初中几何三角形五心及定理性质之欧阳歌谷创作

初中几何三角形五心及定理性质之欧阳歌谷创作
初中几何三角形五心及定理性质之欧阳歌谷创作

初中几何三角形五心定律及性质

欧阳歌谷(2021.02.01)

三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称

重心定理

三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)

重心的性质:

1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理

三角形外接圆的圆心,叫做三角形的外心。

外心的性质:

1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

5、外心到三顶点的距离相等

垂心定理

图1 图2

三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:

1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))

3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

推论:

1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。

(图1)

2. 三角形的垂心是其垂足三角形的内心。(图1)

3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。

(图2)

定理证明

已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB

证明:

连接DE

∵∠ADB=∠AEB=90度

∴A、B、D、E四点共圆

∴∠ADE=∠ABE

又∵∠ODC=∠OEC=90度

∴O、D、C、E四点共圆

∴∠ACF=∠ADE=∠ABE

又∵∠ABE+∠BAC=90度

∴∠ACF+∠BAC=90度

∴CF⊥AB

因此,垂心定理成立

内心定理

三角形内切圆的圆心,叫做三角形的内心。

内心的性质:

1、三角形的三条内角平分线交于一点。该点即为三角形的内心。

2、直角三角形的内心到边的距离等于两直角边的和与斜边的差的二分之一。

3、P为ΔABC所在空间中任意一点,点0是ΔABC内心的充要条件是:向量P0=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).

4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC

5、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.

6、(内角平分线分三边长度关系)

△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.

7、内心到三角形三边距离相等。

旁心定理

三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。

旁心的性质:

1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。旁心一定在三角形外。

2、任何三角形都存在三个旁切圆、三个旁心。

3、旁心到三角形三边的距离相等。

如图,点M就是△ABC的一个旁心。三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。

附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

巧记诗歌

三角形五心歌(重外垂内旁)

三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.

重心

三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,

重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.

外心

三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.

此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.

垂心

三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,

直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.

内心

三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;

点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.

三角形五心及其性质

三角形的三条高的交点叫做三角形的垂心。 三角形垂心的性质 设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、 C的对边分别为a、b、c,p=(a+b+c)/2. 1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的 垂心在三角形外. 2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的 垂心; 3、垂心H关于三边的对称点,均在△ABC的外接圆上。 4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH?HD=BH?HE=CH?HF。 5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。 6、△ABC,△ABH,△BCH,△ACH的外接圆是等圆。 7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP?tanB+AC/AQ?tanC=tanA+tanB+tanC。 8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9、设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。 10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。 11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。 12、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 13、设锐角△ABC内有一点T,那么T是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。 垂心的向径 定义 设点H为锐角三角形ABC的垂心,向量OH=h,向量OA=a,向量OB=b,向量OC=c, 则h=(tanA a +tanB b +tanC c)/(tanA+tanB+tanC). 垂心坐标的解析解: 设三个顶点的坐标分别为(a1,b1)(a2,b2)(a3,b3),那么垂心坐标x=Δx/2/Δ,y=-Δy/2/Δ。 其中, Δ=det([x2-x1,x3-x2,y2-y1,y3-y2]); Δx=det([(x1+x2)*(x2-x1)+(y1+y2)*(y2-y1),y2-y1;(x2+x3)*(x3-x2)+(y2+y3)*(y3-y2),y3-y2]);

(完整word版)初中几何三角形五心及定理性质

初中几何三角形五心定律及性质 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。 三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称 重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。 5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。 外心定理

三角形外接圆的圆心,叫做三角形的外心。 外心的性质: 1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。 2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或 ∠BOC=360°-2∠A(∠A为钝角)。 3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。 5、外心到三顶点的距离相等 垂心定理 图1 图2 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质: 1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line)) 3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。 4、垂心分每条高线的两部分乘积相等。 推论: 1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图1) 2. 三角形的垂心是其垂足三角形的内心。(图1) 3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图2) 定理证明 已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB 证明: 连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE

三角形五心性质概念整理(超全)

重心 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ) 平面上任意一点为(x,y)则该点到三顶点距离平 方和为: (x 1-x)2+(y 1 -y)2+(x 2 -x)2+(y 2 -y)2+(x 3 -x)2+(y 3 -y)2 =3x2-2x(x 1+x 2 +x 3 )+3y2-2y(y 1 +y 2 +y 3 )+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2 =3[x-1/3*(x 1+x 2 +x 3 )]2+3[y-1/3*(y 1 +y 2 +y 3 )]2+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 显然当x=(x 1+x 2 +x 3 )/3,y=(y 1 +y 2 +y 3 )/3(重心坐标)时 上式取得最小值x 12+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 。 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+ 向量OC) —

重心定理

重心定理 三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.上述交点叫做三角形的重心. 外心定理 三角形的三边的垂直平分线交于一点. 这点叫做三角形的外心. 垂心定理 三角形的三条高交于一点. 这点叫做三角形的垂心. 内心定理 三角形的三内角平分线交于一点. 这点叫做三角形的内心. 旁心定理 三角形一内角平分线和另外两顶点处的外角平分线交于一点. 这点叫做三角形的旁心.三角形有三个旁心. 三角形的重心、外心、垂心、内心、旁心称为三角形的五心. 它们都是三角形的重要相关点. 中位线定理 三角形的中位线平行于第三边且等于第三边的一半. 三边关系定理 三角形任意两边之和大于第三边,任意两边之差小于第三边.

三角形面积计算公式 S(面积)=a(边长)h(高)/2---三角形面积等于一边与这边上的高的积的一半[编辑本段]勾股定理 在Rt三角形ABC中,A≤90度,则 AB·AB+AC·AC=BC·BC A〉90度,则 AB·AB+AC·AC>BC·BC [编辑本段]梅涅劳斯定理 梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 证明: 过点A作AG‖BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。 三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1 它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。 另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写 为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC V 中,L 、M 、N 分 别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC V 的重心. 证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为 G ,边BC 的中点为L ,连接AG 和GL ,因 为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r 所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r =111(1)2 AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r = 221(1)2 AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2 AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-??? 所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166 AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

三角形性质和判定定理

等腰三角形: 定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 性质: 1.等腰三角形的两条腰相等; 2.等腰三角形的两个底角相等; 3.等腰三角形是轴对称图形; 4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。 判定: 1.有两条边相等的三角形是等腰三角形; 2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。 等边三角形: 定义:三边都相等的三角形是等边三角形,也叫正三角形。 性质: 1.等边三角形是轴对称图形,有三条对称轴,任意边的垂直平分线都是它的对称轴; 2.等边三角形的三个角都相等,每个角都是60°。 判定: 1.三条边都相等的三角形是等边三角形; 2.有一个角是60°的等腰三角形是等边三角形; 3.有两个角是60°的三角形是等边三角形。 直角三角形: 定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。 性质:1.直角三角形的两个余角互余; 2.直角三角形斜边上的中线等于斜边的一半; 3.直角三角形中30°角所对的直角边等于斜边的一半; 4.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 判定: 1.有一个角是直角的三角形是直角三角形; 2..有两个角互余的三角形是直角三角形; 3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形; 4.如果三角形的三边长a、b、c满足于 a^2+b^2=c^2,那么这个三角形是直角三角形。 角平分线定理:在角的平分线上的点到这个角的两边 的距离相等 逆定理:到一个角的两边的距离相同的点,在这个角的平分线上 中垂线定理:线段垂直平分线上的点到这条线段两个 端点的距离相等 逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 1 定理三角形两边的和大于第三边 2 推论三角形两边的差小于第三边 5外角2 三角形的一个外角大于任何一个和它不相邻的内角 3 三角形内角和定理三角形三个内角的和等于180°4外角1 三角形的一个外角等于和它不相邻的两个 内角的和 全等的判定: 6边角边公理(SAS) 有两边和它们的夹角对应相等的两 个三角形全等 7角边角公理( ASA)有两角和它们的夹边对应相等 的两个三角形全等 8推论(AAS) 有两角和其中一角的对边对应相等的 两个三角形全等

三角形重心性质定理题教案资料

三角形重心性质定理 1.三角形重心性质定理 课本原题(人教八年级《数学》下册习题19.2第16题) 在△ABC中,BD、CE是边AC、AB上的中线,BD与CE相交于O。BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么? (提示:作BO中点M,CO的中点N。连接ED、EM、MN、ND) 分析:三角形三条中线的交点是三角形的重心(第十九章课题学习《重心》)。这道习题要证明的结论是三角形 重心的一个重要数学性质:三角形的重心将三角形的每条中线都分成1∶2两部分,其中重心到三角形某一顶点的距离是到该顶点对边中点距离的2倍。 证法1:(根据课本上的提示证明) (点评:证法1是利用中点构造三角形中位线,从而得到平行四边形,再利用平行四边形性质得到中线上三个线段之间的相等关系。) (点评:利用线段中点,还可以将与线段中点有关的线段倍长,构造全等,从而利用全等三角形的性质及三角形中位线的性质证明结论。) 2.三角形重心性质定理的应用 ⑴求线段长 例1如图3所示,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,当G是Rt△ABC的重心,GE⊥AC 于点E,若BC=6cm,则GE= cm。 解: ⑵求面积 例2在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积。 解:

练习:1.如图5,△ABC 中,AD 是BC 边上的中线,G 是重心,如果AG=6,那么线段DG= 。 2.如图6,在△ABC 中,G 是重心,点D 是BC 的中点,若△ABC 的面积为6cm 2,则△CGD 的面积为 。 巧用中线的性质解题 我们知道三角形的一条中线将三角形分成的两个三角形等底同高,这样的两个三角形的面积相等.下面我们利用上述性质来巧解以下问题. 一、巧算式子的值 例1 在数学活动中,小明为了求23411112222++++…12n +的值(结果用n 表示),设计了如图1所示的几何图形.请你利用这个几何图形求 23411112222++++ (12) n +的值. 解析:从图中可以看出大三角形的面积为1,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++…12n +12 n +表示:组成面积为1的大三角形的所有小三角形的面积之和,于是23411112222++++ (12) n +112n =-. 【点评】此题运用“数形结合思想”,借助三角形的面积来求数的运算. 二、求图形的面积 例2 如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.

三角形的五心性质以及典型问题--初中数学竞赛

三角形的五心 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 一.三角形的外心 定理1:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 定理2:三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 定理3:锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 定理4:AOB C AOC B BOC A ∠=∠∠=∠∠= ∠2 1 ,21,21 1.如图所示,在锐角ABC ?中,BC AD ⊥于D ,AC DE ⊥于E ,AB DF ⊥于F ,O 为ABC ?的外心. 求证:(1)AEF ?∽ABC ? (2)EF AO ⊥ O F E D C B A 2.设O 为锐角ABC ?的外心,连接CO BO AO ,,并延长分别交对边于N M L ,,,则 CN BM AL 1 11++的值是_______________.(设R 为ABC ?外接圆半径) 二.三角形的内心 定理1:三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 定理2:三角形的内心到三边的距离相等,都等于三角形内切圆半径. 定理3:内切圆半径r 的计算: 设三角形面积为S ,并记p =12(a +b +c ),则r =S p . 特别的,在直角三角形中,有 r =1 2 (a +b -c ). A B C O I K H E F A B C M

B C D A I B C E D A 定理4:I 为三角形的内心,A 、B 、C 分别为三角形的三个顶点,延长AO 交BC 边于N ,则有AI: IN=AB:BN=AC:CN=(AB+AC):BC 定理5:,2 1 90A BIC ∠+ =∠ B CIA ∠+=∠2190 , C AIB ∠+=∠2190 。 3.如图所示,⊙1O 与⊙2O 相交于B A ,两点,且2O 在⊙1O 的圆周上,弦C O 2交⊙2O 于D 。证明:D 是ABC ?的内心. 4.如图,在ABC ?中,点D 、E 是ABC ∠,ACB ∠的三等分线的交点,当?=∠60A 时,求BDE ∠度数 5.如图,I 是ABC ?的内心,AI 的延长线交ABC ?的外接圆于D ,则,DC DB DI ==

三角形的重心、垂心、内心、外心知识讲解

一、三角形重心定理 二、三角形外心定理 三、三角形垂心定理 四、三角形内心定理 五、三角形旁心定理 有关三角形五心的诗歌 三角形五心定理 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。 一、三角形重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。 二、三角形外心定理 三角形外接圆的圆心,叫做三角形的外心。外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。2、若O 是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A 为钝角)。3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。 5、外心到三顶点的距离相等 三、三角形垂心定理 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。4、垂心分每条高线的两部分乘积

三角形及其性质(基础)知识讲解

三角形及其性质(基础)知识讲解 【学习目标】 1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法. 2. 理解三角形内角和定理的证明方法; 3. 掌握并会把三角形按边和角分类 4. 掌握并会应用三角形三边之间的关系. 5. 理解三角形的高、中线、角平分线的概念,学会它们的画法. 【要点梳理】 要点一、三角形的定义 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 要点诠释: (1)三角形的基本元素: ①三角形的边:即组成三角形的线段; ②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点. (2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示. 要点二、三角形的内角和 三角形内角和定理:三角形的内角和为180°. 要点诠释:应用三角形内角和定理可以解决以下三类问题: ①在三角形中已知任意两个角的度数可以求出第三个角的度数; ②已知三角形三个内角的关系,可以求出其内角的度数; ③求一个三角形中各角之间的关系. 要点三、三角形的分类 1.按角分类: ?? ?? ?? ?? 直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释: ①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形. 2.按边分类:

三角形五心定律

垂心 三角形的三条高的交点叫做三角形的垂心。 锐角三角形垂心在三角形内部。 直角三角形垂心在三角形直角顶点。 钝角三角形垂心在三角形外部。 垂心是高线的交点 垂心是从三角形的各顶点向其对边所作的三条垂线的交点。 三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 三角形上作三高,三高必于垂心交。 高线分割三角形,出现直角三对整, 直角三角有十二,构成六对相似形, 四点共圆图中有,细心分析可找清, 重心 重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点 内心 内心是三角形三条内角平分线的交点,即内切圆的圆心。 内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。 内心定理:三角形的三个内角的角平分线交于一点。该点叫做三角形的内心。 注意到内心到三边距离相等(为内切圆半径),内心定理其实极易证。 若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。 直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。 双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。 希望对你有帮助!三角形五心定律 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定律指是三角形重心定律,外心定律,垂心定律,内心定律,旁心定律的总称。 一、三角形重心定律 三角形的三条边的中线交于一点。该点叫做作三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名) 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。 2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的

三角形重心、外心、垂心、内心的向量表示及其性质70409

三角形“四心”向量形式的充要条件应用 1.O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 AB C AOB AOC BOC S 31 S S S ????= ==故=++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2.O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3.O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ?的充要条件是 ( ( ( =?=?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? ,O 是 ABC ?内心的充要条件也可以是c b a =++ 。若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r 是ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); (一)将平面向量与三角形内心结合考查 例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满 足 OA OP + +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 解析:因为 是向量AB u u u r 的单位向量设AB u u u r 与AC u u u r 方向上的单位向量分别为21e e 和, 又

三角形重心三角形重心定理

三角形重心-三角形重心定理 三角形中的几个重要定理 三角形中的几个重要定理 1.梅涅劳斯定理 一直线与ΔABC的三边AB、BC、CA或它们的延长线分别相交于X,Y,Z,AXBYCZ则 梅涅劳斯定理的逆定理也成立 在ΔABC的边AB、BC、CA分别取X,Y,Z. AXBYCZ 如果1,那么X,Y,Z三点共线。 XBYCZA 梅氏定理的逆定理常用来证明三点共线。

2. 塞瓦定理常可分为边元塞瓦定理和角元塞瓦定理。边元塞瓦定理:ΔABC内任取一点P,直线AP,BP,CP分别与边BC,CA,AB相交于点D,BDCEAF E,F,则 1. DCEAFB 边元塞瓦定理逆定理也成立: 在ΔABC的边BC,CA,AB上分别取点D,E,F,如果那么直线AD,BE,CF三线相交于同一点. 塞瓦定理的逆定理常用来证明三线共点。角元塞瓦定理 BDCEAF 1. DCEAFB A F M E B D

C 如图,设D、E、F 分别是△ABC 的三边BC、CA、AB 上的点,三条线段AD、BE、CF 交于一点M.则 对ΔABC与点M,有 sin BAMsin ACMsin CBM 1 sin MACsin MCBsin MBAsin BM Dsin MCAsin CBA 1 sin DMCsin ACBsin AMBsin CM Esin MABsin ACB 1 sin EMAsin BACsin BCM 对ΔMBC与点A,有 对ΔMCA与点B,有 对ΔMAB与点C,有 角元塞瓦定理的逆定理也成立。 sin AMFsin MBCsin BAC 1

sin FMBsin CBAsin CAM A D DE B F C B C E A F B E DA CF 如图,过△ ABC的三个顶点各引一条异于三角形三边的直线AD、BE、CF.若 sin BADsin ACFsin CBE 1,则AD、BE、CF三线共点或互相平行。

三角形五心及其性质延伸

三角形五心及其性质延伸 1.内心:三角形三条内角平分线的交点,也是三角形内切圆的圆心。 角平分线性质:到角两边距离相等. 内心性质:到三角形三边距离相等。 延伸:①内角平分线定理 如图,AD 为△ABC 中BAC ∠的平分线,则有 (=)AB BD AC DC =上左下左 上右下右 证明过程如下: 作BE E DAC ∠=∠∵BAD DAC ∠=∠,∴ E BAD ∠=∠,AB BE ==c. 又∵ BE BD =DC AB EB AC AC =()AB BD AC DC =同上AEC EAF ∠=∠EAF EAC ∠=∠, ∴AEC EAC ∠=∠,AC AE =. A B D C E c b c A B C D E F

又∵ CE BD = DC AB AB AC CE =BAC ∠2bccos 2cos 2211b+c +b c A A AD =(或 )⊥b c AD AC DE BE ==又+DE=AE AD ,即b b+c AD AE = .而△ABE 为等腰三角形, BF ⊥AE, ∴22sin =2csin 2 A AE AF AB BAF ==∠,∴2bccos 2cos 2211b+c +b c A A AD = (或 ). ④内心到三边距离r(三角形内切圆半径) 设三角形面积为S ,则有 2r=a+b+c S (即面积的2倍除以周长) 证明过程如下: 连接OA,OB,OC. ∵相切,∴OF AB ⊥,即S △AOB = 11cr 2 2 AB OF ?=,同理 S △AOC = 1br 2 ,S △BOC = 1ar 2 .又∵S=S △AOB + S △AOC + S △BOC ,即S= 1 (a+b+c)r 2 , ∴2r= a+b+c S . 2.重心:三角形三条中线交点 c b c A F B D C E B D C

三角形五心性质概念超全

三角形五心性质概念超全 The document was prepared on January 2, 2021

重心 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1),(x 2,y 2),(x 3,y 3) 平面上任意一点为(x ,y ) 则该点到三顶点距离平方和为: (x 1-x)2+(y 1-y)2+(x 2-x)2+(y 2-y)2+(x 3-x)2+(y 3-y)2 =3x 2-2x(x 1+x 2+x 3)+3y 2-2y(y 1+y 2+y 3)+x 12+x 22+x 32+y 12+y 22+y 32 =3[x-1/3*(x 1+x 2+x 3)]2+3[y-1/3*(y 1+y 2+y 3)]2+x 12+x 22+x 32+y 12+y 22+y 32-1/3(x 1+x 2+x 3)2-1/3(y 1+y 2+y 3)2 显然当x=(x 1+x 2+x 3)/3,y=(y 1+y 2+y 3)/3()时 上式取得最小值x 12+x 22+x 32+y 12+y 22+y 32-1/3(x 1+x 2+x 3)2-1/3(y 1+y 2+y 3)2 最终得出结论。 4、在中,重心的坐标是的, 即其坐标为[(X 1+X 2+X 3)/3,(Y 1+Y 2+Y 3)/3];

空间——:(X 1+X 2 +X 3 )/3,:(Y 1 +Y 2 +Y 3 )/3,:(Z 1 +Z 2 +Z 3 )/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则OG=1/3(向量OA+向量OB+向量OC) 内心 设△ABC的内切圆为☉I(r),∠A、∠B、∠C的对边分别为a、b、c, p=(a+b+c)/2. 1、三角形的内心到三边的距离相等,都等于内切圆半径r. 2、∠BIC=90°+∠BAC/2. 3、在RtΔABC中,∠A=90°,三角形内切圆切BC于D,则S△ABC=BD×CD 4、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是: 向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c). 5、在△ABC中,若三个顶点分别是A(x1,y1),B(x2,y2),C(x3,y3), 那么△ABC内心I的坐标是:

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC 中,L 、M 、N 分别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC 的重心. 证明2(向量法):(如图2)在ABC 中,设AB 边上的中 B C

线为CN ,AC 边上的中线为BM ,其交点为G ,边BC 的中点为L ,连接AG 和GL ,因为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量B G ∥BM ,所以,存在实数1λ ,使得 1BG BM λ= ,即 1()AG AB AM AB λ-=- 所以,11(1)AG AM AB λλ=+- =111 (1)2 A C A B λλ+- 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所 以存在实数2λ,使得 22(1)AG AN AC λλ=+- = 221(1)2 A B A C λλ+- 所以 111 (1)2A C A B λλ+- = 221(1)2 A B A C λλ+- 又因为 AB 、 A C 不共线,所以 12 21 112112 λλλλ=-=-?? ? 所以 122 3λλ== ,所以 1133 A G A B A C =+ . 因为L 是BC 的中点,所以G L G A AC C L =++ =111()332 A B A C A C C B -+++ =121()332AB AC AB AC -++- =1166 A B A C + ,即2AG GL = ,所以A 、G 、L 三点共线. 故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

三角形的五心

三角形的五心 三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心. 三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》) 分析:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点 N 是△P ′PC 的外心.有 ∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =2 1 ∠BAC . ∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC . 从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC . 例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS , △BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似. (B ·波拉索洛夫《中学数学奥林匹克》) 分析:设O 1,O 2,O 3是△APS ,△BQP , △CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外 心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C . ∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+ ∠O 2QO 3+∠O 3SO 1=360° 将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1, 同时可得△O 1O 2O 3≌△O 1KO 3. A B C P P M N 'A B C Q K P O O O ....S 123

三角形五心性质概念整理(超全)

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ) 平面上任意一点为(x,y)则该点到三顶点距离平 方和为: (x 1-x)2+(y 1 -y)2+(x 2 -x)2+(y 2 -y)2+(x 3 -x)2+(y 3 -y)2 =3x2-2x(x 1+x 2 +x 3 )+3y2-2y(y 1 +y 2 +y 3 )+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2 =3[x-1/3*(x 1+x 2 +x 3 )]2+3[y-1/3*(y 1 +y 2 +y 3 )]2+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 显然当x=(x 1+x 2 +x 3 )/3,y=(y 1 +y 2 +y 3 )/3(重心坐标)时 上式取得最小值x 12+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+ 向量OC)

三角形五心及其性质延伸

1 三角形五心及其性质延伸 1.内心:三角形三条内角平分线的交点,也是三角形内切圆的圆心。 角平分线性质:到角两边距离相等. 内心性质:到三角形三边距离相等。 延伸:①内角平分线定理 如图,AD 为△ABC 中B A C ∠的平分线,则有 (=)AB BD AC DC = 上左下左 上右下右 证明过程如下: 作BE//AC 交其延长线于E,则E D AC ∠=∠. ∵B A D D A C ∠=∠,∴E BAD ∠=∠,AB BE ==c. 又∵BE//AC,易证△ADC ∽ △EDB, ∴ B D =D C A B E B A C A C =,得证。 ②外角平分线定理 如图,AD 为△ABC 的外角平分线,交BC 延长线于D ,则有() A B B D A C D C =同上 证明过程如下: 作CE//AB 交AD 于E,则A E C E A F ∠=∠.∵E A F E A C ∠=∠, ∴AEC EAC ∠=∠,A C A E =. 又∵CE//AB,易证△ADB ∽ △EDC, ∴ B D =D C A B A B A C C E =,得证。 A B D C E c b c A B C D E F

③三角形内角平分线长公式 如图,AD 为△ABC 中B A C ∠的平分线,则有 2bc cos 2cos 2211b+c + b c A A AD = (或 ) 证明过程如下: 作BE//AC 交其延长线于E,BF ⊥AE 交其于F 。 由前文的内角平分线定理可知,△ADC ∽ △EDB, ∴ b c A D A C D E B E = = . 又+D E=AE AD ,即b b+c A D A E = .而△ABE 为等腰三角形, BF ⊥AE, ∴22sin =2c sin 2 A A E A F A B B A F ==∠,∴2bc cos 2cos 2211b+c + b c A A AD = (或 ). ④内心到三边距离r(三角形内切圆半径) 设三角形面积为S ,则有 2r= a+b+c S (即面积的2 倍除以周长) 证明过程如下: 连接OA,OB,OC. ∵相切,∴O F AB ⊥,即S △AOB = 11cr 2 2A B O F ?= ,同理 S △AOC = 1br 2 ,S △BOC = 1 ar 2 .又∵S=S △AOB + S △AOC + S △BOC ,即S= 1 (a+b+c)r 2 , ∴2r=a+b+c S . c b c A F B D C E B C

相关文档
最新文档