实验报告_RLC谐振电路

实验报告_RLC谐振电路
实验报告_RLC谐振电路

串联谐振实验报告

实验报告 一、实验名称 串联谐振电路 二、实验原理 1、电路图如图所示,改变电路参数L,C或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率的函数: 2、谐振曲线 电路中的电压与电流随频率变化的特性为频率特性,随频率变化的曲线就是频率曲线。如下图:

图中可以看出:Q值愈大,曲线尖峰值愈陡,其选择性越好,但通频带越窄。 只有当Q>时,Uc和Ul曲线才出现最大值,否则Uc将单调下降趋于0,Ul将单调上升趋于Us。 三、实验方法 测量电路谐振频率 1、将电路连接如实验原理中的电路图,将电源由函数信号发生器产生,将电阻两端接入示波器中,调节信号源的频率由大到小,观察示波器上的电阻电压的大小,当电阻电压值变为最大值时所对应的频率值则为电路的谐振频率。 2、用Multism仿真连接串联谐振电路,连接在电阻两端的XBP所显示的波特图,观察电阻两端电压增益最大时所对应的频率,则所对应的频率为电路发生谐振是的谐振频率。四、实验步骤 电路板上: 连接原理图的电路,给电源接上函数发生器,调节为五伏的方波,频率从调到,间隔,设置29个点,将电阻两端连入示波器,观察示波器上电阻的阻值并记录数据 接着将同样电容与电感的两端接入示波器,观察同样频率下对应的电容与电感的电压值,同样记录实验数据 将实验数据整理并绘制折线图,观察不同电源角频率电路响应的谐振曲线,对比实验原理中的图并作分析

Multism仿真: 电路仿真连接如下的图 将XFG调节为,占空比为30%,脉冲幅度为5V的方波电压信号 观察XBP输出的波特图: 可知:该电路图的谐振频率约为 将仿真图中的电阻与电容互换位置,显示电容的波特图: 可知:在频率小于谐振频率时Uc出现最大

rlc串联电路频率特性实验报告

竭诚为您提供优质文档/双击可除rlc串联电路频率特性实验报告 篇一:RLc串联电路的幅频特性与谐振现象实验报告 _-_4(1) 《电路原理》 实验报告 实验时间:20XX/5/17 一、实验名称RLc串联电路的幅频特性与谐振现象二、实验目的 1.测定R、L、c串联谐振电路的频率特性曲线。 2.观察串联谐振现象,了解电路参数对谐振特性的影响。1.R、L、c串联电路(图4-1)的阻抗是电源频率的函数,即: Z?R?j(?L? 1 )?Zej??c 三、实验原理 当?L?

1 时,电路呈现电阻性,us一定时,电流达最大,这种现象称为串?c 联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。 即 ?0? 1Lc 或f0? 12?Lc R无关。 图4-1 2.电路处于谐振状态时的特征: ①复阻抗Z达最小,电路呈现电阻性,电流与输入电压同相。 ②电感电压与电容电压数值相等,相位相反。此时电感电压(或电容电压)为电源电压的Q倍,Q称为品质因数,即Q? uLuc?0L11 ????ususR?0cRR L c

在L和c为定值时,Q值仅由回路电阻R的大小来决定。 ③在激励电压有效值不变时,回路中的电流达最大值,即: I?I0? us R 3.串联谐振电路的频率特性: ①回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图 形称为串联谐振曲线。电流与角频率的关系为: I(?)? us 1?? R2??L?? ?c?? 2 ? us ???0? ?R?Q2?????? ?0? 2 ?

I0 ???0? ?1?Q2?????? ?0? 2 当L、c一定时,改变回路的电阻R值,即可得到不同Q 值下的电流的幅频 特性曲线(图4-2) 图4-2 有时为了方便,常以 ?I 为横坐标,为纵坐标画电流的幅频特性曲线(这称?0I0 I 下降越厉害,电路的选择性就越好。I0 为通用幅频特性),图4-3画出了不同Q值下的通用幅频特性曲线。回路的品质因数Q越大,在一定的频率偏移下,为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性的幅值从峰值1下降到0.707时所对应的上、下频率之间的宽度称为通频带(以bw表示)即:bw? ?2?1 ??0?0

RLC串联电路的谐振特性研究 实验报告

大学物理实验设计性实验 实验报告 实验题目:RLC串联电路谐振 特性的研究 班级: 姓名:学号: 指导教师:

一.目的 1.研究LRC 串联电路的幅频特性; 2.通过实验认识LRC 串联电路的谐振特性. 二.仪器及用具 DH4503RLC 电路实验仪 电阻箱 数字储存示波器 导线 三.实验原理 LRC 串联电路如图3.12-1所示.若交流电源U S 的电压为U ,角频率为ω,各元件的阻抗分别为 则串联电路的总阻抗为 串联电路的电流为 式中电流有效值为 电流与电压间的位相差为 它是频率的函数,随频率的变化关系如图3.12-2所示. 电路中各元件电压有效值分别为 C j Z L j Z R Z C L R ωω1= ==) 112.3()1 (-- +=C L j R Z ωω) 212.3() 1 (-=- += = ? ? ? ωωj Ie C L j R Z I U U ) 312.3() 1 (2 2 -- += = C L R U Z U I ωω) 412.3(1 arctan -- =R C L ωω?) 512.3() 1 (2 2 -- += =C L R R RI U R ωω) 612.3() 1 (2 2 -- += =U C L R L LI U L ωωωω) 712.3() 1 (1 1 2 2 -- += = U C L R C I C U C ωωωω 图3.12-1 /π-/π(b) 图3.12-2

(3.12-5)和(3.12-6),(3.12-7) 式可知,U R ,U L 和U C 随频率变化关系如图3.12-3所示. (3.12-5),(3.12-6)和(3.12-7)式反映元件R 、L 和C 的幅频特性,当 时,?=0,即电流与电压同位相,这种情况称为串联谐振,此时的角频率称为谐振角频率,并以ω0表示,则有 从图3.12-2和图3.12-3可见,当发生谐振时,U R 和I 有极大值,而U L 和U C 的极大值都不 出现在谐振点,它们极大值U LM 和U CM 对应的角频率分别为 (3.1211)C ωω= =- 式中Q 为谐振回路的品质因数.如果满足2 1> Q ,可得相应的极大值分别为 电流随频率变化的曲线即电流频率响应曲线(如图3.12-5所示)也称谐振曲线.为了分析电路的频率特性.将(3.12-3)式作如下变换 ) 912.3(1 0-=LC ω) 1012.3(21 11 2202 2 2--=-=ωωQ C R LC L )1312.3(4111 422 2 2 LM -- = -=Q QL Q U Q U ) 1412.3(4112 CM -- = Q QU U 2 2 ) 1 ()I(C L R U ωωω- += ) 812.3(1 -=L C ωω (a) 图3.12-3

大学物理实验报告系列之RLC电路的谐振

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ???? ? ??????? +-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: )1()'(2ω ωC L R R U Z U I - ++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令即振频率并称为谐振角频率与谐的角频率与频率分别表示与,,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (32-7) QU U U C L == (32-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输出电 压,这种现象称为LRC 串联电路的电压谐振。 Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源电 压的Q 倍。 1 20 1 20f f f Q -= -= ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法

串联谐振电路实验报告

实验名称:串联谐振电路 一、实验目的 1、加深对串联谐振电路条件及特性的理解。 2、掌握谐振频率的测量方法。 3、理解电路品质因数Q和通频带的物理意义及其测量方法。 4、测定RLC串联谐振电路的频率特性曲线。 5、深刻理解和掌握串联谐振的意义及作用。 6、掌握电路板的焊接技术及信号发生器、交流毫伏表等仪表的使用方法。 7、掌握Multisim软件中的Function Generator、Voltmeter、Bode Plotter等仪表的使用 方法以及AC Analysis等SPICE的仿真分析方法。 8、掌握Origin软件的使用方法。 二、实验设备及器材 1、计算机一台。 2、通用电路板一块。 3、低频信号发生器一台。 4、双踪示波器一台。 5、交流毫伏表一只。 6、万用表一只。 7、可变电阻一只。 8、电阻、电感、电容若干(电阻100Ω,电感10mH、4.7mH,电容100nF)。 三、实验内容 1、Multisim仿真 1)、创建图示电路图 2)、分别用Multisim软件(AC仿真、波特表、交流电压表均可)测量串联谐振

电路的谐振曲线、谐振频率、-3dB带宽。 UR谐振曲线 谐振频率7.3kHz -3dB带宽32.318kHz 3)、电阻R1=1K时,用Multisim软件仿真串联谐振电路的谐振曲线,观测R对Q R增大导致Q减小。 4)、利用谐振特点设计选频网络,在串联谐振电路上输入频率为3.5kHz、占空比为30%、脉冲幅度为5V的方波电压信号,测试输入输出(电阻上电压)的频谱。 输入信号

输出信号 2、 测量元件值,计算电路谐振频率和品质因数Q 的理论值。 R1=98Ω RL=34.2Ω L1=4.2mH C1=95.1nF C L R R L U U U U Q S C S L 1 )()(000==== ωωω=1.59 3、 在电路板上焊接基本串联谐振电路,信号电压有效值设置为1V 。 4、 用两种不同的方法测量电路的f0值。 UR 读数最大法:f0=7.7kHz 时,UR 有最大值 X-Y 模式下测量:f0=7.55kHz. 5、 测试电路板上串联谐振电路的谐振曲线、谐振频率、-3dB 。 7、

交流谐振电路-实验报告

University of Science and Technology of China 96 Jinzhai Road, Hefei Anhui 230026,The People ’s Republic of China 交流谐振电路 李方勇 PB05210284 0510 第29组2号(周五下午) 实验题目 交流谐振电路 实验目的 研究RLC 串联电路的交流谐振现象,学习测量谐振曲线的方法,学习并掌握电路品质因素Q 的测量 方法及其物理意义。 实验仪器 电阻箱,电容器,电感,低频信号发生器以及双踪示波器。 实验原理 1. RLC 交流电路 由交流电源S ,电阻R ,电容C 和电感L 等组成 交流电物理量的三角函数表述和复数表述 ()() φ?φ?+=+=t j Ee t E e cos 式中的e 可以是电动势、电压、电流、阻抗等交流电物理量,?为圆频率,φ 为初始相角。电阻R 、电容C 和电感串联电路 电路中的电流与电阻两端的电压是同相位的,但超前于电容C 两端的电压2π ,落后于电感两端的电压2π 。 电阻阻抗的复数表达式为 R Z R = 模R Z =

电容阻抗的复数表达式为 C j e C Z j C? ? π1 1 2= =- 模C Z C? 1 = 电感阻抗的复数表达式为 L j Le Z j L ? ? π = =2 模 L Z L ? = 电路总阻抗为三者的矢量和。由图,电容阻抗与电路总阻抗方向相反,如果满足 L c ? ? = 1 , 则电路总阻抗为R,达到最小值。这时电流最大,形成所谓“电流谐振”。调节交流电源(函数发生器)的频率,用示波器观察电阻上的电压,当它达到最大时的频率即为谐振频率。电路如下图。 电路参数–电动势电压,电流,功率,频率 元件参数–电阻,电容,电感 实验内容 1.观测RLC串联谐振电路的特性 (1)按照上图连接线路,注意保持信号源的电压峰峰值不变,蒋Vi和Vr接入双踪示波器的CH1和CH2(注意共地) (2)测量I-f曲线,计算Q值 (3)对测得的实验数据,作如下分析处理: 1)作谐振曲线I-f,由曲线测出通频带宽 2)由公式计算除fo的理论值,并与测得的值进行比较,求出相对误差。

RLC串联电路暂态特性的研究实验报告

南昌大学物理实验报告课程名称:普通物理实验(2) 实验名称: RLC串联电路暂态特性的研究 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、研究方波电源加于RC 串联电路时产生的暂态放电曲线及用示波器测量电路半衰期的方法,加深对电容充电、放电规律的认识。 2、了解当方波电源加于RLC 电路时产生的阻尼衰减震荡的特性及测量方法。 二、 实验原理: 1、RC 串联电路的暂态过程 在由R 、C 组成的电路中,暂态过程是电容的充放电的过程。图1为RC 串联电路。其中信号源用方波信号。在上半个周期内,方波电源(+E )对电容充电;在下半个周期内,方波电压为零,电容对地放电。充电过程中回路方程为 (1) 由初始条件t=0时,U C =0,得解为 (2) 从U C 、U R 二式可见,U C 是随时间t 按指数函数 规律增长,而电阻电压U R 随时间t 按指数函数规律 衰减,如图2中U-t 、U C -t 及U R -t 曲线所示。 在放电过程中的回路方程为 (3) 由初始条件t=0时,U C =E ,得解为 (4) 物理量RC=τ具有时间量纲,称为时间常数,是表征暂态过程进行得快慢的一个重要物理量。与时间常数τ有关的另一个在实验中较容易测定的特征值,称为半衰期T 1/2,即当U C (t)下降到初值(或上升至终值)一半时所需要的时间,它同样反映了暂态过程的快慢程度,与t 的关系为 T 1/2=τ ln 2=0.693τ (或τ=1.443T 1/2) (5)

3、RC 串联电路的暂态过程 s c c c u t u t t u RC t t u LC =++)()()(22d d d d RLC 串联电路 求解微分方程,可以得出电容上的电压)t (U C 。再根据dt )t (du C )t (i c =,求得)t (i 。改变初始状态和输入激励可以得到不同的二阶时域响应。全响应是零状态响应和零输入响应的叠加。零输入响应的模式完全由其微分方程的特征方程的两个特征根 202222,1)LC 1()L 2R (L 2R p ω-δ±δ-=-±-= 式中:L 2R =δ,LC 10=ω 由于电路的参数不同,响应一般有三种形式: (1)当C L 2R >,特征根1p 和2p 是两个不相等的负实数,电路的瞬态响应为非振荡性的,称为过阻尼情况。 (2)当C L 2R =,特征根1p 和2p 是为两个相等的负实数,电路的瞬态响应仍为非振荡性的,称为临界阻尼情况。

谐振电路实验报告

rlc串联谐振电路的实验研究 一、摘要: 从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因 数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和 仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析 的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:rlc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻 组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联 谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用, 例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号 特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研 究串联谐振有重要的意义。 在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下 响应随频率变化的情况,即频率特性。multisim 仿真软件可以实现原理图的捕获、电路分 析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、 直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人 员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定rlc串联谐振电路的频率特性曲线。 (2)实验原理: rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/lc ,谐振频率f0=1/2π lc 。 谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω< ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗z0=r,| z0|为最小值,整个回路相当于一个纯电阻电路。(2)、回路 电流i0的数值最大,i0=us/r。(3)、电阻上的电压ur的数值最大,ur =us。 (4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,ul=uc=qus。 2、电路的品质因数q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因 数q,即: q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲 线,也称谐振曲线。 在us、r、l、c固定的条件下,有

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R、L、C固定的条件下,有

I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量 五、结论

串联谐振电路实验报告

串联谐振电路 学号: 1028401083 姓名:赵静怡 一、实验目的 1、加深对串联谐振电路条件及特性的理解 2、掌握谐振频率的测量方法 3、理解电路品质因数Q和通频带的物理意义及其测量方法 4、测量RLC串联谐振电路的频率特性曲线 5、深刻理解和掌握串联谐振的意义及作用 6、掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表 的使用 7、掌握Multisim软件中的Functionn Generator 、 Voltmeter 、Bode Plotter等仪表的使用以AC Analysis 等SPICE仿真分析方法 8、用Origin绘图软件绘图 二、实验原理 RLC串联电路如图2.6.1所示,改变电路参数L、C或电源频率时,都可以是电路发生谐振。 2.6.1 RLC谐振串联电路

1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块 (3) 低频信号发生器一台 (4) 交流毫伏表一台 (5) 双踪示波器一台 (6) 万用表一只 (7) 可变电阻 (8) 电阻、电感、电容若干(电阻100Ω,电感10mH 、4.7 mH ,电容100nF )

实验报告 R、L、C串联谐振电路的研究

实验报告 祝金华 PB15050984 实验题目:R 、L 、C 串联谐振电路的研究 实验目的: 1. 学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线。 2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)的物理意义及其测定方法。 实验原理 1. 在图1所示的R 、L 、C 串联电路中,当正弦交流信号源U i 的频率 f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。 取电阻R 上的电压U O 作为响应,当输入电压U i 的幅值维持不变时, 在不同频率的信号激励下,测出U O 之值,然后以f 为横坐标,以U O 为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。 2. 在f =fo = LC 21处,即幅频特性曲线尖峰所在的频率点称为谐振频率。此时X L =Xc ,电路呈纯阻性,电路阻抗的模为最小。在输入电压U i 为定值时,电路中的电流达到最大值,且与输入电压U i 同相位。从理论上讲,此时 U i =U R =U O ,U L =U c =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式Q = o C U U 测定,U c 为谐振时电容器C 上的电压(电感上的电压无法测量,故不考虑Q= o L U U 测定) 。另一方法是通过测量谐振曲线的通频带宽度△f =f2-f1,再根据Q U m ax 02 U max 0U 0 102 L C R o i 图 1

= 1 2f f f O -求出Q 值。式中f o 为谐振频率,f 2和f 1是失谐时, 亦即输出电压的幅度下降到最 大值的2/1 (=0.707)倍时的上、下频率点。Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。 在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 预习思考题 1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。 L=30mH fo =LC π21=1/(2×π6 31001.01030--???)=9188.81Hz 2. 改变电路的哪些参数可以使电路发生谐振,电路中R 的数值是否影响谐振频率值? 改变频率f,电感L ,电容C 可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。 3. 如何判别电路是否发生谐振?测试谐振点的方案有哪些? 判断:电容与电感的电压相等时,电路此时发生谐振;U i 与U 0相位相同时此时发生谐振;U i 与U 0大小相等时电路发生谐振。 测量:理论计算,f=1/(2π√LC ); 仪表测量此时电流频率。 4. 电路发生串联谐振时,为什么输入电压不能太大, 如果信号源给出3V 的电压,电路谐振时,用交流毫伏表测U L 和U C ,应该选择用多大的量限? 输入电压过大,L 、C 器件两端的电压远高于信号源电压;应该选用最大量程 。 4. 要提高R 、L 、C 串联电路的品质因数,电路参数应如何改变? 减小R,增大L ,同时等比例缩小C 。 5. 本实验在谐振时,对应的U L 与U C 是否相等?如有差异,原因何在? U L ,U C 大小相等,方向相反,因为在谐振点L,C 的阻抗相等,二者阻抗方向相反。 实验设备 低频函数信号发生器,交流毫伏表,双踪示波器,频率计,谐振电路实验电路板 实验内容 1. 利用HE-15实验箱上的“R 、L 、C 串联谐振电路”,按图3组成监视、测量电路。选C 1=0.01μF 。用交流毫伏表测电压, 用示波器监视信号源输出。令信号源输出电压U i =3V ,并

实验三 RLC串联电路的暂态过程实验报告

实验三RLC串联电路的暂态过程实验报告 14级软件工程班 候梅洁14047021

【实验目的】 1.用存储示波器观察RC,RL电路的暂态过程,理解电容,电感特性及电路时间常数τ的物理意义。 2.用示波器观察RLC串联电路的暂态过程,理解阻尼振动规律。 3.进一步熟悉使用示波器。 【实验仪器】 电感箱、电容箱、电阻箱、函数信号发生器、示波器、导线等。【实验原理】 在阶跃电压作用下,RLC串联电路由一个平衡态跳变到另一平衡态的转变过程,这一转变过程称为暂态过程。暂态过程期间,电路中的电流及电容,电感上的电压呈现出规律性的变化,称为暂态特性。 1.RC电路的暂态过程。 电路如图所示:

【实验结果与分析】 1.观测U c波形时:方波信号500Hz输出;分别取:第一组R=1000?,C=0.5uF,第二组R=500?,C=0.2uF; 用示波器观测波形后,我们在坐标纸上绘制了U、U c、U R 的 波形图,从图中可以看到:U、U R 、U c三者周期、相位均相同。且 U R =U-U c。U、U c都是呈指数型变化的,然而U比U c变化的缓一些。在阶跃电压的作用,U c是渐变接近新的平衡值,而不是跃变, 这是由于电筒C储能元件,在暂态过程中不能跃变。而U R 变化幅度 很大,理论上,U R 的峰值应该是是U的峰值的两倍,因为开关接1时,给电容正向充电时,R两端的电压为E,当反向电容放时,R两 端电压为-E,两者之差为2E,就是U R 的峰值。而事实上,我们看到 的波形图中U R 的峰值小于2U,这可能是由于: (1)电阻内部有损耗、欠阻尼振荡状态下的电感和电容存在着附加损耗电阻,并且其阻值随着振荡频率的升高而增大.故实际上电路中的等效阻值大于R与用万用表测出的电感阻值之和. (2)数字示波器记录的数据精确度有限造成误差。 (3)数字示波器系统存在内部系统误差。 (4)外界扰动信号会对示波器产生影响。 (5)电器元件使用时间过长,可能造成相应的参数有误差。 (6)电源电压不稳定. 2.测量RC串联电路的时间常数:我们取一个峰值处为t 1 ,取与其最 近的一个零点处为t 2,调节示波器将t 1 和t 2 时间段的波形放大到合适

串联谐振电路实验报告

实验三 串联谐振电路 学号: 1117426021 姓名: 黄跃 一、 实验目的 1、 加深对串联谐振电路条件及特性的理解 2、 掌握谐振频率的测量方法 3、 理解电路品质因数Q 和通频带的物理意义及其测量方法 4、 测量RLC 串联谐振电路的频率特性曲线 5、 深刻理解和掌握串联谐振的意义及作用 6、 掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表的使用 7、 掌握Multisim 软件中的Functionn Generator 、Voltmeter 、Bode Plotter 等仪表的使用以AC Analysis 等SPICE 仿真分析方法 8、 用Origin 绘图软件绘图 二、 实验原理 RLC 串联电路如图2.6.1所示,改变电路参数L 、C 或电源频率时,都可以是电路发生谐振。 2.6.1 RLC 谐振串联电路 1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块

(3)低频信号发生器一台 (4)交流毫伏表一台 (5)双踪示波器一台 (6)万用表一只 (7)可变电阻 (8)电阻、电感、电容若干(电阻100Ω,电感10mH、4.7 mH,电容100nF) 三、实验内容 1.Multisim仿真 (1)创建电路:从元器件库中选择可变电阻、电容、电感创建如图2.6.2电路. 2.6.2Multisim串联谐振 (2)当电阻R= 100,200,300欧时,用Multisim软件仿真串联谐振电路的谐振曲线,在同一张图中画出谐振曲线,说明R对Q值、带宽的影响。 2.6.3不同Q值值电流的频率特性曲线 (蓝线为300Ω,红线为200Ω,绿线为100Ω)

串联谐振电路实验的心得体会

串联谐振电路实验的心得体会 篇一:实验九串联谐振电路实验 实验九 串联谐振电路实验 一、实验目的 1.测量RLC串联电路的谐振曲线,通过实验进一步掌握串联谐振的条件和特点。 2.研究电路参数对谐振特性的影响。 二、原理 1.RLC串联电路在图9-1所示的,RLC串联电路中,若取电阻R两端的电压为输出电压,则该电路输出电压与输入电压之比为: U2R ??U1R?j(?L?1) ?C ?L tg?1 R 1 图9-1 图9-2

2.幅频特性 电路网络输出电压与输入电压的振幅比随ω变化的性质,称为该网络的幅频特性,如图9-2所示。 3.谐振条件二阶带通网络的幅频特性出现尖峰的频率f0称为中心频率或谐振频率。此时,电路的电抗为零,阻抗值最小,等于电路中的电阻,电路成为纯电阻性电路,串联电路中的电流达到最大值。 电流与输入电压同相位。我们把电路的这种工作状态称为串联谐振状态。电路达到谐振状态的条件是: 1 ?0L=或 ?0 ?0C4.通频带宽 改变角频率ω时,振幅比随之变化,当振幅比下降到最大值的1/角频率ω1、ω2叫做3分贝角频率,相应的频率两个f1和f2称为3分贝频率。两个角频率之 差称为该网络的通频带宽: R BW??2-?1= L RLC串联电路幅频特性可以用品质因数Q来描述: ??L1Q?0?0 BWR?0CR

三、实验仪器和器材 1.函数信号发生器 2.示波器 3.电阻 4.电感5.电容 6.实验电路板 7.短接线 8.导线 四、实验内容及步骤 1.连接实验电路 按图9-3所示连接电路。其中,电感L= 33mH,电容C=μF,电阻R分别取620Ω和Ω,图中r为电感线圈本身的电阻。 图9-3 2.测绘谐振曲线 测量结果填入表9-1中。 表9-1 R=620Ω的谐振特性 3.研究电路参数对谐振曲线的影响 将图9-3中电阻改为Ω,重复2中步骤,结果填入表9-2中。 表9-2 R=Ω的谐振特性 4.计算通频带宽BW和品质因数Q 将计算结果填入表9-3中。 表9-3 通频带宽BW和品质因数Q 五、思考题 1. 实验中怎么样判断电路已经处于谐振状态?

RC振荡电路实验报告(特选资料)

广州大学学生实验报告 院(系)名称 物理与信息工程系 班别 姓名 专业名称 学号 实验课程名称 模拟电路实验 实验项目名称 RC 串并联网络(文氏桥)振荡器 实验时间 实验地点 实验成绩 指导老师签名 【实验目的】 1.进一步学习RC 正弦波振荡器的组成及其振荡条件。 2.学会测量、调试振荡器。 【实验原理】 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。 RC 串并联网络(文氏桥)振荡器 电路型式如图6-1所示。 振荡频率 RC 21 f O π= 起振条件 |A &|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图6-1 RC 串并联网络振荡器原理图 注:本实验采用两级共射极分立元件放大器组成RC 正弦波振荡器。 【实验仪器与材料】 模拟电路实验箱 双踪示波器 函数信号发生器 交流毫伏表 万用电表 连接线若干

【实验内容及步骤】 1.RC 串并联选频网络振荡器 (1)按图6-2组接线路 图6-2 RC 串并联选频网络振荡器 (2)接通RC 串并联网络,调节R f 并使电路起振,用示波器观测输出电压u O 波形,再细调节R f ,使获得满意的正弦信号,记录波形及其参数,即,测量振荡频率,周期并与计算值进行比较。 (3) 断开RC 串并联网络,保持R f 不变,测量放大器静态工作点,电压放大倍数。 (4)断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。(输入小信号:f=1KHz,峰峰值为100mV 正弦波)用毫伏表测量u i 、u 0 就可以计算出电路的放大倍数。 (5)改变R 或C 值,观察振荡频率变化情况。 将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。且输入、输出同相位,此时信号源频率为 2πRC 1 f f ο== 【实验数据整理与归纳】 (1)静态工作点测量 U B (V ) U E (V ) U C (V) 第一级 2.48 2.96 4.66 第二级 0.84 11.51 1.01 (2)电压放大倍数测量: u i (mV) u o (V) Av 788 2.80 3.60

rlc实验报告(含数据)

RLC 电路特性的研究 【实验目的要求】 1、 观察RLC 串联电路的幅频特性和相频特性; 2、 观察RLC 串联电路的的阻尼振荡规律。 【实验装置和仪器用具】 FB318型RLC 电路实验仪,双踪示波器。 【实验原理】 RLC 串联电路如图1所示。 图1 RLC 串联电路 所加交流电压U (有效值)的角频率为ω。则电路的复阻抗为: Z=R+j(ωL+1/ωC) (1) 复阻抗的模: 2 2) C 1L (R ωωZ - += (2) 复阻抗的幅角: R C 1L arctan ωω- =? (3) 即该电路电流滞后于总电压的位相差。回路中的电流I (有效值)为:

2 2) C 1L (R ωωU I - += (4) 上面三式中Z 、?、I 均为频率f (或角频率ω,f ωπ2= )的函数,当电路中其他元件参数取确定值的情况下,它们的特性完全取决于频率。 图2(a )、(b )、(c )分别为RLC 串联电路的阻抗、相位差、电流随频率的变化曲线。其中,(b )图Φ-f 曲线称为相频特性曲线;(c )图I-f 曲线称为幅频特性曲线。 图2 RLC 串联电路幅频、相频曲线 由曲线图可以看出,存在一个特殊的频率0f ,特点为: (1)当 f = f0 时,① = 0,电路呈电阻性; (2)当 f > f0 时,① > 0,电路呈电感性; (3)当 f < f0 时,① < 0,电路呈电容性。 (5) 时,0=?,表明电路中电流I 和电压U 同位相,整个电路呈现纯电阻性,这就是串联谐振现象。此时电路总阻抗的模 Z R =为最小,,电流 I U Z =则达到极 大值。易知,只要调节f 、L 、C 中的任意一个量,电路都能达到谐振。 令 C L U U Q U U == 或 001L Q R R C ωω==(6) Q 称为谐振电路的品质因数。Q 值越大,频率选择性越好。 【实验内容】 1. 按图1连接电路,其中L=20mH ,C=2uF ,R=100Ω,示波器两端分别 测你电压U 和电阻电压U R ,两通路公共线共通,介入电路中同一点,否则会造

串联谐振电路实验报告

实验三:串联谐振电路 一、实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数及通频带的物理意义和其测定方法。 4.测定RLC 串联谐振电路的频率特性曲线。 二、实验原理: RLC 串联电路如图所示,改变电路参数L 、C 或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数: Z=R+j(ωL-1/ωC) 当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。 谐振角频率ω0 =1/LC ,谐振频率f 0=1/2π LC 。 谐振频率仅与原件L 、C 的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z 0|为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I 0=U S /R 。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 和通频带B 。 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q ,即: Q=U L (ω0)/ U S = U C (ω0)/ U S =ω0L/R=1/R*C L / 回路电流下降到峰值的0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通频带,即: B=f 0 /Q 2、谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R 、L 、C 固定的条件下,有 I=U S /22)C 1/-L (ωω+R U R =RI=RU S /22)C 1/-L (ωω+R U C =I/ωC=U S /ωC 22)C 1/-L (ωω+R

RLC串联电路的暂态过程实验报告

RLC 串联电路的暂态过程实验报告 【实验目的】 1、研究当方波电源加于RC 、RL 串联电路时产生的暂态放电曲线及用示波器测量电路半衰期的方法,加深对电容充、放电规律的认识。 2、观察当方波电源加于RLC 串联电路时产生的阻尼衰减振荡的特性及测量方法。 【试验仪器】 信号发生器、双踪数字存储示波器、电阻、电感、电容、导线若干、面包板 【实验原理】 1. 数字示波器可以观察由信号发生器产生的波形. 2. 在由电阻R 及电容C 组成的直流串联电路中,暂态过程即是电容器的充 放电过程.充电时)1(τt c e E U --=;放电时,τt c e E U -=·.其中,τ为时间常数,且RC =τ.取对数作出相关图像拟合直线可以求得τ. 3. 在由电阻R 、电容C 及电感L 组成的直流串联电路中,根据电阻R 阻值的不同,暂态过程有三种状态,即:欠阻尼、临界阻尼和过阻尼. 【实验步骤】 1、RC :(1)选择合适的R 和C 值,根据时间常数,选择合适的方波频率,一般要求方波的周期T >10 ,这样能较完整地反映暂态过程,并且选用合适的示波器扫描速度,以完整地显示暂态过程。 (2)把方波信号发生器、电阻R 、电容C ,示波器按图1接线。 (2)选取不同的电阻R ,观察UC 的波形。并记录二组电阻和电容取不同值时UC 的波形(可拍照反映其差别)。 (4)测量相应的二组半衰期T1/2,求出τ和R 的实验值,并与理论值R 进行比较。 2、RLC :(1)根据实验选用的电容和电感的值,算出临界电阻的阻值 。 (2)按图3接线,观测欠阻尼状态和过阻尼状态下电容上Uc 的波形。(拍照) 五、实验结果

谐振电路实验报告

竭诚为您提供优质文档/双击可除 谐振电路实验报告 篇一:RLc串联谐振电路的实验报告 RLc串联谐振电路的实验研究 一、摘要: 从RLc串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于multisim仿真软件创建RLc串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:RLc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的

应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研究串联谐振有重要的意义。 在含有电感L、电容c和电阻R的串联谐振电路中,需要研究在不同频率正弦激励(:谐振电路实验报告)下响应随频率变化的情况,即频率特性。multisim仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定RLc串联谐振电路的频率特性曲线。 (2)实验原理: RLc串联电路如图所示,改变电路参数L、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ω

相关文档
最新文档