告

工程大学实验报告 专业班级:姓名:学号: 课程名称:操作系统 实验成绩:指导教师:蔡敦波 实验名称:进程控制与进程间通信 一、实验目的: 1、掌握进程的概念,明确进程和程序的区别。 2、认识和了解并发执行的实质。 3、了解什么是信号。 4、熟悉LINUX系统中进程之间软中断通信的基本原理。 二、实验内容: 1、进程的创建(必做题) 编写一段程序,使用系统调用fork( )创建两个子进程,在系统中有一个父进程和两个子进程活动。让每个进程在屏幕上显示一个字符;父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 <参考程序>

运行的结果是bca. 首先创建进程p1,向子进程返回0,输出b.又创建进程p2,向子进程返回0,输出c,同时向父进程返回子进程的pid,输出a 2、修改已编写的程序,将每个进程的输出由单个字符改为一句话,再观察程序执行时屏幕上出现的现象,并分析其原因。(必做题) <参考程序> # include int main() { int p1, p2, i; while((p1=fork())= = -1); if(p1= =0) for(i=0;i<500;i++) printf(“child%d\n”,i); else { while((p2=fork())= =-1); If(p2= =0) for(i=0;i<500;i++) printf(“son%d\n”,i); else for(i=0;i<500;i++) printf(“daughter%d\n”,i); } }

运行的结果是如上图所示. 首先创建进程p1,向子进程返回0,并for语句循环输出child +i字符串.又创建进程p2,向子进程返回0,输出字符串son+i,同时向父进程返回子进程的pid,输出字符串duaghter +i ,各打印5次。

快速实现ARM和DSP的通信和协同工作(精)

快速实现ARM和DSP的通信和协同工作 德州仪器(TI)的第一颗达芬奇(DaVinci)芯片(处理器)DM6446已经问世快三年了。继DM644x之后,TI又陆续推出了DM643x,DM35x,DM6467,OMAP353x等一系列ARM+DSP或ARM+视频协处理器的多媒体处理器平台。很多有很强DSP开发经验或ARM开发经验的工程师都转到达芬奇或通用OMAP (OMAP353x)平台上开发视频监控、视频会议及便携式多媒体终端等产品。大家都面临着同一个问题,那就是如何实现ARM和DSP或协处理器的通信和协同工作?TI的数字视频软件开发包(DVSDK)提供了Codec Engine这样一个软件模块来实现ARM和DSP或协处理器的协同工作。有很多工程师反馈这个软件模块非常好用,节省了很多开发时间,也有工程师认为TI提供的资料太多,不知如何快速上手。本文将从一个第一次接触Codec Engine的工程师角度出发,归纳TI提供的相关资源(文档,例程和网络资源)并介绍相关开发调试方法帮您快速入门Codec Engine。 1. Codec Engine概述 如图1所示,Codec Engine是连接ARM和DSP或协处理器的桥梁,是介于应用层(ARM侧的应用程序)和信号处理层(DSP侧的算法)之间的软件模块。ARM应用程序调用Codec Engine的VISA (Video, Image, Speech, Audio)API,如图1中VIDENC_process(a, b, c 。Codec Engine的stub (ARM侧)会把参数a, b, c以及要调用DSP侧process这个信息打包,通过消息队列(message queue)传递到DSP。Codec Engine的skeleton(DSP侧)会解开这个参数包,把参数a, b, c转换成DSP 侧对应的参数x, y, z(比如ARM侧传递的是虚拟地址,而DSP只能认物理地址),DSP侧的server(优先级较低,负责和ARM通信的任务)会根据process这一信息创建一个DSP侧的process(x, y, x任务最终实现VIDENC_process(a, b, c的操作。

实验二_进程间通信

实验二 进程间通信
一、实验目的 在本实验中,通过对文件映射对象的了解,来加深对 Windows 2000 线程同步的理解. 回顾系统进程、线程的有关概念,加深对 Windows 2000 线程间通讯的理解;了解文件映射 对象;通过分析实验程序,了解线程如何通过文件映射对象发送数据;了解在进程中如何使 用文件映射对象. 二、背景知识 1. 共享内存: Windows 2000 提供了一种在文件中处理数据的方法, 名为内存映射文件, 也称为文件映射.文件映射对象是在虚拟内存中分配的永久或临时文件对象区域 (如果可能 的话,可大到整个文件) ,可将其看作是二进制的数据块.使用这类对象,可获得直接在内 存中访问文件内容的能力. 文件映射对象提供了强大的扫描文件中数据的能力,而不必移动文件指针.对于多线程 的读写操作来说, 这一点特别有用, 因为每个线程都可能想要把读取指针移动到不同的位置 去——为了防止这种情况,就需要使用某种线程同步机制保护文件. 在 CreateFileMapping() API 中,一个新的文件映射对象需要有一个永久的文件对象 (由 CreateFile() 所创建) .该函数使用标准的安全性和命名参数,还有用于允许操作 (如只读) 的保护标志以及映射的最大容量.随后可根据来自 OpenFileMapping() API 的其他线程或进程 使用该映射——这与事件和互斥体的打开进程是非常类似的. 内存映射文件对象的另一个强大的应用是可请求系统创建一个运行映射的临时文件.该 临时文件提供一个临时的区域, 用于线程或进程互相发送大量数据, 而不必创建或保护磁盘 上的文件.利用向创建函数中发送 INVALID_HANDLE_VALUE 来代替真正的文件句柄,就 可创建这一临时的内存映射文件; 指令内核使用系统页式文件来建立支持映射的最大容量的 临时数据区. 为了利用文件映射对象,进程必须将对文件的查看映射到它的内存空间中.也就是说, 应该将文件映射对象想象为进程的第一步,在这一步中,当查看实际上允许访问的数据时, 附加有共享数据的安全性和命名方式.为了获得指向内存区域的指针需要调用 MapViewOfFile() API,此调用使用文件映射对象的句柄作为其主要参数.此外还有所需的访 问等级 (如读-写) 和开始查看时文件内的偏移和要查看的容量.该函数返回一个指向进程内 的内存的指针,此指针可有多种编程方面的应用 (但不能超过访问权限) . 当结束文件映射查看时,必须用接受到的指针调用 UnmapViewOfFlie() API,然后再根 据映射对象调用 CloseHandle() API,从而将其清除。
三、实验内容 1. 编译运行项目 Lab5.1\SHAREMEM.DSW,观察运行结果,并阅读和分析实验程序.

相关文档
最新文档