场效应晶体管的符号及转移特性

场效应晶体管的符号及转移特性
场效应晶体管的符号及转移特性

场效应晶体管的符号及转移特性结型N沟道结型P沟道

绝缘栅增强型N沟道绝缘栅增强型P沟道

绝缘栅耗尽型N沟道绝缘栅耗尽型P沟道

场效应晶体管特性

场效应管(FET)是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件,并以此命名。由于它仅靠半导体中的多数载流子导电,又称单极型晶体管。 工作原理场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的漏极电流,用以栅极与沟道间的pn结形成的反偏的栅极电压控制漏极电流ID”。更正确地说,漏极电流ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流漏极电流ID流动。从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,漏极电流ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。 在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。因漂移电场的强度几乎不变产生ID的饱和现象。其次,VGS向负的方向变化,让VGS=VGS(off),此时过渡层大致成为覆盖全区域的状态。而且VDS的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。 分类场效应管分为结型场效应管(JFET)和绝缘栅场效应管(MOS管)两大类。 按沟道材料型和绝缘栅型各分N沟道和P沟道两种;按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。 场效应管与双极性晶体管的比较,场效应管具有如下特点。 1. 场效应管是电压控制器件,栅极基本不取电流,它通过VGS(栅源电压)来控制ID(漏 极电流);而晶体管是电流控制器件,基极必须取一定的电流。因此,在信号源额定电流极小的情况,应选用场效应管。 2. 场效应管是多子导电,而晶体管的两种载流子均参与导电。由于少子的浓度对温度、 辐射等外界条件很敏感,因此,它的温度稳定性较好;对于环境变化较大的场合,采用场效应管比较合适。 3. 场效应管的源极和漏极在结构上是对称的,可以互换使用,耗尽型MOS 管的栅——源电压可正可负。因此,使用场效应管比晶体管灵活。 4 . 场效应管除了和晶体管一样可作为放大器件及可控开关外,还可作压控可变线性电阻使用 特点与双极型晶体管相比,(1)场效应管的控制输入端电流极小,因此它的输入电阻很大。 (2)场效应管的抗辐射能力强; (3)由于不存在杂乱运动的电子扩散引起的散粒噪声,所以噪声低。

场效应管特性

根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 -------------------------------------------------------------- 1.概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用: 场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器. 场效应管可以用作电子开关. 场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. 2.场效应管的分类:

场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类.见下图: 3.场效应管的主要参数: Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流. Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压. Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压. gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数. BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS. PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量. IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSM Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容 Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流 IDQ---静态漏极电流(射频功率管)

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

MOS管i-v特性

一、实验目的 分析mos晶体管i-v特性分析 二、实验要求 了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 三、实验内容 1、MOS器件的结构介绍 2、MOS的工作原理 3、i-v特性曲线 图1 原理图

1.特性曲线和电流方程 输出特性曲线 与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止 区和击穿区几部分。 转移特性曲线 转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和 区(恒流区),此时i D 几乎不随v DS 而变化,即不同的v DS 所对应的转移特性曲线几乎是重合的,所以可用v DS 大于某一数值(v DS >v GS -V T )后的一条转移特性曲线代替饱和区的所有转移特性曲线. i D 与v GS 的近似关系 与结型场效应管相类似。在饱和区内,i D 与v GS 的近似关系式为 ( v GS > V T ) 式中I DO 是v GS =2V T 时的漏极电流i D 。 2.参数 2 GS DO D )1(-=T V v I i

MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压V P,而用开启电压V T表征管子的特性。 MOS管 1. 基本结构 原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使v GS=0时,在这些正离子产生的电场作用下,漏-源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压v DS,就有电流i D。 如果加上正的v GS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,i D增大。反之v GS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,i D减小。当v GS负向增加到某一数值时,导电沟道消失,i D趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用V P表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压V P也为负值,但是,前者只能在v GS<0的情况下工作。而后者在v GS=0,v GS>0,V P

第三章:场效应管放大电路

场效应管放大电路

这一节我们来学习另一种放大器件——场效应管。它是通过改变输入电压来控制输出电流的,它是电压控制器件,它不吸收信号源电流,不消耗信号源功率,因此它的输入电阻很高,它还具有很好的温度特性、抗干扰能力强、便于集成等优点。 场效应管是靠一种极性的载流子导电,它又被称为单极性三极管,它分为结型场效应管(JFET)和绝缘栅场效应管(MOS管) 我们在学习时把这一章的内容分为三节,它们是 §3.1 场效应管的类型 §3.2 场效应管的主要参数和特点3§?.3总结 §3.1场效应管的类型(第一页) 这一节我们要了解场效应管的分类,各种场效应管的工作特点及根据特性曲线能判断管子的类型。 场效应管分为结型场效应管(JFET)和绝缘栅场效应管(MOS管) 一:结型场效应管 1.结型场效应管的分类?结型场效应管有两种结构形式。它们是N沟道结型场效应管(符号图为(1))和P沟道结型场效应管(符号图为(2)) 从图中我们可以看到,结型场效应管也具有三个电极, 它们是:G——栅极;D——漏极;S——源极。电路符号 中栅极的箭头方向可理解为两个PN结的正向导电方向。

2.结型场效应管的工作原理(以N沟道结型场效应管为例) 在D 、S间加上电压U DS,则源极和漏极之间形成电流ID,我们通过改变栅极和源极的反向电压UGS,就可以改变两个PN结阻挡层的(耗尽层)的宽度,这样就改变了沟道电阻,因此就改变了漏极电流ID。 3.结型场效应管的特性曲线(以N沟道结型场效应管为例) 输出特性曲线:(如图(3)所示)?根据 工作特性我们把它分为四个区域,即:可 变电阻区、放大区、击穿区、截止区。 ?对此不作很深的要求,只要求我们看 到输出特性曲线能判断是什麽类型的管 子即可 转移特性曲线: 我们 ? 根据这个特性关系可得出它的特性曲线 如图(4)所示。它描述了栅、源之间电压 对漏极电流的控制作用。 从图中我们可以看出当U GS=UP时I D=0。我们称UP为夹断电压。 注:转移特性和输出特性同是反映场效应管工作时,UGS、UDS、ID之间的关系,它们之间是可以互相转换的。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

场效应管的分类和作用

场效应管的分类和作用分别是什么? 根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 场效应管的作用 1、场效应管可应用于放大。由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。 2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。 3、场效应管可以用作可变电阻。 4、场效应管可以方便地用作恒流源。 5、场效应管可以用作电子开关。 场效应管的测试 1、结型场效应管的管脚识别: 场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。 2、判定栅极

用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。 制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。源极与漏极间的电阻约为几千欧。 注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。 3、估测场效应管的放大能力将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。这时表针指示出的是D-S极间电阻值。然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。 由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。本方法也适用于测MOS管。为了保护MOS 场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。 MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。 2.场效应管的分类: 场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类. 3.场效应管的主要参数:

晶体管输入输出特性曲线测试电路实验报告

实验题目:晶体管输入输出特性曲线测试电路的设计 班级: 学号: 姓名: 日期:

一、实验目的 1. 了解测量双极型晶体管输出特性曲线的原理与方法 2. 熟悉脉冲波形的产生和波形变换的原理与方法 3. 熟悉各单元电路的设计方法 二、实验电路图及其说明 晶体管共发射极输出特性曲线如图所示,它是由函数i c=f (v CE)|i B=常数,表示的一簇曲线。它既反映了基极电流i B对集电极电流i C 的控制作用,同时也反映出集电极和发射极之间的电压v CE对集电极电流i C的影响。 如使示波器显示图那样的曲线,则应将集电极电流i C取样,加至示波器的Y轴输入端,将电压v CE加至示波器的X轴输入端。若要显示i B为不同值时的一簇曲线,基极电流应为逐级增加的阶梯波形。通常晶体管的集电极电压是从零开始增加,达到某一数值后又回到零值的扫描波形,本次实验采用锯齿波。 测量晶体管输出特性曲线的一种参考电路框图如图所示。 矩形波震荡电路产生矩形脉冲输出电压v O1。该电路一方面经锯齿波形成电路变换成锯齿波v O2,作为晶体管集电极的扫描电压;另一方面经阶梯波形成电路,通过隔离电阻送至晶体管的基极,作为积极驱动电流i B,波形见图3的第三个图(波形不完整,没有下降)。 电阻R C将集电极电流取样,经电压变换电路转换成与电流i C成正比的对地电压V O3,加至示波器的Y轴输入端,则示波器的屏幕上便会显示出晶体管输出特性曲线。 需要注意,锯齿波的周期与基极阶梯波每一级的时间要完全同步(用同一矩形脉冲

产生的锯齿波和阶梯波可以很好的满足这个条件)。阶梯波有多少级就会显示出多少条输出特性曲线。另外,每一整幅图形的显示频率不能太低,否则波形会闪烁。 选作:晶体管特性曲线数目可调: 主要设计指标和要求: 1、矩形波电压(V O1)的频率f大于500Hz,误差为±10Hz,占空比为4%~6%,电压幅度 峰峰值大约为20V。 2、晶体管基极阶梯波V O3的起始值为0,级数为10级,每极电压0.5V~1V。 3、晶体管集电极扫描电压V O2的起始电压为0V,幅度大约为10V。 三、预习 理论计算:电路设计与仿真: 1.矩形波电路:仿真图如下:

MOS 场效应管的工作原理及特点

MOS 场效应管的工作原理及特点 场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。有N沟道器件和P 沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide SemIConductor FET)。 MOS场效应管 有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟 道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底(substrat),用符号B表示。 一、工作原理 1.沟道形成原理

当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着Vgs的继续增加,ID将不断增加。 在Vgs=0V时ID=0,只有当Vgs>Vgs(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图。 转移特性曲线斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也 称为跨导。 跨导的定义式如下: gm=△ID/△VGS| (单位mS) 2.Vds对沟道导电能力的控制 当Vgs>Vgs(th),且固定为某一值时,来分析漏源电压Vds对漏极电流ID的影响。Vds的不同变化对沟 道的影响如图所示。 根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,

场效应管参数解释(精)

场效应管 根据三极管的原理开发出的新一代放大元件,有 3个极性,栅极, 漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 -------------------------------------------------------------- 1. 概念 : 场效应晶体管(Field Effect Transistor缩写 (FET简称场效应管 . 由多数载流子参与导电 , 也称为单极型晶体管 . 它属于电压控制型半导体器件 . 特点 : 具有输入电阻高(100000000~1000000000Ω、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点 , 现已成为双极型晶体管和功率晶体管的强大竞争者 . 作用 : 场效应管可应用于放大 . 由于场效应管放大器的输入阻抗很高 , 因此耦合电容可以容量较小 , 不必使用电解电容器 . 场效应管可以用作电子开关 .

场效应管很高的输入阻抗非常适合作阻抗变换 . 常用于多级放大器的输入级作阻抗变换 . 场效应管可以用作可变电阻 . 场效应管可以方便地用作恒流源 . 2. 场效应管的分类 : 场效应管分结型、绝缘栅型 (MOS两大类 按沟道材料 :结型和绝缘栅型各分 N 沟道和 P 沟道两种 . 按导电方式 :耗尽型与增强型 , 结型场效应管均为耗尽型 , 绝缘栅型场效应管既有耗尽型的 , 也有增强型的。 场效应晶体管可分为结场效应晶体管和 MOS 场效应晶体管 , 而 MOS 场效应晶体管又分为 N 沟耗尽型和增强型 ;P 沟耗尽型和增强型四大类 . 见下图 : 3. 场效应管的主要参数 : Idss —饱和漏源电流 . 是指结型或耗尽型绝缘栅场效应管中 , 栅极电压 UGS=0时的漏源电流 . Up —夹断电压 . 是指结型或耗尽型绝缘栅场效应管中 , 使漏源间刚截止时的栅极电压 . Ut —开启电压 . 是指增强型绝缘栅场效管中 , 使漏源间刚导通时的栅极电压 . gM —跨导 . 是表示栅源电压 UGS —对漏极电流 ID 的控制能力 , 即漏极电流ID 变化量与栅源电压 UGS 变化量的比值 .gM 是衡量场效应管放大能力的重要参数 . BVDS —漏源击穿电压 . 是指栅源电压 UGS 一定时 , 场效应管正常工作所能承受的最大漏源电压 . 这是一项极限参数 , 加在场效应管上的工作电压必须小于BVDS.

晶体管特性曲线测试电路

近代电子学实验之晶体管特性曲线测试电路

2、锯齿波:幅度0—10V连线可调,输出极性可变。 3、阶梯波:3—10阶连线可调。 4、电压—电流变换器:0.001<=I1<=0.2(mA),输出电流方向可变(每阶0.001<=Ib<=0.02(mA))。 实验设计的基本原理: 三极管特性曲线测量电路的基本原理: 晶体三极管为电流控制器件,他们特性曲线的每一根表示当Ib一定时Vc与Ic的关系曲线,一簇表示不同Ib时Vc与Ic的关系曲线的不同关系曲线,就称为单晶体三极管的输出特性曲线,所以在晶体三极管的基级加上阶梯电流源表示不同 Ib。在每级阶梯内测量集射极电压 Vc和集电极定值负载电阻上的电压 Vr,通过电压变换电路将 Vr换算成集电极电流 Ic, 以 Ic作为纵轴, Vc 为横轴, 在数字示波器上即可显示一条晶体管输出特性曲线。示波器的地线与测量电路地不可相通。即测量电路的稳压电源不能接大地。(因为示波器外壳已接大地) 晶体三极管特性曲线测量电路原理框图如下: 框图 在本测量电路中,两种波形的准确性直接影响到了输出曲线的好坏。故在实验中需准确调整主要电阻电容的参数。

电阻R10右边输出的波形就是脉冲方波,之后经过U6积分后,在U6的6脚即可输出锯齿波。 电路中,R5和C1的参数会直接影响到输出锯齿波的波形好坏,所以应注意参数。 2、阶梯波产生部分电路 产生阶梯波的原理: 阶梯波电路如下, 十进制同步计数器 (异步清零 ) 74ls161构成八进制计数器, 将比较器 U1 输出矩形波接至其脉冲端作为触发信号,进行计数。八进制计数器四位输出经过八位 DAC0832进行转换成八级阶梯波电压信号, 再经过放大电路进行放大。 电路中的与非门用于调节阶梯波的阶数,从而实现输出特性曲线中的曲线条数可调。由于74ls161的输出Q0—Q3是四个数的组合,对于该电路使用二输入端与非门作为闸门控制,那么可以得到3—10阶之间的任意数字的阶梯。譬如:Q1、Q0组合,分别接入与非门的两端,那么就可以得到3阶的阶梯波;若Q2、Q3组合,分别接到与非门的两端,即可得到10阶的阶梯波。 该阶梯波是下降的阶梯波,对于实验的结果是不会影响的。 电路图如下:

MOS管特性(经典)

MOS管开关 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失

场效应管功能及参数介绍

2.2场效应管功能及参数介绍 开关电源的基本电路由“交流一直转换电路”, “开关型功率变换器”, “控制电路”和整流稳波电路”而组成.输入的电网电压通过“交流一直流转换电路”中的整流和稳器转换成直流电,该直流电源作为“开关型功率变换器”的输入电源,经过“开关型功率更换器”将直流电转变为高频脉冲电波电压输出给“整流滤波电路”,变成平滑直流供给负载,控制电路则起着控制“开关型功率变换器”工作的作用.开关型功率变换器是开关电源的主电路,开关电源的能量转换,电压变换就由它承担.在直流变换器的基础上,由于高频脉冲技术及开关变换技术的进一步发展,出现了推挽式开关型功率变换器,全挢式开关型功率变换器,半挢式﹑单端正激式.单端反激式开关型功率变换器.其控制方法可分为脉冲宽度调制(PWM)和脉冲频调制(PFM)两种. 开关电源最重要的组件是MOSFET,它的开通和关短控制着整个电源运转.MOSFET原意是MOS(METAL OXIDE SEWILONDUCTOR,金属氧化物半导体)FET(FIELD DFFECT TRAHSISTOR,场效应晶体),即以金属层(M)的栅极隔着氧化层(0),利用电场的效应来控制半导体(S)的场效应晶体管. 功率场应晶体管也分为结型绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semi Conductor FET),简称功率MOSFET(Power MOSPET).结型功率场效应晶体管一般称作静电感应晶体管(STATIC INTUCTION TRANSISTOR,缩写为SIT).其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,电流容量小,耐压低,一般只适用于功率不超过10KW的电力电子装置.国际整流器公司.(在International Rectifier,缩写IR)把MOSFET用于高压的器件归纳为第3,6,9代,其中包括3,5代,而用于低压的则为第5,7,8代. 功率MOSFET按导电沟通可分P沟道和N沟道;按栅极电压幅值可分为耗尽型(当栅极电压为零时漏,源极之间就存在导电沟道)和增强型(对于N或P沟道器,件栅极电压大珪或小于零时才存在导电沟道,功率MOSFET主要是N沟道增强型). 2.2.1.功率MOSFET的结构 功率MOSPET的内部结构和电气符号如下周所示,其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管.导电机理与小功率MOS管相同,但结构上有极大区别.小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET.大大提高了MOSFET 器件的耐压和耐电流能力. 按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET的结构为多元集.如国际整流器公司的HEXFET采用六边形单元;西门子公司的STPMOSFET采用了正方形单元;摩托罗拉公司的TMOS采用了矩形单元按“品”字形排列. 2.2.2功率MOSFET的工作方式 截止:漏极间加正电源,栅源极间电压为零.P基区与N漂移区之间形成的PN结,反偏;漏源极之间无电流流过. 导电:在栅源极间加正电压Vgs,栅极是绝缘的,所以不会有栅极电流流过.但栅极的正电压会将其下P区中的空穴推开.,而将P区中的少子---电子吸引到栅极下面的P区表面. 当Vgs大于UT(开启电压或阀值电压)时,栅极下面P区表面的电子浓度将超过空穴的浓度,P型半导体反型成N型而成为反型层,该反型层形成N沟道而PN结缩小消失,漏极和源极导电. 2.2.3功率MOSFET的基本特性 1.静态特性 其转移特性和转出特性如图所示 漏极电流Id和栅源间电压Vgs的关系为MOSFET的转移特性.Id较大时,Id与Vgs的关系近似线性 ,曲线的斜率定义为跨导Gfs.在恒流区内,N信道增强型MOSFET的Id可近似表示为: id=Ido(Vgs/VT-1)2 (Vgs>VT)

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)的结构和工作原理 1. JFET的结构和符号 N沟道JFET P沟道JFET 2. 工作原理(以N沟道JFET为例) N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0,在D-S间加一个正电压——V DS>0. 栅极—沟道间的PN结反偏,栅极电流i G≈0,栅极输入电阻很高(高达107Ω以上)。 N沟道中的多子(电子)由S向D运动,形成漏极电流i D。i D的大小取决于V DS的大小和沟道电阻。改变V GS可改变沟道电阻,从而改变i D。

主要讨论V GS对i D的控制作用以及V DS对i D的影响。 ①栅源电压V GS对i D的控制作用 当V GS<0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D≈0。这时所对应的栅源电压V GS称为夹断电压V P。 ②漏源电压V DS对i D的影响 在栅源间加电压V GS< 0 ,漏源间加正电压V DS > 0。则因漏端耗尽层所受的反偏电压为V GD=V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V GS=-2V, V DS =3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。 当V DS增加到使V GD=V GS-V DS =V P时,耗尽层在漏端靠拢,称为预夹断。 当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。由于夹断处电阻很大,使V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。预夹断后I D基本不随V DS增大而变化。

场效应管参数符号意义(精)

场效应管参数符号意义 来源: | 时间:2009年05月07日 Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容 Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流 IDQ---静态漏极电流(射频功率管) IDS---漏源电流 IDSM---最大漏源电流 IDSS---栅-源短路时,漏极电流

IDS(sat)---沟道饱和电流(漏源饱和电流) IG---栅极电流(直流) IGF---正向栅电流 IGR---反向栅电流 IGDO---源极开路时,截止栅电流 IGSO---漏极开路时,截止栅电流 IGM---栅极脉冲电流 IGP---栅极峰值电流 IF---二极管正向电流 IGSS---漏极短路时截止栅电流 IDSS1---对管第一管漏源饱和电流 IDSS2---对管第二管漏源饱和电流 Iu---衬底电流 Ipr---电流脉冲峰值(外电路参数) gfs---正向跨导 Gp---功率增益 Gps---共源极中和高频功率增益 GpG---共栅极中和高频功率增益 GPD---共漏极中和高频功率增益

ggd---栅漏电导 gds---漏源电导 K---失调电压温度系数 Ku---传输系数 L---负载电感(外电路参数) LD---漏极电感 Ls---源极电感 rDS---漏源电阻 rDS(on)---漏源通态电阻 rDS(of)---漏源断态电阻 rGD---栅漏电阻 rGS---栅源电阻 Rg---栅极外接电阻(外电路参数) RL---负载电阻(外电路参数) R(th)jc---结壳热阻 R(th)ja---结环热阻 PD---漏极耗散功率 PDM---漏极最大允许耗散功率 PIN--输入功率

绝缘栅场效应晶体管工作原理及特性

绝缘栅场效应晶体管工作原理及特性 场效应管(MOSFET)是一种外形与普通晶体管相似,但控制特性不同的半导体器件。它的输入电阻可高达1015W,而且制造工艺简单,适用于制造大规模及超大规模集成电路。场效应管也称为MOS管,按其结构不同,分为结型场效应晶体管和绝缘栅场效应晶体管两种类型。在本文只简单介绍后一种场效应晶体管。 绝缘栅场效应晶体管按其结构不同,分为N沟道和P沟道两种。每种又有增强型和耗尽型两类。下面简单介绍它们的工作原理。 1、增强型绝缘栅场效应管 2、图6-38是N沟道增强型绝缘栅场效应管示意图。 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,称为漏极D和源极S如图6-38(a)所示。然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装一个铝电极,称为栅极G。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。它的栅极与其他电极间是绝缘的。图6-38(b)所示是它的符号。其箭头方向表示由P(衬底)指向N(沟道)。 图6-38 N沟道增强型场效应管 场效应管的源极和衬底通常是接在一起的(大多数场效应管在出厂前已联结好)。从图 6-39(a)可以看出,漏极D和源极S之间被P型存底隔开,则漏极D和源极S之间是两个背靠背的PN结。当栅-源电压UGS=0时,即使加上漏-源电压UDS,而且不论UDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流ID≈0。 若在栅-源极间加上正向电压,即UGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同时P衬底中的电子(少子)被吸引到衬底表面。当UGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图6-39(b)所示。UGS增加时,吸引到P衬底表面层的电子就增多,当UGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图6-39(c)所示。UGS越大,作用于半导体表面的电场就越强,吸引到P衬底

MOS管的构造及MOS管种类和结构

MOS管的构造及MOS管种类和结构 随着社会的进步和发展,MOS管在电子行业的应用越来越广泛,萨科微电子SLKOR作为能够研发生产碳化硅SiC产品的“碳化硅专家”,必须来科普一下这方面的知识。 MOS即MOSFET的简写,全称是金属氧化物场效应晶体管。就是利用输入回路的电场效应来控制输出回路电流的一种半导体器件。MOS管的构造、原理、特性、符号规则和封装种类等,大致如下。 1、MOS管的构造: MOS管的构造是在一块掺杂浓度较低的P型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作为漏极D和源极S。然后在漏极和源极之间的P型半导体表面复盖一层很薄的二氧化硅(Si02)绝缘层膜,在再这个绝缘层膜上装上一个铝电极,作为栅极G。这就构成了一个N沟道(NPN 型)增强型MOS管。它的栅极和其它电极间是绝缘的。 同样用上述相同的方法在一块掺杂浓度较低的N型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的P+区,及上述相同的栅极制作过程,就制成为一个P沟道(PNP 型)增强型MOS管。图1-1所示(a )、(b)分别是P沟道MOS管道结构图和代表符号。 2、MOS 管的工作原理: 从图1-2-(a)可以看出,增强型MOS管的漏极D和源极S之间有两个背靠背的PN结。当栅-源电压VGS=0 时,即使加上漏-源电压VDS,总有一个PN结处于反偏状态,漏-源极间没有导电沟道(没有电流流过),所以这时漏极电流ID=0。此时若在栅-源极间加上正向电压,图1-2-(b)所示,即VGS>0,则栅极和硅衬底之间的SiO2绝缘层中便产生一个栅极指向P型硅衬底的电场,由于氧化物层是绝缘的,栅极所加电压VGS无法形成电流,氧化物层的两边就形成了一个电容,VGS等效是对这个电容充电,并形成一个电场,随着

相关文档
最新文档