TC4钛合金锻件锻造过程数值模拟和工艺优化

TC4钛合金锻件锻造过程数值模拟和工艺优化
TC4钛合金锻件锻造过程数值模拟和工艺优化

锻造毛坯工艺设计说明书

锻造毛坯工艺设计说明书 课程名称:机械制造工艺设计 设计题目:轴自由锻毛坯制造工艺设计设计单位:机自1103 设计人学号: 设计人姓名:郑晓虎 指导教师:张锁梅贾志新 2014年6月

目录 1 锻件加工余量、余块、公差的确定 (1) 锻造方式及毛坯类型的选择 (1) 锻件加工余量、余块、公差的确定 (1) 2 毛坯质量和尺寸的计算 (3) 毛坯质量的计算 (3) 毛坯尺寸的计算 (4) 3 自由毛坯变形步骤、温度和冷却 (5) 毛坯变形步骤 (5) 锻造温度 (5) 冷却方式 (6) 4 设备的选择 (6) 5 参考文献 (7)

1锻件加工余量、余块、公差的确定 锻造方式及毛坯类型的选择 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定的机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。根据坯料的移动方式,锻造方式分为自由锻,模锻,闭式模锻,闭式镦锻等,本课程采用自由锻的方式。 零件为阶梯轴类零件,材料选择45钢。阶梯轴零件工作时,些部位如轴颈(主要是与滑动轴承配合的轴颈)往往要承受摩擦、磨损,严重时可能发生咬死(又称抱轴)现象,使轴类零件运转精度下降,有时还需要承受多种载荷的作用。为增强阶梯轴的强度和冲击韧度,获得纤维组织,毛坯选用锻件。 锻件加工余量、余块、公差的确定 锻件图是编制锻造工艺、设计工具、指导生产和验收锻件的主要依据。它是在零件图的基础上考虑加工余量、锻造公差、锻造余块和操作用夹头等因素绘制而成的,如下图1。 图1 轴的锻件图 余量:为了保证零件机械加工尺寸和表面粗糙度,在零件外表面需要加工部分,留一层

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

加工钛及钛合金的锻造加热温度(物理性质)

书山有路勤为径,学海无涯苦作舟加工钛及钛合金的锻造加热温度(物理性质) 加工钛及钛合金的锻造加热温度(物理性质) 编号(α+β)/β相变点/℃铸 锭变形坯料成品加热温度/℃终锻温度/≮℃加热温度/℃终锻温度/℃加热 温度/℃终锻温度/≮℃TA1 890-920 1000-1020 750 900-950 700 850-880 700 TA2 890-920 1000-1020 750 900-950 700 850-880 700 TA3 890-920 1000-1020 750 900-950 700 850-880 700 TA4 960-980 1150 850 1030-1050 800 —— TA5 980- 1000 1080-1150 850 1000-1050 800 ——TA6 1000-1020 1150-1200 900 1050- 1100 850 980-1020 800 TA7 1000-1020 1150-1200 900 1050-1100 850 980-1020 800 TB2 750 1140-1160 850 1090-1100 800 990-1010 800 TC1 910-930 1000-1020 750 900-950 750 850-880 750 TC2 920-940 1000-1020 800 900-950 800 850-900 750 TC3 960-970 1100-1150 850 950-1050 800 950-970 750 TC4 980-990 1100- 1150 850 960-1100 800 950-970 750 TC6 950-980 1150-1180 850 1000-1050 800 950-980 800 TC9 1000-1020 1140-1160 850 1050-1080 800 950-970 800 TC10 935 1100-1150 800 1000-1050 800 930-940 800 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

锻造工艺常见缺陷

锻造工艺不当产生的缺陷通常有以下几种: 1.大晶粒 大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。 2.晶粒不均匀 晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。 3.冷硬现象 变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。 4.裂纹 裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允

许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。 5.龟裂 龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面。 6.飞边裂纹 飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。 7.分模面裂纹 分模面裂纹是指沿锻件分模面产生的裂纹。原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。 8.折叠 折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部

钛及钛合金锻造生产工艺规程汇总

更改控制页

本工艺规程适用于真空熔炼的钛及钛合金铸锭经加热、锻造、机加工等工序而制成棒坯、棒材、板坯、饼环材的生产,制定了每个生产工序的工艺制度和管理要求。 1简明工艺流程见表1。 2铸锭的准备 2.1生产工艺员在接到生产作业计划后,要仔细对计划部分内容进行审核,如有问题,及时和计划员沟通,确定无误后,方可编制生产工艺。并通知相关人员到库房领料。 2.2领料人员应根据GB/3620.1 钛及钛合金牌号和化学成分及化学成分允许偏差GB/3620.2及企标的有关规定,核对铸锭合格证,并核对合金牌号、锭号、规格和重量是否与实物相符,确认无误后,再进行转料。 2.3 铸锭转入锻造厂房应摆放整齐,将标识摆放于易看到的方位或用金属(记号笔)在铸锭的两端或表面将锭号明显标出。 2.4生产工艺员在投料前应仔细研究产品所执行的技术标准,保证其化学成份能满足该产品的技术要求。否则,不能投料。 2.5铸锭转入锻造车间后炉工在装炉前必须对铸锭进行涂层,涂层时将铸锭用垫木或导辊垫起,并将铸锭表面的杂脏物、油污用清洗剂擦洗干净后再涂防氧化涂层。 2.6涂层时将写锭号的地方不要涂,以便装炉前确认锭号是否正确。 2.7涂层的厚度应控制在0.2~0.4㎜。涂层后必须干透即24小时后方可装炉

铸锭 ↓ 涂层 ↓ 加热 ↓ 锻造 ↓ ↓↓↓ 打磨刨面打磨 ↓↓↓ 加热修磨加热↓↓↓ 锻造检查锻造↓↓↓ 热处理称重刻口↓↓↓ 机加板坯锯切↓↓ 探伤平头倒角↓↓ 取样 ↓↓ 检查 ↓↓ 修磨 ↓↓ 检查热处理↓↓ 称重机加↓↓ 包装探伤↓↓ 棒材取样 ↓ 检查 ↓ 称重 ↓ 包装 ↓ 饼环材

锻造基本知识

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

锻造工艺的设计说明书

阶梯轴锻造工艺 设计说明书 题目:阶梯轴锻造工艺设计 专业:机械设计制造及其自动化班级:机设1301 学生:亮学号: 7 指导教师:浩舸 完成日期: 机械工程学院 2016年9月

目录 1.引言 (1) 2.设计方法与步骤 (2) 2.1绘制锻件图 (3) 2.2 确定变形工艺 (3) 2.2.1镦粗 (3) 2.2.2冲孔 (4) 2.2.3扩孔 (4) 2.2.4修整锻件 (4) 2.3 计算坯料质量和尺寸 (4) 2.4选定设备及规 (5) 2.5确定锻造温度及规 (5) 2.6确定冷却方法及规 (5) 3.工艺流程卡 (6) 4.结论 (8) 5.致 (8) 6.参考文献 (8)

1. 引言 锻造的目的是使坯料成形及控制其部组织性能达到所需的几何形状,尺寸以及品质的锻件。轴是现代工业大量使用的零件,本文讨论阶梯轴的自由锻生产。 2. 设计方法与步骤 2.1绘制锻件图 锻件图是根据零件图的基本图样,结合锻造工艺特点考虑余块、锻件余量和锻造公差等因素绘制而成。 阶梯轴材料为40Cr,生产批量小,采取自由锻锻造轴坯。 轴上的键槽等部分,采用自由锻方法很难成形这些部位,因此考虑到技术上的可行性和经济性,决定不锻出,并采用附加余块简化锻件外形,以利于锻造。锻造出轴坯后可以进一步进行切削加工,最后成形。 根据零件图的尺寸规格,对照表所列中零件的高度和直径围,可以查出齿环锻件加工余量和公差。由L=203,Φ=46,对照《金属成形工艺设计》中表3-3中所列的零件总长为0∽315mm、最大直径0∽50mm,可查得锻造精度为F级的锻件余量及公差为7±2mm。,然后按查得的公差数值,可绘阶梯轴的锻件图。阶梯轴锻件图见图1。 图1 阶梯轴锻件图 2.2确定变形工艺

(仅供参考)ProCAST-熔模铸造过程数值模拟

熔模铸造过程数值模拟 —国外精铸技术进展述评 北京航空航天大学陈冰 20世纪90年代以来,国外一大批商业化铸造过程数值模拟软件的出现,标志着此项技术已完全成熟并进入实用化阶段,有相当一部分已成功地用于熔模铸造。其中,A FSolid (3D)(美国), PASSAGF/POWERCAST(美国)、MAGMA(德国)、PAM-CAST(法国)、ProCAST(美国)等最具代表性。尤其值得一提的是由美国UES公司开发的ProCAST,和美国铸造师协会(American Foundrymen's Society)开发的 AFSolid(3D),它们代表了二种不同类型的软件系统。 一. 熔模精密铸造过程数值模拟的佼佼者——ProCAST 早在1985年,美国UES Software Co.便以工程工作站/Unix为开发平台,着手开发ProCAST[1]。为了保证模拟结果的准确性,ProCAST一开始就采用有限元方法(FEM)作为模拟的核心技术。自1987年起,开发用于熔模铸造(精铸)的专业模块。1990年后,位于瑞士洛桑的Calcom SA和瑞士联邦科技研究院也参加ProCAST部分模块的开发工作。2002年,UES Software和Calcom SA先后加盟ESI 集团(法国)。通过联合,ESI集团在虚拟制造领域的领先地位进一步增强。 现在,ProCAST也有微机/Windows或Windows NT版本。三维几何造型模块支持IGES、STEP、STL 或Parasolids等标准的CAD文件格式。Meshcast模块能自动生成有限元网格。它的凝固分析模块可以准确计算和显示合金液在凝固过程的温度场、凝固时间,以及固相率变化,同时,从孤立液相区、缩孔/缩松体积分数、缩孔/缩松Nyiama (新山英辅)判据等三方面,帮助铸造工程师分析判断缩孔/缩松产生的可能性和具体位置(见图1) [2]。针对熔模铸造热壳浇注的特点,ProCAST传热分析模块考虑到热辐射对温度场和铸件凝固过程的影响, 这对于经常需要处理热辐射问题的熔模铸造而言特别重要。例如,对不锈钢人体植入物的凝固过程进行模拟时,发现位于模组中部的铸件由于接收到的辐射热比周边铸件多,因而温度偏高,不利于铸件顺序凝固,容易产生缩孔、缩松[1]。特别值得一提的是,ProCAST特有的辐射分析模块,计及辐射线入射角和遮挡物的影响,模拟对象一旦因相互运动导致辐射线入射角改变或产生遮挡, 该软件将重新自动进行计算,特别适用于定向凝固和单晶铸造。 a) 孤立液相区 b) 缩孔/缩松体积分数 c) Nyiama (新山英辅)判据图1 ProCAST缩孔/缩松判据

铸造数值模拟

铸造过程数值模拟 摘要:铸造过程数值模拟技术是当今公认材料科学的重要前沿领域。铸造过程的数值模拟是本学科发展的前沿之一,包含铸件充型、凝固过程、缩松缩孔的预测、应力场、热裂、微观组织的计算机模拟以及计算机模拟软件开发等研究内容。 关键词:数值模拟;充型过程;微观组织;应力;热裂; 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科,是公认的材料科学的前沿领域。 一、铸件充型过程数值模拟的研究概况 液态金属的充型过程是铸件形成的第一个阶段, 许多铸造缺陷, 如卷气、夹渣、浇不足、冷隔及砂眼等都是在充型不利的情况下产生的。然而由于本身的复杂性, 与凝固过程相比, 充型过程计算机数值模拟技术的起步较晚。长期以来人们对充型过程的把握和控制主要是建立在大量的试验基础上的经验准则。从20世纪80年代开始, 在此领域进行了大量的研究, 在数学模型的建立、算法的实现、计算效率的提高以及工程实用化方面均取得了重大突破。 许多铸造缺陷如卷气、夹杂、缩孔等都与液态金属的充型过程有关。为了控制充型顺序和流动方式,对充型过程进行数值模拟非常必要。其研究多数以SOLA—VOF法为基础,引人体积函数处理自由表面,并在传热计算和流量修正等方法进行研究改进。有的研究在对层流模型进行大量实验验证之后,用K一£双方程模型模拟铸件充型过程紊流现象。 目前,虽然已研究了许多算法,如并行计算法、三维有限单元法等,但最好的算法仍然没有找到。常用的网格划分为矩形单元(2D)或正交平行六面体(3D)。日本的I.Ohnaka等人提出了无结构非正交网格,这种技术是通向较高精度充型模拟的可能途径之一。砂型铸造的充型模拟研究在铸造过程计算机模拟中占主导地位,然而消失模铸造、金属型铸造等充型模拟的研究工作已经开始。充型模拟的另一发展趋势是浇注系统辅助设计,R.McDavid和J.Dantzig在这方面进行了尝试,并取得了一定的成果。 二、缩松和缩孔预测的数值模拟研究概况 铸件缩松、缩孔形成的模拟预测是铸件充型凝固过程模拟软件的主要功能之一。目前国内外常用的凝固模拟软件中均提供了多种判据用于铸件缩松、缩孔的预测.但是,大多数判据均是在用于铸钢件或不含石墨的铸造合金时比较有效。由于石墨铸铁凝固时析出比体积较大的石墨。因此其体积变化较铸钢等复杂得多,必须采用专门的判据。 铸钢件缩松、缩孔预测判据经过多年的发展,从最初的定性温度场热节法,发展到后来的E.Niyama提出的G/R1/2法,再到后面的流导法、固相率梯度法等定量预测方法,无论从精度还是从使用范围看,均达到了较高的水平,可以有效地预测铸件钢中的缩松、缩孔。 而铸铁件,特别是球墨铸铁件缩松、缩孔的预测一直缺乏可靠有效的判据。1994年,李嘉荣等在大量试验的基础上提出了球墨铸铁缩松、缩孔形成预测的“收缩膨胀动态叠加法(DECAM)”,该法基于Fe—C平衡相图,用杠杆原理计算凝固过程中收缩和膨胀量,将收缩和膨胀量进行叠加,可以预测球墨铸铁件缩松、缩孔的形成.李文珍等在进行球墨铸铁微观

大锻件锻造方法简介

大锻件锻造方法简介 1.钢锭的结构特点 1.1钢的冶炼和浇注 大型钢锭用钢的冶炼一般在碱性电炉中进行。通过电炉冶炼,获得所需要的化学成分, 控制好S、P等杂质含量。 对于重要的锻件,钢水还要经过精炼。精炼多在精炼炉中进行,精炼的主要任务是微调 化学成分和真空除气,还可以调整钢水的温度。 钢锭的浇注有上注法和下注法两种,大型钢锭以上注法为多。对于重要的锻件,在钢锭 浇注时往往有特殊的要求,如真空浇注、真空碳脱氧等等。 在精炼炉中真空,和在浇注时真空,都需要有专门的,巨大的真空系统。真空的目的是 尽可能排除钢中所含的氢、氧等有害气体。提高钢的纯净度,并为缩短锻件第一热处理周期 创造条件。 1.2大型钢锭的宏观组织: 钢锭内部的组织结构,主要取决于钢锭浇注时 钢水过冷与传热条件。 锭身表面层冷却速度快,为细小的等轴晶; 锭身中间带为柱状晶,距中心愈近晶粒愈粗 大; 锭心区为粗大等轴晶,晶间夹杂较多,组织 较疏松。 钢锭底部:冷却速度快晶粒细,但该区在钢 锭凝固过程中形成一锥形沉积堆,含有大量夹杂 物。 冒口:钢水因有保温帽保温,冷却速度最慢。 该区组织结构极松,存在有收缩孔、收缩疏松等 大量缺陷。 因此在大锻件的订货技术条件中往往规定水 冒口的最小切除量。在锻造工艺中也要确定水冒 口的实际切除量。 1.3大型钢锭内部的主要缺陷: 大型钢锭的主要缺陷是偏析、气体、夹杂和 疏松。它们是冶金过程中固有的缺陷,只能减少, 不能消除。 偏析:指的是结晶过程造成钢锭的不同部位的 化学成分不一样。 气体:在熔炼过程中钢水大量地吸收氢(还有氮)。当钢中的氢含量超过一定值时,锻造后冷却时就可能产生白点而使锻件报废。比如国外某公司在核岛锻件订购技术条件中规定钢包分析氢含量不得超过0.8ppm(1ppm=百万分之一)。含氢量高的钢锭在锻成锻件后,要在锻后热处理中花费大量的时间来扩散氢气以避免白点。 夹杂:夹杂的来源有来自熔炼过程和脱氧产物的,也有来自出钢槽、盛钢桶等外来夹杂。 缩孔和疏松:液态钢和固态钢,都随温度降低而发生体积收缩;从液态变为固态时,也 有体积收缩。钢液在锭模(或砂型)中凝固时,先凝固成与注入钢液差不多高的外壳,中 间随着凝固收缩就会向下凹下去。于是在头部形成大的空洞,即开放缩孔。如果上部比下

锻造基本知识教学提纲

锻造基本知识

锻造知识太汇总 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不

大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 3)碾环。碾环是指通过专用设备碾环机生产不同直径的环形零件,也用来生产汽车轮毂、火车车轮等轮形零件。

加工过程的数值模拟作业

材料加工数值模拟 论文 专业:材料加工 姓名:闫禹伯 学号:2013432109

目录

第一章.铸造过程的数值模拟分析 传统铸件的生产是根据经验确定铸造工艺,先试浇铸,检验试样是否存在浇铸缺陷,如有则修改工艺方案,然后重复上述过程,直至获得合格铸件。由于这种方法必须在浇铸后才能对铸件工艺是否合理进行评价,因而该方法存在设计周期长、生产成本高、效率低等缺点;而且得到的往往不是最终铸造工艺,对于大型或复杂形状铸件该缺点显得更加突出。铸造CAE模拟技术是利用计算机技术来改造和提升传统铸造术,对降低产品的成本、提高铸造企业的竞争力有着不可替代的作用。 一.铸造过程数值模拟的发展现状 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科[1-5],是公认的材料科学的前沿领域。 铸造过程数值模拟技术经过了四十年的发展历程,其间,从简单到复杂、从温度场发展到流动场、应力场,从宏观模拟深入到微观领域,从普通的重力铸造拓展到低压、压铸等特种铸造,从实验室研究进入到工业化实际应用。特别是近些年来,在包括计算机硬件、软件、信息处理技术以及相关学科的强有力的支持下,数值模拟技术在人类社会的各个领域得到了广泛的应用,取得了长足的进步。如果说10年前,大多数铸造技术人员对模拟仿真技术还抱有观望、怀疑的态度的话,那么10年后的今天,已有众多的企业纷纷采用数值模拟技术,应用于实际生产。目前欧美日等西方发达国家的铸造企业普遍应用了模拟技术,特别是汽车铸件生产商几乎全部装备了仿真系统,成为确定工艺的固定环节和必备工具。上世纪90年代中后期以来,国内铸造厂家逐渐认识到其重要性,纷纷引入该技术,目前已有超过200家铸造企业拥有模拟仿真手段,在实际生产中起到了较为

大型锻件锻造工艺过程

大锻件一般应用在大型机械的关键部位,由于工作环境恶劣,受力复杂多变,因此,在生产过程中对大型锻件的质量要求很高。大锻件由钢锭直接锻造成形,生产大型锻件时,即使采用最先进的冶金技术,钢锭内部也不可避免存在微裂纹、疏松、缩孔、偏析等缺陷,严重影响锻件的质量,为了消除这些缺陷,提高锻件质量,就必须改进锻造工艺,选用合理的锻造工艺参数。 大锻件锻造不仅要满足所需零件形状和尺寸,而且重要的是破碎铸态组织、细化晶粒、均匀组织、锻合缩孔、气孔和缩松等缺陷,提高锻件内部质量。钢锭尺寸愈大,钢锭中的缺陷也愈严重,锻造改善缺陷愈困难,进而增加了锻造难度。在锻造过程中,镦粗和拔长是最基本的工序,也是不可缺少的工序,对于具有特殊外形的锻件来说,胎模锻造也较为常用。 一、镦粗工艺 在大型锻件的自由锻生产中,镦粗是一个非常主要的变形工序。镦粗工艺参数的合理选择,对大锻件的质量起着决定性的作用。反复的镦拔不但可以提高坯料的锻造比,同时也可以破碎合金钢中的碳化物,达到均匀分布的目的;还可以提高锻件的横向力学性能,减小力学性能的异向性。 大型饼类锻件和宽板锻件都是以镦粗为主要变形,且镦粗的变形量很大,但是目前该类锻件的超声波探伤废品率很高,主要因为内部出现了横向内裂层缺陷,然而现行的工艺理论对此不能解释。为此,从90年代开始,中国学者经过长时间的认真研究,从主变形区以及被动变形区理论出发,对镦粗理论进行深入研究。提出了平板镦粗时刚塑性力学模型的拉应力理论以及静水应力力学模型的切应力理论,与此同时还进行了大量的定性物理模拟实验,并利用广义滑移线法和力学分块法来求解分析工件内部的应力状态,大量数据证明了该理论的合理性和正确性,揭示了利用普通平板镦粗圆柱体时其内部应力的分布规律,进而提出了锥形板镦粗新工艺,建立了方柱体镦粗的刚塑性力学模型。 二、拔长工艺 拔长是大型轴类锻件锻造过程中必须的一道工序,也是影响锻件质量的主要工序,通过拔长工序使坯料截面积减小,长度增加,同时也起到打碎粗晶、锻合内部疏松与孔洞、细化铸态组织等作用,从而获得均质致密的高质量锻件。在研究平砧拔长工艺的同时,人们逐步开始认识到大锻件内部的应力、应变状态对锻合内部缺陷的重要性,从普通的上下平砧拔长,发展到上平砧下V 型砧拔长以及上下V 型砧拔长,再到后来通过改变拔长砧形和工艺条件,又提出了WHF锻造法、KD锻造法、FM锻造法、JTS锻造法、FML锻造法、TER 锻造法、SUF锻造法以及新FM锻造法,这些方法都己经应用于大锻件生产,并且取得较好的效果。 1. WHF锻造法是一种宽平砧强力压下的锻造方法,其锻造原理是利用上、下宽平砧,并且采用大的压下率,锻造时的心部大变形有利于消除钢锭内部缺陷,广泛应用于大型水压机锻造中。 2. KD锻造法是在WHF 锻造方法基础上研发出来的,其原理是利用钢锭在长时间的高温条件下有足够的塑性,能在有限的设备上,用宽砧大压下率进行锻造,采用上、下V 型宽砧锻造有利于锻件表面金属塑性的提高,增加心部的三向压应力状态,进而有效地锻合钢锭内部缺陷。 3. FM锻造法是利用上平砧,下平台锻造时的非对称变形,以及下平台对锻件变形的摩擦阻力作用,使锻件从上到下逐渐变形,以便使拉应力转移到坯料与平台的接触面上,中心部位的静水压应力得到了增加,进而改善了变形体内的应力状态。 4. JTS 锻造法是锻前将钢锭加热到高温,然后使表面快速冷却,钢锭表面进而就形成一层硬壳,心部仍然处于高温状态,这层硬壳对坯料的变形起到固定作用,使变形主要集中在锻

钛及钛合金材料精品整理

一、钛及钛合金材料 (一)材料 1.碘化钛碘与粗钛在低温下直接作用生成挥发性的碘化钛,经加热使碘化钛分解,再沉积而得到高纯度的金属钛称为碘化钛。 牌号:TAD. 符号:Til2. 纯度>%(wt) 主要用于科研,如测试纯钛的化学性能、物理性能、合金化研究等。 2.海绵钛 含钛的矿石从金红石(Tio2)存在,经氯(Cl2)化生成 四氯化钛(TiCl4),再用活性金属(Mg或Na)还原得到海绵状的金属钛(Ti)称为海绵钛。 镁法海绵钛: MHTi 纳法海绵钛:NHTi 海绵钛是疏松多孔,纯度(wt),其硬度HB 为100-157,是钛工业生产的原料。 海绵钛分级见表1. 3.工业纯钛 含有一定量的氧、氮、碳、硅、铁及其他元素杂质的α相钛称为工业纯钛。 工业纯钛的含钛量≮%(wt)

按杂质元素含量把工业纯钛划分为四个级别,见表2. 表1 海绵钛分级(MHTi) GB/T2524-2002 表2 工业纯钛分级 GB/. 4.钛合金 以钛为基体金属元素和含有其他合金元素及杂质元素所组成的合金称为钛合金。 钛合金举例见表3.

表3 钛合金 GB/ 5.ELI钛及钛合金 具有超低间隙杂质元素的钛及钛合金称为ELI钛及钛合金。如:Ti-6Al-4V ELI. 为了改善低温钛及钛合金的塑性和韧性开发出来的超低间隙元素的钛及钛合金,由于间隙元素含量小,其溶于钛后减小了钛晶格歪曲,随温度降低,钛的强度增加,而塑性和韧性下降的很小,在室温-253℃条件下具有强度高,良好的塑性和高的断裂韧性。 (二)标准 1.常用标准(钛) (1)中国标准 ①GB:国家强制性标准 ②GB/T: 国家推荐性标准 ③GJB: 国家军用标准 ④YB: 部颁标准 ⑤YY: 行业标准

大锻件的锻造工艺

大锻件的锻造工艺 大锻件通常由大铸锭直接锻压成形。大铸锭内部通常存在严重的偏析、缩孔、夹杂与晶粒粗大等铸造缺陷,且随着大锻件的规格不断增大,铸造缺陷越来越严重。因此,改形与改性是大锻件锻造的两大关键任务。大锻件一般采用自由锻成形。根据锻造方式的不同,大锻件的自由锻工艺分为镦粗和拔长两类。 镦粗 镦粗是使坯料高度减小、横截面积增加的锻造工艺。除了饼类锻件的成形主要应用镦粗工序之外,许多重要轴类锻件的成形也常采用镦粗工序。镦粗的主要目的是增大坯料横截面积,提高拔长的锻造比,改善锻件的横向力学性能和减少力学性能的异向性。镦粗方法有普通平砧镦粗、凹形砧镦粗、锥形板镦粗与M形板镦粗等。Array 1.普通平砧镦粗 普通平砧面镦粗是最早采用的镦粗工艺。传统的理论认为,镦粗过程中锻件中心点处于三向压应力状态,镦粗有利于压实心部孔隙缺陷,且不会在心部产生新的裂纹缺陷。但是在实际生产中却发现,大型饼类锻件在经历大变形量的普通平砧镦粗工艺后,超声波探伤不合格率仍较高,主要原因是其内部出现横向裂纹缺陷。显然,普通平站镦粗过程中锻件中心部位并不是一直处于三向压应力状态。为此,从主动和被动塑形变形区等概念出发,于20世纪90年代初提出了普通平站镦粗圆柱体的两个新理论——刚塑性力学模型的拉应力理论和静水应力力学模型的切应力理论。采用有限元数值模拟的方法,定量地分析了普通平站徽粗过程中圆柱体中心点部位应力场的演变规律,结果表明,原始高径比大于1.6的圆柱体毛坯中心点在镦粗过程中出现了两向拉应力状态,随着压下率的增大,圆柱体毛坯中心点的拉应力先增大后减小,并达到临界压下率时拉应力转变为压应力,且该临界压下率随着原始高径比的减小而减小。对于原始髙径比为2.33 的圆柱体而言,该临界压下率为35%,对应的锻件瞬时高径比为1.129。因此,开坯时,压下率应该大于40%,但是每次压下率应该在材料容许的塑性范围之内。所以,圆柱体毛坯的原始高径比最好为2?2. 2。普通平砧 镦粗过程中,锻件高径比小于1时,锻件心部易产生“夹馅饼”缺陷,或称RST效应。

锻造工艺

一、自由锻 只用简单的通用性工具,或在锻造设备上、下砧间直接使坯料变形而获得所需的几何形状及内部质量的锻件,称为自由锻。 1、基本工序可分为拔长、镦粗、冲孔、弯曲等。 拔长:也称为延伸,它是使坯料横断面积减小、长度增加的锻造工序。 镦粗:是使毛坯高度减小,横断面积增大的锻造工序。 冲孔:是利用冲头在镦粗后的坯料上冲出透也或不透孔的锻造方法。 弯曲:采用一定的工模具将毛坯弯成所规定的外形的锻造工序。 2、自由锻的特点及应用 特点:工艺灵活性较大,生产准备的时间较短; 生产率低,锻件精度不高,不能锻造形状复杂的锻件。 应用:自由锻是大型锻件的主要生产方法。这是因为自由锻可以击碎钢锭中粗大的铸造组织,锻合钢锭内部气孔、缩松等空洞,并使流线状组织沿锻件外形合理分布。 二、胎模锻 胎模锻是在自由锻设备上使用可移动模具(胎模)生产模锻件的一种锻造方法。 特点:与自由锻相比较优点 ①由于坯料在模膛内成形,所以锻件尺寸比较精确,表面比较光洁,流线组织的分布比较合理,所以质量较高。 ②由于锻件形状由模膛控制,所以坯料成形较快,生产率比自由锻高1~5倍。 ③胎模锻能锻出形状比较复杂的锻件。 ④锻件余块少,因而加工余量较小,既可节省金属材料,又能减少机加工工时。 缺点:需要吨位较大的锻锤;只能生产小型锻件;胎模的使用寿命较低;工作时一般要靠人力搬动胎模,因而劳动强度较大。 应用:胎模锻用于生产中、小批量的锻件。 三、锤上模锻 简称模锻,它是在模锻外向锤上利用模具(锻模)使毛坯变形而获得锻件的锻造方法。 特点:与自由锻、胎模锻比较有如下优点 ①生产效高 ②表面质量高,加工余量小,余块少甚至没有,尺寸准确,锻件公差比自由锻小2/3~3/4,可节省大量金属材料和机械加工工时。 ③操作简单,劳动强度比自由锻和胎模锻都低。 缺点: ①模锻件的重量受到一般模锻设备能力的限制,大多在50~70kg以下; ②锻模需要贵重的模具钢,加上模膛的加工比较困难,所以锻模的制造周期长、成本高; ③模锻设备的投资费用比自由锻大。 应用:一般用于生产大批量锻件。

铸造过程的数值模拟

铸造过程的数值模拟 1零件分析 本次铸造过程的数值模拟所用的零件为方向盘,该零件结构复杂,并且在实际使用过程 中,需要承受较大的扭转力,因此选用镁合金并采用压铸工艺。此项工作需要在方向盘上建 立合适的浇注系统和溢流槽,进行充型模拟,得到合理的压铸方案。在建立浇注系统之前,需要合理选择分型面,然后选择浇注系统的内浇口位置,待浇注系统建立好之后,进行一次预模拟,从而确定溢流槽的数量和位置。 2工艺设计 2.1浇注系统 该铸件的分型面为铸件的最大截面,选定的浇注系统在铸件上的位置如下图所示。 rr 口斗+带〒 *”斗-T 已知数据有:压室直径60mm,压室速度0.1m/s-3m/s,铸件材料AM50A,方向盘质量 595g,压射温度685C。 查表取值:AM50A 镁合金密度1.75g/cm3;充填时间t= 0.05s;内浇口厚度b=2.5mm ; 取充填速度v仁50m/s。 铸件的体积v= — = —95 =340000mm 3; P 1.75 根据经验,可以取溢流槽的体积为铸件体积的10%,则溢流槽的体积v^ 34000mm3。 计算内浇口面积(V铸件+ V溢流槽) vt 二340 34 -50 0.05二149.6 2 mm

内浇口宽度 s c 2 b 冲头速度 4v 1s 4x 50 x149.6 “ , V ? 2 2 2.65 m / s nd 兀汽60 横浇道选用等宽横浇道 厚度 bh=10mm ,斜度10°,宽度B=( 1.25-3)An/bh ;圆角半径 r=2mm ,横浇道宽 2 度为 30mm 。增压时间 k=1.5s ,: =0.005 t = k : b 1.5 0.005 9 = 0.0675s 直浇道的设计 因为压室直径为60mm ,因此可以将直浇道与压室相连处的直径设计为 60mm ,直浇道 的高度为40mm ,拔模斜度为5 °。 2.2排溢系统 根据前面所述,溢流槽的总体积设计为铸件总体积的 10%,则v^ 34000mm 3。并且 设计三个溢流槽,分布在方向盘的圆周上,具体位置根据铸件最后充型位置确定。 根据经验和查表,溢流槽的桥部的尺寸与内浇道的尺寸的差距不宜过大, 因此选取溢流 槽的尺寸为 A=30mm , B=35mm , H=12mm ,a=9mm , b=22mm , c=1mm ,溢流槽桥部厚度 为h=1.3mm 。则溢流槽的仓部体积和为 v 溢=3 ^B_H = 3 30 35 37800mm 3。 149.6 治 30 mm

钛及钛合金锻造生产工艺介绍及生产注意事项(干货值得收藏!)

钛及钛合金锻造生产工艺介绍及生产注意事项摘要:从铸锭的准备、铸锭加热、锻造工艺、热处理工艺、机加工、打磨、锭号管理、超声探伤、锯切、取样等方面详细介绍了钛及钛合金锻造生产工艺及生产过程中的注意事项。 一、铸锭的准备 1、生产工艺员在接到生产作业计划后, 要仔细对计划部分内容进行审核, 如有问题, 及时和计划员沟通, 确定无误后, 方可编制生产工艺。并通知相关人员到库房领料。 2、领料人员应根据GB/3620.1 钛及钛合金牌号和化学成分及化学成分允许偏差GB/3620.2 及企标的有关规定,核对铸锭合格证,并核对合金牌号、锭号、规格和重量是否与实物相符,确认无误后,再进行转料。 3、铸锭转入锻造厂房应摆放整齐,将标识摆放于易看到的方位或用金属(记号笔)在铸锭的两端或表面将锭号明显标出。 4、生产工艺员在投料前应仔细研究产品所执行的技术标准,保证其化学成份能满足该产品的技术要求。否则,不能投料。 5、铸锭转入锻造车间后炉工在装炉前必须对铸锭进行涂层,涂层时将铸锭用垫木或导辊垫起,并将铸锭表面的杂脏物、油污用清洗剂擦洗干净后再涂防氧化涂层。 6、涂层时将写锭号的地方不要涂, 以便装炉前确认锭号是否正确。 7、涂层的厚度应控制在0.2~0.4㎜。涂层后必须干透即24小时后方可装炉。 表 1 主要产品的简明工艺流程

二、铸锭加热 加热设备:天燃气炉、电阻炉 1、加热前准备。 1.1 炉工装炉前应认真核对来料的牌号、锭号、规格、支数是否与工艺卡片相符,确认无误后,方可装炉。 1.2 加热设备与测温仪表应运转正常,否则不得使用,对测温仪表应每半年校对一次,并经常检查。对于科研用料或重要产品,在生产前应校核炉温。炉子在大修或长期停用后开始使用时,应校核炉温,炉子的均温区在正常情况下一个季度校核一次,并做好记录。 1.3 装炉前炉内应清洁,不得有钢铁等非金属物及这些金属的氧化皮以及其它影响加热质量的物质存在。锭坯表面应清洁,不得有油污和其它脏物。 2、注意事项 2.1 当坯料的直径或边长大于300㎜时, 必须采用分段式加热法, 加热曲

锻造基础知识

锻造基础知识.txt昨天是作废的支票;明天是尚未兑现的期票;只有今天才是现金,才能随时兑现一切。人总爱欺骗自己,因为那比欺骗别人更容易。锻造基础知识对金属坯料(不含板材)施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件、工具或毛坯的成形加工方法。锻造的种类和特点当温度超过300-400℃(钢的蓝脆区),达到700-800℃时,变形阻力将急剧减小,变形能力也得到很大改善。根据在不同的温度区域进行的锻造,针对锻件质量和锻造工艺要求的不同,可分为冷锻、温锻、热锻三个成型温度区域。原本这种温度区域的划分并无严格的界限,一般地讲,在有再结晶的温度区域的锻造叫热锻,不加热在室温下的锻造叫冷锻。在低温锻造时,锻件的尺寸变化很小。在700℃以下锻造,氧化皮形成少,而且表面无脱碳现象。因此,只要变形能在成形能范围内,冷锻容易得到很好的尺寸精度和表面光洁度。只要控制好温度和润滑冷却,700℃以下的温锻也可以获得很好的精度。热锻时,由于变形能和变形阻力都很小,可以锻造形状复杂的大锻件。要得到高尺寸精度的锻件,可在900-1000℃温度域内用热锻加工。另外,要注意改善热锻的工作环境。锻模寿命(热锻2-5千个,温锻1-2万个,冷锻2-5万个)与其它温度域的锻造相比是较短的,但它的自由度大,成本低。坯料在冷锻时要产生变形和加工硬化,使锻模承受高的荷载,因此,需要使用高强度的锻模和采用防止磨损和粘结的硬质润滑膜处理方法。另外,为防止坯料裂纹,需要时进行中间退火以保证需要的变形能力。为保持良好的润滑状态,可对坯料进行磷化处理。在用棒料和盘条进行连续加工时,目前对断面还不能作润滑处理,正在研究使用磷化润滑方法的可能。 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品。例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式:·限制锻造力形式:油压直接驱动滑块的油压机。·准冲程限制方式:油压驱动曲柄连杆机构的油压机。·冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。·能量限制方式:利用螺旋机构的螺旋和磨擦压力机。 为了获得高的精度应注意防止下死点处过载,控制速度和模具位置。因为这些都会对锻件公差、形状精度和锻模寿命有影响。另外,为了保持精度,还应注意调整滑块导轨间隙、保证刚度,调整下死点和利用补助传动装置等措施。此外,根据滑块运动方式还有滑块垂直和水平运动(用于细长件的锻造、润滑冷却和高速生产的零件锻造)方式之分,利用补偿装置可以增加其它方向的运动。上述方式不同,所需的锻造力、工序、材料的利用率、产量、尺寸公差和润滑冷却方式都不一样,这些因素也是影响自动化水平的因素。锻件与铸件相比有什么特点金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。一般说来,铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻

相关文档
最新文档