偏微分方程边值问题的数值解法论文

偏微分方程边值问题的数值解法论文
偏微分方程边值问题的数值解法论文

求解偏微分方程的边值问题

本实验学习使用MATLAB 的图形用户命令pdetool 来求解偏微分方程的边值问题。这个工具是用有限元方法来求解的,而且采用三角元。我们用个例题来说明它的用法。

一、MATLAB 支持的偏微分方程类型

考虑平面有界区域D 上的二阶椭圆型PDE 边值问题:

()c u u f α-??+=g (1.1)

其中 (1) , (2) a,f D c x y ?????=? ?????

是上的已知函数(3)是标量或22的函数方阵

未知函数为(,) (,)u x y x y D ∈。它的边界条件分为三类:

(1)Direchlet 条件:

hu f = (1.2)

(2)Neumann 条件: ()n c u qu g ?+=g (1.3)

(3)混合边界条件:在边界D ?上部分为Direchlet 条件,另外部分为Neumann 条件。

其中,,,,h r q g c 是定义在边界D ?的已知函数,另外c 也可以是一个2*2的函数矩阵,n 是沿边界的外法线的单位向量。

在使用pdetool 时要向它提供这些已知参数。

二、例题

例题1 用pdetool 求解 22D 1 D: 10u x y u ??-?=+≤??=?? (1.4)

解:首先在MATLAB 的工作命令行中键入pdetool ,按回牟键确定,于是出现PDE Toolbox 窗口,选Genenic Scalar模式.

( l )画区域圆

单击椭圆工具按钮,大致在(0,0)位置单击鼠标右键,拖拉鼠标到适当位置松开。为了保证所绘制的圆是标准的单位园,在所绘园上双击,打开 Object Dialog 对话框,精确地输入

圆心坐标X-center 为0 、Y-center 为0 及半径Radius 为l ,然后单击OK 按钮,这样单位画已画好.

( 2 )设置边界条件

单击工具边界模式按钮,图形边界变红,逐段双击边界,打开Boundary condition 对话框.输入边界条件.对于同一类型的边界,可以按Shift键,将多个边界同时选择,统一设边界条件.本题选择Dirichlet 条件,输入h 为1 , r 为0。,然后单击OK 按钮.也可以单击Boundary 菜单中Spocify Boundary Condition …选项,打开Boundary Condition 对话框输入边界条件.

( 3 )设置方程

单击偏微分方程按钮,打开PDE Specification 对话框,选择方程类型·本题选Ellintic (椭圆型),输入c为1 , a 为O , f 为1 ,然后单击OK 按钮.

( 4 )网格剖分

单击网格工具,或者单击Mesh 菜单中Initialize Mesh项,可进行初始网格剖分.这时在PDE Toolbox 窗口下方的状态栏显示出初始网格的节点数和三角形单元数.本题节点数为144 个,三角形单元数为254 个(图?? )。如果要细化网格,单击细化工具,或者单击Mesh 菜单中Refine Mesh 选项,节点数成为541 个,三角形单元数为1016 个。

偏微分方程数值解

偏微分方程数值解 偏微分方程地构建科学、工程学和其他领域的数学模型的主要手段。一般情况下,这些模型都需要用数值方法去求解。本书提供了标准数值技术的简明介绍。借助抛物线型、双曲线型和椭圆型方程的一些简单例子介绍了常用的有限差分方法、有限元方法、有限体方法、修正方程分析、辛积分格式、对流扩散问题、多重网络、共轭梯度法。利用极大值原理、能量法和离散傅里叶分析清晰严格地处理了稳定性问题。本书全面讨论了这些方法的性质,并附有典型的图像结果,提供了不同难度的例子和练习。 本书可作为数学、工程学及计算机科学专业本科教材,也可供工程技术人员和应用工作者参考。 偏微分方程数值解---学习总结(2) 关于SobolveSobolve空间的几个重要定理 迹定理 : ΩΩ是 RdRd 的一个有界开子集,具有李普希茨连续边界?Ω?Ω, s>12s>12, 则 a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v ∣∣?Ω,?v∈Hs(Ω)∩C0(Ωˉˉˉˉ), b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω).(1)(2)(1)a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v|?Ω,?v∈

Hs(Ω)∩C0(Ωˉ),(2)b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω). 迹定理把区域内部与边界联系起来. 上面定理中边界?Ω?Ω当被它的一个子集ΣΣ代替时,结论依然成立. S=1时, γ0:H1(Ω)→H12(?Ω)?L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||?v||0).γ0:H1(Ω)→H12(?Ω)? L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||? v||0). 注意几个范数 ||?||k||?||0||?||1||??||0=||?||k,2=||?||L2=||?||1,2=(||?||20+||??||20)12=|?|1.(3)(4)(5)(6)(3)||?||k=||?||k,2(4)||? ||0=||?||L2(5)||?||1=||?||1,2=(||?||02+||??||02)12(6)||?? ||0=|?|1. 庞加莱不等式(Poincare inequality): 假设ΩΩ是 RdRd 的一个有界联通开子集,ΣΣ是边界?Ω?Ω的一个非空的李普希茨连续子集. 则存在一个常数 CΩ>0CΩ>0满足 ∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈H1Σ(Ω),其中H1Σ(Ω)={v ∈H1(Ω),γΣv=v∣∣Σ=0}.∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈HΣ1(Ω),其中HΣ1(Ω)={v∈H1(Ω),γΣv=v|Σ=0}.

常微分方程初值问题数值解法.

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 7.1 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤??=?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==- 7.2 显示单步法 7.2.1 显示单步法的一般形式 1(,,),(0,1,...,1)n n n n y y h t y h n M ?+=+=-

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

偏微分方程边值问题的数值解法论文

求解偏微分方程的边值问题 本实验学习使用MATLAB 的图形用户命令pdetool 来求解偏微分方程的边值问题。这个工具是用有限元方法来求解的,而且采用三角元。我们用个例题来说明它的用法。 一、MATLAB 支持的偏微分方程类型 考虑平面有界区域D 上的二阶椭圆型PDE 边值问题: ()c u u f α-??+=g (1.1) 其中 (1) , (2) a,f D c x y ?????=? ????? 是上的已知函数(3)是标量或22的函数方阵 未知函数为(,) (,)u x y x y D ∈。它的边界条件分为三类: (1)Direchlet 条件: hu f = (1.2) (2)Neumann 条件: ()n c u qu g ?+=g (1.3) (3)混合边界条件:在边界D ?上部分为Direchlet 条件,另外部分为Neumann 条件。 其中,,,,h r q g c 是定义在边界D ?的已知函数,另外c 也可以是一个2*2的函数矩阵,n 是沿边界的外法线的单位向量。 在使用pdetool 时要向它提供这些已知参数。 二、例题 例题1 用pdetool 求解 22D 1 D: 10u x y u ??-?=+≤??=?? (1.4)

解:首先在MATLAB 的工作命令行中键入pdetool ,按回牟键确定,于是出现PDE Toolbox 窗口,选Genenic Scalar模式. ( l )画区域圆 单击椭圆工具按钮,大致在(0,0)位置单击鼠标右键,拖拉鼠标到适当位置松开。为了保证所绘制的圆是标准的单位园,在所绘园上双击,打开 Object Dialog 对话框,精确地输入

第十一章 常微分方程边值问题的数值解法汇总

第十一章 常微分方程边值问题的数值解法 工程技术与科学实验中提出的大量问题是常微分方程边值问题.本章将研究常微分方程边值问题的数值求解方法.主要介绍三种边界条件下的定解问题和两大类求解边值问题的数值方法,打靶法算法和有限差分方法. 11.1 引言 在很多实际问题中都会遇到求解常微分方程边值问题. 考虑如下形式的二阶常微分方程 ),,(y y x f y '='', b x a <<, (11.1.1) 在如下三种边界条件下的定解问题: 第一种边界条件: α=)(a y , β=)(b y (11.1.2) 第二种边界条件: α=')(a y , β=')(b y (11.1.2) 第三种边界条件: ? ? ?=-'=-'101 0)()()()(b b y b y a a y a y βα, (11.1.13) 其中0 0, ,00000>+≥≥b a b a . 常微分方程边值问题有很多不同解法, 本书仅介绍打靶方法和有限差分方法. 11.2 打靶法 对于二阶非线性边值问题 ()()().,,βα==≤≤'=''b y a y b x a y y x f y ,,, (11.2.1) 打靶法近似于使用初值求解的情况. 我们需要利用一个如下形式问题初值解的序列: ()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α, (11.2.2) 引进参数v 以近似原边界值问题的解.选择参数k v v =,以使: ()()β==∞ →b y v b w k k ,lim , (11.2.3)

其中),(k v x w 定义为初值问题(11.2.2)在k v v =时的解,同时()x y 定义为边值问题(11.2.1)的解. 首先定义参数0v ,沿着如下初值问题解的曲线,可以求出点),(αa 对应的初始正视图 ()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α. (11.2.4) 如果),(0v b w 不严格收敛于β,那么我们选择1v 等值以修正近似值,直到),(0v b w 严格逼近β. 为了取得合适的参数k v ,现在假定边值问题(11.2.1)有唯一解,如果),(v x w 定义为初始问题(11.2.2)的解,那么v 可由下式确定: 0),(=-βv b w . (11.2.5) 由于这是一个非线性方程,我们可以利用Newton 法求解.首先选择初始值0v ,然后由下式生成序列 ),)(()),((111----- =k k k k v b dv dw v b w v v β,此处),(),)(( 11--=k k v b dv dw v b dv dw , (11.2.6) 同时要求求得),)(( 1-k v b dv dw ,因为),(v b w 的表达式未知,所以求解这个有一点难度;我们只能得到这么一系列的值。 ,,,),(),(),(),(1210-??k v b w v b w v b w v b w 假如我们如下改写初值问题(11.2.2),使其强调解对x 和v 的依赖性 ()()v v a w v a w b x a v x w v x w x f w ='=≤≤'=''),(,),(),,(,,,,α,(11.2.7) 保留初始记号以显式与x 的微分相关.既然要求当k v v =时),)((v b dv dw 的值,那么我们需要求出表达式(11.2.7)关于v 的偏导数.过程如下: )),(),,(,(),(v x w v x w x v f v x v w '??=?''? ),()),(),,(,()),(),,(,(v x v w v x w v x w x w f v x v x w v x w x x f ??'??+??'??= ) ,()),(),,(,(v x v w v x w v x w x w f ?'?''??+ 又因为x 跟v 相互独立,所以当b x a ≤≤上式如下;

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.360docs.net/doc/2018457942.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 22 22 =??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ?? ?Ω ?=Γ=Ω∈=??+??Γ∈),(),(),(),(),(22 22y x y x u y x y x f y u x u y x ? 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为

),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22 ? 初边值问题 2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

两点边值问题的两种数值解法

常微分方程组两点边值问题的数值解法 ----张亚苗2011年9月 3)1(1)0(04===-''y y y y 可化为微分方程组3 )1(1)0(41221==='='y y y y y y 方法一:配置法 Matlab 程序: function bvcollation clc solinit = bvpinit(linspace(0,1,20),[100 600]);% sol = bvp4c(@twoode,@twobc,solinit); x = linspace(0,1,20); y = deval(sol,x); y' plot(x,y(1,:),x,y(2,:)); end %微分方程组 function dydx = twoode(x,y) dydx = [ y(2) 4*y(1)]; end %边值条件 function res = twobc(ya,yb) res = [ ya(1)-1 yb(1)-3]; end 运行结果: 1.0000 -0.4203 0.9834 -0.2117 0.9777 -0.0055 0.9828 0.2007 0.9988 0.4091 1.0259 0.6220 1.0644 0.8419 1.1147 1.0710 1.1774 1.3121 1.2531 1.5677 1.3427 1.8407 1.4472 2.1341 1.5678 2.4512 1.7057 2.7954 1.8626 3.1707 2.0401 3.5811 2.2402 4.0313 2.4652 4.5261 2.7175 5.0712 3.0000 5.6724

偏微分方程的数值解法

《偏微分方程数值解法》试题 (专业:凝聚态物理学号:2013201260 姓名:鄢建军) 1.考虑定解问题 (1)用迎风格式(P、45)求解 1,0 (,0) 0,0 t x u u x u x x += ? ? ≤ ? ? =? ?> ? ? 。 利用迎风格式编写Fortran程序语言,运行结果如下: Fig 1、迎风格式求解结果 (2)用Beam-Warming格式(P、51)求解。 利用Beam—Warming格式编写Fortran程序语言,运行结果如下 :

Fig 2、 Beam —Warming 格式求解结果 (3) 比较两种方法结果的异同。 将两种格式运行的结果绘制在一起,要求时间步长与空间步长在两种格式中都相同,运行结果如下图所示: Fig 3、 迎风格式与Beam-Warming 格式求解结果比较 从两种格式的运行结果来瞧,都存在边缘的误差现象,相比而言,Beam-Warming 格式的运行结果差一些。但就是理论上分析,迎风格式的截断误差为()h οτ+,而Beam-Warming 格式的截断误差为22()h h οττ++。稳定性上来分析,迎风格式的稳定性较好,要求1(/)a h λλτ≤=,Beam-Warming 格式的稳定性条件为2(/)a h λλτ≤=。 2. 考虑定解问题212 1110,04(,0)sin ,0(0,)(,)0u u a x l t t u x x x l l u t u l t π???-=<

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

偏微分方程数值解试题参考答案

x ∈R n 2 ( Ax, x) , J ( x + x) = ? (1) = ? (0) + ( Ax, x) > J ( x ) ,因此 x 是 J ( x ) 的最小值点. (4 分) 2 二(10 分)、对于两点边值问题: ? dx dx a(u , v) = ?b ( p . + q u v)dx = ?b fvdx = f (v) , ? v ∈ H 1 (a , b ) dx dx a a 偏微分方程数值解 一(10 分)、设矩阵 A 对称正定,定义 J ( x ) = 1 ( Ax , x ) - (b , x ) ( x ∈ R n ) ,证明下 2 列两个问题等价:(1)求 x ∈ R n 使 J ( x ) = min J ( x ) ;(2)求下列方程组的解:Ax = b 解: 设 x ∈ R n 是 J ( x ) 的最小值点,对于任意的 x ∈ R n ,令 ?(λ) = J ( x + λx) = J ( x ) + λ( Ax - b , x) + λ2 (3 分) 因此 λ = 0 是 ?(λ) 的极小值点 , ? ' (0) = 0 ,即对于任意的 x ∈ R n , ( Ax - b , x) = 0 ,特 0 别取 x = Ax - b ,则有 ( Ax - b , Ax - b ) =|| Ax - b || 2 = 0 ,得到 Ax = b . (3 分) 0 0 反 之 , 若 x ∈ R n 满 足 Ax = b , 则 对 于 任 意 的 x , 1 0 0 0 评分标准: ?(λ) 的表示式 3 分, 每问 3 分,推理逻辑性 1 分 ? d du ?Lu = - ( p ) + qu = f x ∈ (a, b ) ?? u (a) = 0, u (b ) = 0 其中 p ∈ C 1 ([a , b ]), p ( x ) ≥ min p ( x ) = p x ∈[a,b ] min > 0, q ∈ C ([a , b ]), q ≥ 0, f ∈ H 0 ([a , b ]) 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的 Ritz 形式和 Galerkin 形式的变分方程。 解 : 设 H 1 = {u | u ∈ H 1 (a , b ), u (a ) = u (b ) = 0} 为求解函数空间 , 检验函数空间 . 取 v ∈ H 1 (a, b ) ,乘方程两端,积分应用分部积分得到 (3 分) du dv 即变分问题的 Galerkin 形式. (3 分)

偏微分方程数值解法试题与答案

x 1 ?若步长趋于零时,差分方程的截断误差 R m 0,则差分方程的解 U i m 趋近于微分方 程的解U m ?此结论 ________ (错或对); 1 2.一 阶 Sobolev 空间 H ( ) f (x,y) f , f x , f y L ?() 关于内积(f,g )1 _____________________________________ 是Hilbert 空间; 3 ?对非线性(变系数)差分格式,常用 ____________ 系数法讨论差分格式的 ________ 稳定性; 4?写出y x 3在区间[1,2]上的两个一阶广义导数: ______________________________________ _____ ____ ______________ _ ____ ________ ; 5 ?隐式差分格式关于初值是无条件稳定的 ?此结论 ________ (错或对)。 (13分)设有椭圆型方程边值问题 0.1作正方形网格剖分 。 (1) 用五点菱形差分格式将微分方程在内点离散化; (2) 用截断误差为 O (h 2)的差分法将第三边界条件离散化; (3) 整理后的差分方程组为 U C 三.(12)给定初值问题 u x,0 x 1 取时间步长 0.1,空间步长h 0.2。试合理选用一阶偏心差分格式(最简显格式) 2 u ~2 x 2 u ~2 y 0 x 0.3 0.2 x 0.3 2y 1, — u n 2x y 0.2

并以此格式求出解函数u(x,t)在x 0.2,t 0.2处的近似值。 x

1.所选用的差分格式是: 2 .计算所求近似值: 1 a k 1 四.(12分)试讨论差分方程 u l 1 k k k 1 u | r u | 1 u | , r h a 1 h 逼近微分方程 u a u 0 t x 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点( l+1/2,k+1/2 )展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。 2 —2 ,考虑 Du Fort-Frankel 格式 X 试论证该格式是否总满足稳定性的 Von-Neumann 条件? 六. (12分)(1 )由Green 第一公式推导 Green 第二公式: (2) 对双调和方程边值问题 n 2 选择函数集合(空间)为: 推导相应的双线性泛函和线性泛函: A (u,v ) F (v ) 相应的虚功问题为: 极小位能问题为 七. ( 12分)设有常微分方程边值问题 y y f (x ) , a x b y a 1, y b 1 五.(12分) 对抛物型方程 U |k1 U |k 2 |k 1 (U |k1 U |k1) U |k 1 ) 2 (u)vdxdy G (u) u vdxdy :[v v u ]ds n f (x,y) (x,y) g 1(x , y), g 2(x, y) (x,y),

相关文档
最新文档