有机介质中酶促有机化学反应

有机介质中酶促有机化学反应
有机介质中酶促有机化学反应

有机介质中的酶促有机反应

摘要:综述了有机介质中酶促有机化学反应的优点,反应的条件,有机介质对酶反应的影响,以及有机介质酶促反应在有机反应及药物合成中的应用。

关键词:有机介质酶促反应有机化学反应药物合成

Abstract:Review introduces the advantages of enzymatic organic chemical reactions in organic medium, reaction conditions, organic media's influence on the enzyme reaction, and organic medium enzymatic reaction in organic chemistry and the application of the drug synthesis.

Key words:organic medium enzymatic reaction organic chemical reactions drug synthesis

1.有机介质中的酶促反应概述

1.1有机介质酶促反应的优点传统观念认为[1] [3],酶促反应是在水溶液中进行的,又知道水是极性分子,酶只能在极性溶剂中反应,有机溶剂是酶的变性剂,使用有机溶剂时应尽可能短时间内去除,再把酶溶于水中,以防止酶的变性。

随着酶应用技术研究的深入,酶作为一种高效催化剂逐渐向更广泛的应用方面发展,1984年猪胰脂肪酶应用于有机溶剂中进行催化反应,结果发现其具有较高

的催化活性和极高的热稳定性,这一发现开辟了有机相酶促反应这一新的领域。从此酶的应用环境从水介质扩展到有机介质。酶在有机溶剂中不仅保持其生物

活性,而且还有许多突出的优点[1]:(1)增加某些有机底物的溶解度从而提高底物

浓度和产物浓度;(2)有机溶剂影响反应的平衡, 可控制反应向产物合成方向移动;(3)减少水介质可能带来的副反应;(4)酶在有机介质中的热稳定性增加。在

有机介质中脂肪酶可催化许多类型的反应,包括酯化反应、酯交换反应、内酯化反应、多肽合成、聚酯合成、外消旋化合物的动力学拆分及前手性化合物的合

成等。

1.2 有机介质酶促反应的条件

1.2.1必需水[1] [2]

1.概念紧紧吸附在酶分子表面,维持酶催化活性所必需的最少量水,亦称结合水或者束缚水

2.含量[1]一般因酶分子本身,或溶剂系统不同而有所不同。如脂肪酶有几个水

分子,胰凝乳蛋白酶几十个水分子,多酚氧化酶几百个水分子。另外同一个酶

在不同溶剂系统中含水量也不同。如胰凝乳蛋白酶在甲苯中含水0.5%,在氯仿

等系统中,含水1.0%,酶活性最高。

3.重要性水是保证酶催化反应的必需条件,酶活性构象的维系与水分子的氢键效应密切相关,与酶分子紧密结合的一单层水分子对催化作用非常重要,而其

他的水则没那么重要,也就是说只要必需水不丢失,其他大部分水可由有机溶剂代替。有机介质中的酶反应从微观上说就是水的酶反应。

1.2.2酶的选择

1、酶种类的选择:脂肪酶、蛋白酶、次黄嘌呤氧化酶、过氧化氢酶、过氧化物酶等。除与酶有关,还与酶-底物、产物-溶剂间关系有关。

2、酶形式的选择

(1)酶粉例如:有人研究a-胰凝乳蛋白酶在酒精中转酯反应,发现催化活性随反应体系中酶量的减少而显著增加。

(2)化学修饰酶例如:SOD酶经糖脂修饰后变成脂溶性,它对温度、pH、蛋白酶水解的稳定性均高于天然SOD。

(3)固定化酶把酶吸附在不溶性载体上(如硅胶、硅藻土、玻璃珠等)制成固定化酶,其对抗有机介质变性的能力、反应速度、热稳定性等都可提高。

1.2.3 溶剂及反应体系的选择

1.水溶性有机溶剂:甲醇、乙醇、丙醇、正丁醇、甘油、丙酮、乙晴等。

2.水不溶性的有:石油醚、己烷、庚烷、苯、甲苯、四氯化碳、氯仿、乙醚、戊醚等。

3.酶促反应有机介质体系:

(1)单相共溶剂体系(水/水溶性有机熔剂)

(2)两相体系(水/水不溶性有机溶剂)

(3)低水有机溶剂体系(有机溶剂体系)

(4)反胶束体系

1.2.4 pH选择和离子强度的影响[3]

(1)pH选择:在有机溶剂的环境中,不会发生质子化及脱质子化的现象。酶在水相的pH值可在有机相中保持,同一种酶不同来源,对pH值敏感程度大不相同。

(2)离子强度影响随冻干时用的缓冲溶液离子强度增大,酶活性会增大。

1.3 有机介质对酶性质的影响

1.3.1 稳定性

在低水有机溶剂体系中,酶的稳定性与含水量密切相关。一般在低于临界含水量范围内,酶很稳定,含水量超出临界含水量后酶稳定性随含水量的增加而急剧下降。

1.3.2 活性

(1)单相共溶剂体系中,有机溶剂直接作用于酶。有些酶的活性会随着某些有机溶剂浓度升高而增大,在某一浓度(最适浓度)达到最大值;若浓度再升高,则活性下降。

(2)低水有机溶剂体系中,大部分酶活性得以保存,但也有某些酶活性亦变化。例有人对吸附在不同载体上的胰凝乳蛋白酶或乙酸脱氢酶在各种水活度下的酶活性研究表明,酶活性随水活度大小而变化,在一定水活度下,酶活性随载体不同而变化。

(3)在反向微团体系中,微团效应使某些酶活性增加。

1.3.3 专一性

某些有机介质可能使某些酶的专一性发生变化,这是酶活性中心构象刚性增强的结果。有些在水中不能实现的反应途径,在有机介质中却成为主导反应。

2.有机介质酶促反应在有机化学反应中的应用

2.1 酯合成

在有机介质中进行酶促酯化反应有着传统化学方法无可比拟的优点。为了解决维生素A在空气中易氧化变质的问题,人们采用了酯化法将维生素A进行修饰,但是酯化过程中产生的副产物较多、收率不高。而在有机溶剂中进行酶催化酯化,则克服了上述缺点。宋欣[4]等利用自制的丝孢酵母脂肪酶在正己烷中利用长链不饱和亚油酸和油醇合成了亚油酸油醇酯,这是一种可用作高级润滑剂的酯蜡。而传统的化学合成方法不但需要高温高压及强酸等苛刻条件,副反应多,产物的分离纯化困难,生产成本高,而且对于长链脂肪酸和醇之间的反应难度增大。

2.2 酯交换反应

酯交换反应(又称转酯化反应)是一类有重要应用价值的酯化反应, 主要被用于油脂工业中来改良天然油脂的组成和物理性质。为了获得具有一定物理和化学性质的油脂, 需要改变一些天然油脂的部分组成, 即去掉某些脂肪酸残基, 而引入某些所需的脂肪酸, 实现酰基间的交换。丁永学[5]等在多种有机溶剂中利用脂肪酶催化消旋化的环戊烯酮与乙酸乙烯酯的转酯反应,由于只有R型环戊烯酮参与反应,从而得到了旋光度很高的S型环戊烯酮。最后,经进一步的化学反应得到了光学纯的丙烯菊酯,丙烯菊酯是一种高效、低毒杀虫剂,其S 型旋光异构体的药效比R型高2~5倍。

2.3高分子聚合物的合成

根据酶在生物体内可以催化合成多糖、蛋白质等生物大分子,近年来人们研究了酶在体外状态下催化合成高分子聚合物。国内外利用生物酶催化合成高分子的研究已有很多报道,如过氧化酶中的辣根酶、酚氧化酶中的漆酶、酪氨酸酶可以催化芳香胺、酚或取代酚类化合物聚合合成高分子,脂肪酶可催化合成聚酯,糖苷酶可催化合成聚糖等。从目前的发展来看,利用生物酶催化聚合合成高分子化合物是高分子学科的前沿领域之一。

2.4 肽合成

在自然界,大多数蛋白质与活性肽是由一个氨基酸的α羧基与另一氨基酸α

氨基形成肽键。在无水第三戊醇中,用枯草杆菌酶作催化剂,当氨基组分为赖氨酸时,α-氨基不参与反应,只有ε-氨基参与肤键的形成得到纯的ε-异体。在无水甲苯或四氢吠喃中,猪胰脂肪酶可以催化肽键的形成,肽的N-端也可以是D-构型的氮基酸。[1]

2.5 其它

除了上述的典型反应,酶在有机介质中还能催化其它类型的反应。猪胰脂肪酶和Candidacylindracea 脂肪酶在四氯化碳中可以催化对甲氧基苯胺与丙炔酸乙酯反应制备丙炔酰胺。而常规化学合成会在三键上发生Michaels加成反应。

另外, 脂肪酶还能够催化过氧化氢氧化羧酸形成过氧酸,因而就可以将脂肪酶催化的过氧酸酸形成反应与由过氧酸促成的烯烃环氧化相偶联, 反应可以烯烃本身为溶剂,脂肪酶和羧酸均只需极少量即可。例如,环己烯在脂肪酶、过氧化氢及少量长链或中链脂肪酸的作用下即可发生环氧化。另外长链末端烯烃也可发生类似的环氧化形成某些有重要工业价值的烯烃化合物。

3.有机介质酶促反应在药物合成中的应用

3.1 手性药物的拆分

3.1.1背景制备光学活性化合物一直是有机合成的难题。药物的药理作用与其结构有着密切的关系,许多药物必须具有光学纯的形态才能发挥疗效,对手性药物而言,不同对映体的药效、代谢过程及副作用程度存在着很大差异。近年来酶法拆分光学异构体得到了迅速发展,利用酶的高度立体选择性在有机相中进行生物转化的研究越来越多,并已成为制备光学活性化合物的重要途径。脂肪酶、蛋白酶等在有机溶剂中对某些手性化合物表现出高度的立体选择性及高转化率。

3.1.2 有机介质中的酶促酯化或转酯反应制备手性药物

有机介质中的酶促酯化或转酯反应过程中,根据热力学原理,反应物醇或酸的一种对映体容易参与反应,而另一种对映体的醇或酸不容易参与反应从而实现光学拆分。

(1)转酯反应拆分手型药物

2-氨基丙醇是合成左旋氧氟沙星的中间体,其(S)(+)型异构体才具有药理活

Et 对氨基进行保护,然后在乙酸乙酯中利用胰脂酶作性。韦丽红[6]等先用ClCO

2

为催化剂进行转酯反应,控制反应使R型异构体的酯交换速率远远大于S型异构体,最后经处理得到(S)(+)2-氨基丙醇,收率达97%。无论是从经济角度还是从实用角度来讲,这一结果都非常可观,是化学催化剂不可比拟的。有机相酶催化转酯化反应拆分西酞普兰中间体[7],抗抑郁药物西酞普兰(citalopram) 是新一代5-羟色胺(5-HT) 再摄取抑制剂(SSRIs)与其它的SSRIs相比,对5-HT 的再摄取抑制性强、选择性高。研究表明,S型西酞普兰的活性是R型的100 倍以上。(S)-4-[4-(二甲基氨基)-1-(4-氟苯基)-1-羟基丁基]-3-(羟基甲基)苄腈是合成(S)-西酞普兰的重要中间体,其季碳手性中心上连接有一个叔醇,目前可通过化学法和酶法拆分二醇得到S型单一对映体,进一步反应得到(S)-西酞普兰。化学法例如诱导结晶和手性色谱分离存在成本高、所得产品旋光纯度低、收率低等问题。与化学法相比,酶法拆分具有反应条件温和、高度的选择性等优点, 酶促拆分手性药物在光学纯化合物的制备方面显示出巨大的开发潜力及广阔的应用前景。脂肪酶催化选择性催化伯醇与仲醇反应已得到广泛应用,由于空间位阻作用,只有少量酶对含有季碳手性中心的叔醇有选择性。研究表明,来源于南极洲假丝酵母(Candia antarctica)和洋葱假单胞菌(Pseudomonas cepacia)的脂肪酶可通过催化距离季碳手性中心四个化学键的伯羟基发生转酯化或水解反应远程拆分二醇,且具有较好的选择性。

(2)酯化反应拆分手型药物

与消旋醇的拆分原理相似,酸在参与非水酶促酯化反应过程中只有一种对映体容易参与反应,从而使消旋体得到拆分。萘普生、布洛芬、酮洛芬等非甾体消炎药的不同对映体的生理活性有差别,已证实S型萘普生在体内的抗炎活性是R

CHArCOOH)的衍生物,光学纯萘普生、型的28倍。这些消炎药都是2-芳基丙酸(CH

3

布洛芬等是由光学纯2-芳基丙酸制备的。Tsai 等利用脂肪酶在有机溶剂中通过立体选择性酯化反应得到了光学纯的芳基丙酸,从而进一步得到高效的非甾体消炎药。

3.1.3 有机介质中的酶促水解反应制备手性药物

某些酶在水解酯的过程中,只能作用于单一对映体的酯得到光学活性的酸或醇,而另一对映体的酯不被水解,从而得到光学纯的产物酸或醇。脂肪水解酶、蛋白水解酶以及酯酶是常用的水解酶。Vantol 等在有机溶剂中采用猪胰脂肪酶水解2,3环氧丙醇丁酸酯,得到了单一对映体的环氧丙醇。环氧丙醇是合成一种β受体阻断剂类药物的中间体。普萘洛尔的S型异构体可用于治疗高血压和心肌梗塞,其合成中间体为(±)-1-氯-3-(1-萘氯)-2-丙醇,即萘氧氯丙醇。Bevinakatti[8]等先制备了消旋的萘氧氯丙醇酯,再利用脂肪酶在有机溶剂中水解外消旋的萘氧氯丙醇酯,得到了高对映体过量值(大于95%)的R酯,而S酯水解得到了酸和醇。最后由光学纯的萘氧氯丙醇制备了S型普萘洛尔。

4.结语

综上所述,有机溶剂中的酶催化在精细化工,医药和特种新材料的研制与主产中具有广阔的应用前景,酶在有机介质中的反应无论对酶学家还是对化学家来都是一个具有魅力的新领域。大量的实验已有力地证明了酶在有机溶剂中可以保持其生物活性而且可以顺利地进行某些极有意义的反应,并在有机合成反应中表现了良好的应用前景。但是影响酶在有机溶剂中的反应因素是复杂的,溶剂的性质,不同酶在不同溶剂中对必需水含量的要求,底物性质等都影响了反应的产率与选择性(区域选择性和立体选择性)对于在有机介质中进行酶促反应的内在规律及对反应结果的预测还有待于进行大量的实验与深人的研究才能得到满意的回答。

参考文献:

20 [1]叶蕴华,在有机溶剂中进行的酶催化反应,大学化学,1992,4(7):17

~ [2]叶蕴华,谢海波,田佳玲,非水溶剂中酶反应研究进展[J],化学通报,1994,10:5

6

~

8

[3]曹淑桂,有机溶剂中酶催化研究的新进展[J],化学通报,1995,5,5

~

[4]宋欣,曲音波,非水介质中脂肪酶催化亚油酸油醇醋合成的研究[J],微生物学通报,2000,27(3):195

[5]丁永学,张铭俊,虞星炬,有机相酶催化酯交换反应拆分环戊烯酮的研究[J],化学通报,2000,6:46

[6]韦丽红,李志远 ,陈治宇 ,刘进军,酶催化酯交换法拆分手性2-氨基丙醇光

学异构体[J],中国药物化学杂志,2002,1(12),43

[7]王世珍 ,吴坚平, 徐刚,杨立荣,有机相酶催化转酯化反应拆分西酞普兰中

1585

间体[J],有机化学,2008,9(28):1584

~

[8]H.S.Bevinakatti;A.A.Banerji.Practical Chemoenzymatic Synthesis of Both Enantiomers of Propranolol[J]https://www.360docs.net/doc/205465487.html,.Chem.1991,56:5372~5375

化学有机化学机理题Word版

有机化学试卷 班级姓名分数 一、机理题 ( 共44题 288分 ) 1. 8 分 (2701) 2701 为下述实验事实提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体)。 邻苯二甲酰亚胺用Br2-NaOH处理获得邻氨基苯甲酸。 2. 8 分 (2702) 2702 为下述实验事实提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体。 2,4-二硝基氟苯(A)及2,4-二硝基溴苯(B)分别用C2H5NH2处理,都获得N-乙基-2,4-二硝基苯胺,但A比B速率快。 3. 8 分 (2703) 2703 为下述实验事实提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体)。 异丙苯过氧化氢用酸处理,获得苯酚和丙酮(石油化工生产)。 4. 8 分 (2704) 2704 为下述实验事实提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体)。 用14C标记的2-甲基-6-烯丙基苯酚的烯丙醚(A)加热发生Claisen重排反应,生成的2-甲基-4,6-二烯丙基苯酚中有一半以上含14C的烯丙基在对位。

5. 6 分 (2705) 2705 为下述实验事实提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体)。 邻位和对位的羟基苯甲酸容易失羧,而间位异构体无此特征。 6. 6 分 (2706) 2706 为下述实验事实提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体)。 旋光的苯基二级丁基酮在碱性溶液中发生外消旋化;这个酮失去旋光性的速率正好和它在碱性条件下溴化的速率相等。 7. 6 分 (2707) 2707 为下述实验事实提出合理的、分步的反应机理。 旋光的扁桃酸乙酯[C6H5CH(OH)CO2C2H5]在碱性条件下易外消旋化。 8. 6 分 (2708) 2708 为下述实验事实提出合理的、分步的反应机理。 旋光的扁桃酸[C6H5CH(OH)CO2H]在碱中的外消旋化比其酯慢得多。 9. 6 分 (2709) 2709 为下述实验事实提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体)。 苯基二级丁基酮进行酸催化的外消旋化与其碘代反应的速率常数相等。 *. 6 分 (2710) 2710 为下述实验事实提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体)。 醇醛缩合(aldol)反应亦可酸催化,如乙醛在酸催化下可生成-羟基丁醛。

基础有机化学反应总结

基础有机化学反应总结 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH -

【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】 2 C H 33H 32 3H 32 CH CH 2C H 3 2 CH CH=CH (CH 3CH 2CH 2)3 - H 3CH 2CH 2C 22CH 3 CH 2O CH 2CH 2CH 3 3CH 2CH 2C 2CH 2CH 3 + O H - O H B - OCH 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2B OCH 2CH 2CH 3 CH 2CH 2CH 32CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH3NaOH 3HOCH 2CH 2CH 33 + Na 3BO 3 2 【例】 CH 3 1)BH 32)H 2O 2/OH -CH 3 H H OH 3、X 2加成 C C Br /CCl C C Br Br 【机理】

大学有机化学知识点总结(推荐文档)

有机化学复习总结 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1 )伞形式: COOH OH H 3 2)锯架式:CH 3 OH H H OH C 2H 5 3) 纽曼投影式: H H 4)菲舍尔投影式:COOH CH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅 式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型, 在相反侧,为E 构型。 CH 3 C H C 2H 5CH 3C C H 2H 5Cl (Z)-3-氯-2-戊烯 (E)-3-氯-2-戊烯 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式; 在相反侧,则为反式。

酶催化反应的介质

第五章非水酶学 非水相酶催化的优点: 1、增强难溶于水的反应物的溶解度。 2、在有机介质中改变反应平衡。 3、酶制剂易于回收再利用。 For personal use only in study and research; not for commercial use 4、在有机溶剂中可增强酶的稳定性。 5、在有机溶剂中可改变酶的选择性。 6、不会或很少发生微生物污染。 第一节酶催化反应的介质 水是酶促反应最常用的反应介质。 但对于大多数有机化合物来说,水并不是一种适宜的溶剂。因为许多有机化合物(底物)在水介质中难溶或不溶。 由于水的存在,往往有利于如水解、消旋化、聚合和分解等副反应的发生。 是否存在非水介质能保证酶催化?? 1984年,克利巴诺夫等人在有机介质中进行了酶催化反应的研究,他们成功地在利用酶有机介质中的催化作用,获得酯类、肽类、手性醇等多种有机化合物,明确指出酶可以在水与有机溶剂的互溶体系中进行催化反应。 酶非水相催化的几种类型 有机介质中的酶催化 有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催化反应。适用于底物、产物两者或其中之一为疏水性物质的酶催化作用。 气相介质中的酶催化 酶在气相介质中进行的催化反应。适用于底物是气体或者能够转化为气体的物质的酶催化反应。由于气体介质的密度低,扩散容易,因此酶在气相中的催化作用与在水溶液中的催化作用有明显的不同特点。 超临界介质中的酶催化 酶在超临界流体中进行的催化反应。超临界流体是指温度和压力超过某物质超临界点的流体。 离子液介质中的酶催化 酶在离子液中进行的催化作用。离子液(ionic liquids)是由有机阳离子与有

有机介质中酶促有机化学反应

有机介质中的酶促有机反应 摘要:综述了有机介质中酶促有机化学反应的优点,反应的条件,有机介质对酶反应的影响,以及有机介质酶促反应在有机反应及药物合成中的应用。 关键词:有机介质酶促反应有机化学反应药物合成 Abstract:Review introduces the advantages of enzymatic organic chemical reactions in organic medium, reaction conditions, organic media's influence on the enzyme reaction, and organic medium enzymatic reaction in organic chemistry and the application of the drug synthesis. Key words:organic medium enzymatic reaction organic chemical reactions drug synthesis 1.有机介质中的酶促反应概述 1.1有机介质酶促反应的优点传统观念认为[1] [3],酶促反应是在水溶液中进行的,又知道水是极性分子,酶只能在极性溶剂中反应,有机溶剂是酶的变性剂,使用有机溶剂时应尽可能短时间内去除,再把酶溶于水中,以防止酶的变性。 随着酶应用技术研究的深入,酶作为一种高效催化剂逐渐向更广泛的应用方面发展,1984年猪胰脂肪酶应用于有机溶剂中进行催化反应,结果发现其具有较高 的催化活性和极高的热稳定性,这一发现开辟了有机相酶促反应这一新的领域。从此酶的应用环境从水介质扩展到有机介质。酶在有机溶剂中不仅保持其生物 活性,而且还有许多突出的优点[1]:(1)增加某些有机底物的溶解度从而提高底物 浓度和产物浓度;(2)有机溶剂影响反应的平衡, 可控制反应向产物合成方向移动;(3)减少水介质可能带来的副反应;(4)酶在有机介质中的热稳定性增加。在 有机介质中脂肪酶可催化许多类型的反应,包括酯化反应、酯交换反应、内酯化反应、多肽合成、聚酯合成、外消旋化合物的动力学拆分及前手性化合物的合 成等。 1.2 有机介质酶促反应的条件 1.2.1必需水[1] [2] 1.概念紧紧吸附在酶分子表面,维持酶催化活性所必需的最少量水,亦称结合水或者束缚水 2.含量[1]一般因酶分子本身,或溶剂系统不同而有所不同。如脂肪酶有几个水 分子,胰凝乳蛋白酶几十个水分子,多酚氧化酶几百个水分子。另外同一个酶 在不同溶剂系统中含水量也不同。如胰凝乳蛋白酶在甲苯中含水0.5%,在氯仿 等系统中,含水1.0%,酶活性最高。 3.重要性水是保证酶催化反应的必需条件,酶活性构象的维系与水分子的氢键效应密切相关,与酶分子紧密结合的一单层水分子对催化作用非常重要,而其 他的水则没那么重要,也就是说只要必需水不丢失,其他大部分水可由有机溶剂代替。有机介质中的酶反应从微观上说就是水的酶反应。

大学有机化学人名反应机理汇总

3.Baeyer----Villiger 反应拜耳-维立格氧化重排反应 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 4.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变。 7.Cannizzaro 反应 凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇: 脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。 醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。 9.Claisen 酯缩合反应

含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。 乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的 pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。 10.Claisen 重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。

大学有机化学反应方程式总结较全完整版

大学有机化学反应方程 式总结较全 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

有 机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3CH + CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。

【机理】 2 C H3 3 H3 2 3 H3 2 CH CH2 C H3 2 CH CH=CH (CH3CH2CH2)3 - H3CH2CH2C 22 CH3 CH2 O CH 2 CH2CH3 H3CH2CH2C 2 CH2CH3 +O H- O H B-OCH2CH2CH3 CH2CH2CH3 H3CH2CH2C B OCH2CH2CH3 CH2CH2CH3 2 CH2CH3 HOO- B(OCH2CH2CH3)3 B(OCH2CH2CH3)3+3NaOH3NaOH3HOCH2CH2CH33+Na3BO3 2 【例】 CH3 1)BH 3 2)H 2 O 2 /OH- CH3 H H OH 3、X 2 加成 C C Br/CCl C C Br Br 【机理】 C C C C Br Br C Br +C C Br O H2+ -H+ C C Br O H

大学有机化学复习重点总结归纳

欢迎阅读 有机化学复习总结 一.有机化合物的命名 1.能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2.根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1)伞形式:C COOH OH H 3C H 2)锯架式:CH 3 OH H H OH C 2H 5 3)纽曼投影式: H H H H H H H H H H H H 4)菲舍尔投影式:COOH CH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。 3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。然后将最不优先的基团放在远离观察者,再以次观察其它三个基团,如果优先顺序是顺时针,则为R 构型,如果是逆时针,则为S 构型。 注:将伞状透视式与菲舍尔投影式互换的方法是:先按要求书写其透视式或投影式,然后分别标出其R/S 构型,如果两者构型相同,则为同一化合物,否则为其对映体。 二.有机化学反应及特点 1.反应类型 还原反应(包括催化加氢):烯烃、炔烃、环烷烃、芳烃、卤代烃

有机化学中用来研究反应机理的方法

有机反应机制的研究方法 有机化学中用来解释反应机理的传统方法主要集中在Kinetics 和Dynamics两方面,即理解势能面、深入研究分子运动和碰撞、测定活化参数、测定速率常数、确定某个反应机理中一系列化学步骤的顺序、确定反应限速步骤和决速步骤。 研究机理的关键目的是反应机理知识可以对如何在原子或分子水平上操纵物质给出最快速的洞察,而不是依靠运气来获得偶然性的变化从而获得想要的结果。由于动力学在辨别机理方面起着关键作用,所以动力学是整个有机反应机理研究领域中最重要的分支之一。 传统的反应机理研究方法除了动力学分析之外,还有同位素效应、结构-功能分析等。这些都是研究有机反应机理的标准实验工具,然后实验化学家可以根据其想象力和化学创造性,设计出一些完全不同于之前出现过的研究方法。因此,本文总结了一些最为常见的方法。首先分析最简单的实验,例如产物和中间体的鉴定。但也会分析一些更为微妙、精细的实验,如交叉和同位素置乱(cross-over and isotope scrambling)实验。 1.改变反应物结构以转变或捕获预想的中间体 有时可以通过合成一种类似于所研究的反应物的新反应物来破译中间体的性质,但是这需要所预测的中间体能以一种可预想的方式进行反应。没有标准的方式来处理这一类实验,所以实验者必须根据具体实验情况来设计实验。下面以酶反应作为此方法的应用实例。 Lin[1]等人设计了一种转变中间体的方法。扁桃酸消旋化酶可使扁

桃酸根离子的对映体(2-羟基苯甲酸)互换。位于羧酸跟α位的碳负离子被认为是中间体。为了测试此中间体是否存在,作者合成设计了扁桃酸跟离子的类似物i,并用酶对其进行了外消旋化。其过程是首先形成碳负离子,然后经过溴化物的1,6-消除,最后经过互变异构化,分离得到产物ii。此结果支持了在扁桃酸根离子路径中碳负离子中间体iii的存在。 2.捕获实验和竞争实验 鉴定中间体的一种常见方法是通过加入额外的试剂来捕获中间体。目前存在着几种自由基不伙计,许多好的亲核试剂是半衰期很短的亲电试剂(如碳正离子)的可行的捕获剂。必须以自己的化学知识来设计捕获中间体(如碳正离子、卡宾等)的捕获剂。但是活泼中间体的半衰期很短,所以捕获剂必须是具有很高的活性,并能与活泼中间体的标准反应路径进行竞争。同样,因为捕获反应是典型的双分子反应,所以要求捕获剂具有高的浓度。另外,还可以将捕获剂与反应物共价结合,以便更容易地捕获活泼中间体。 与捕获反应所不同的另一种反应是竞争反应。在一般的动力学实

有机化学反应机理+范例+原理

1.A rndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 反应机理 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例

2.Baeyer----Villiger 反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例

酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。 3.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如: 反应实例

大学有机化学复习重点总结

有机化学复习总结 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1)伞形式:C COOH OH H 3C H 2)锯架式:CH 3 OH H H OH C 2H 5 3) 纽曼投影式: H H H H H H H H H H H H 4)菲舍尔投影式:COOH CH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅 式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一 侧,为Z 构型,在相反侧,为E 构型。 CH 3 C C H Cl C 2H 5CH 3C C H C 2H 5Cl (Z)-3-氯-2-戊烯 (E)-3-氯-2-戊烯 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧, 则为顺式;在相反侧,则为反式。 CH 3C C H CH 3H CH 3C C H H CH 3顺-2-丁烯 反-2-丁烯CH 3 H CH 3 H CH 3 H H CH 3顺-1,4-二甲基环己烷反-1,4-二甲基环己烷 3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。然后将最不优先的基团放在远离观察者,再以次观察其它三个基团,如果优先顺序

大学有机化学1要点及反应总结最新版本

Chap 1绪论 一、构造、构型、构象 二、共价键 轨道杂化:C:sp、sp2、sp3杂化方式、空间构型(键角)、未参与杂化p轨道与杂化轨道位置、电负性比较 基本属性:键长:越短键越牢固键能:越大键越牢固σ键能大于п键能 键角:取代基越大键角越大极性和极化性:偶极矩(会判断偶极矩大小:矢 量和) 键断裂方式和反应类型:自由基反应、离子型(亲电、亲核)、周环反应 Lewis酸、碱 氢键、电负性 三、官能团、优先次序(ppt) Chap 2饱和烃——烷烃 一、烃分类 烃:开链烃和环状烃 开链烃:饱和烃和不饱和烃环状烃:脂环烃和芳香烃 二、烷烃通式和构造异构、构象异构(乙烷和丁烷构象) 烷烃通式:C n H2n+2 构造异构体:分子内原子链接顺序不同 σ键形成及特性:电子云重叠程度大,键能大,不易断;可绕轴自由旋转;两核间不能有两个或以上σ键。 乙烷构象:Newman投影式、重叠式(不稳定,因为非键张力大)、交叉式(稳定,各个氢距离远,非键张力小) 丁烷构象:Newman投影式;稳定性(大到小):对位交叉式、邻位交叉式、部分重叠式、全部重叠式 甲烷结构和sp3杂化构型:正四面体型 三、命名 普通命名法(简单化合物):正、异、新 衍生物命名法:以甲烷为母体,选取取代基最多的C为母体C。 系统命名法:①选取最长碳链为主链,主链C标号从距离取代基最近的一端开始标。 ②多取代基时,合并相同取代基,尽量使取代基位次和最小。书写时按照 官能团大小(小在前)命名 ③含多个相同长度碳链时,选取取代基最多的为主链 四、物理性质 沸点(b.p.):直链烷烃随分子量增大而增大(分子间色散力与分子中原子大小和数目成正比,分子量增大,色散力增大,沸点增大) 支链越多,沸点越低(支链多,烷烃体积松散,分子间距离大,色散力小)熔点(m.p.):总趋势:分子量增大,m.p.增大 m.p.曲线(书P48) 相对密度:分子量增大,相对密度增大,接近于0.8 溶解度:不溶于水,易溶于有机溶剂(相似相溶,烷烃极性小)

有机化学重要反应和机理以及总结

目录 第一部分有机化学重要反应和机理 (1) Arbuzov 反应 (1) Arndt-Eister 反应 (2) Baeyer-Villiger 反应 (2) Beckmann 重排 (4) Birch 还原 (4) Bouveault---Blanc 还原 (5) Bamberger,E.重排 (6) Berthsen,A.Y 吖啶合成法 (7) Bucherer反应 (8) Cannizzaro 反应 (9) Chichibabin 反应 (10) Claisen 酯缩合反应 (11) Claisen—Schmidt 反应 (12) Claisen 重排 (13) Clemmensen 还原 (15) Combes 喹啉合成法 (15) Cope 消除反应 (16) Cope 重排 (17) Curtius 反应 (18) Crigee,R 反应 (19) Dakin 反应 (20) Elbs 反应 (21) Edvhweiler-Clarke 反应 (21) Elbs,K.过硫酸钾氧化法 (22) Favorskii 反应 (23) Favorskii 重排 (24) Friedel-Crafts 烷基化反应 (24) Friedel-Crafts 酰基化反应 (25) Fries 重排 (26) Fischer,O-Hepp,E 重排 (27) Gabriel 合成法 (27) Gattermann 反应 (28)

Gattermann-Koch 反应 (29) Gomberg-Bachmann 反应 (29) Hantzsch 合成法 (30) Haworth 反应 (31) Hell-Volhard-Zelinski 反应 (31) Hinsberg 反应 (32) Hofmann 烷基化 (32) Hofmann重排 (33) Hofmann 消除反应 (34) Houben-Hoesch 反应 (35) Hunsdieecker 反应 (35) Kiliani 氯化增碳法 (36) Knoevenagel 反应 (36) Koble 反应 (37) Koble-Schmitt 反应 (37) Kolbe,H.Syntbexis of Nitroparsffini 合成 (38) Leuckart 反应 (39) Lossen 反应 (39) Mannich 反应 (40) Meerwein-Ponndorf 反应 (41) Michael 加成反应 (42) Martius,C.A. 重排 (42) Norrish Ⅰ和Ⅱ型裂 (43) Oppenauer 氧化 (44) Orton,K.J.P 重排 (45) Paal-Knorr 反应 (45) Pschorr 反应 (46) Prileschajew,N.反应 (47) Prins,H.J 反应 (48) Pinacol-Pinacolone Rearrangement 重排 (49) Perkin,W.H 反应 (49) Pictet-Spengler 合成法-异喹啉 (50) Reformatsky 反应 (51) Reimer-Tiemann 反应 (52) Reppe 合成法 (53) Robinson 缩环反应 (53) Rosenmund 还原 (54)

有机化学反应机理

有机化学反应机理

有机化学反应机理 对于均裂反应来说:反应物既提供电子又接受电子注意:提供和接受的电子均为单电子 对于异裂反应来说: 提供和接受的电子为电子对 反应物的分类:亲核试剂:电子云密度高的中性分子或带负电荷的原子、原子团或 分子(又为Lewis 碱)。 亲电试剂:电子云密度低的中性原子、原子团或分子或带正电荷的 任何分子、原子、原子团(Lewis酸)。 ?取代反应:SN1 和SN2 ?伯卤代烃= SN2 ?仲卤代烃= SN1 和SN2 ! ?叔卤代烃= SN1 ?离去基团:大多数是卤素 ?亲核试剂:许多亲核试剂!! 邻基取代:在离去基团的邻位上能够进行邻基参与的基团 酯基、羧基、羟基、苯基、稀基、卤素。 .波谱特征 红外光谱 红外特征吸收峰是C-X键的振动吸收,都在指纹区,其中C-F 键的吸收频率在1400~1000 cm-1,C-Cl键为800~600 cm-1,C-Br 键为600~500 cm-1,而C-I 键的吸收频率在500 cm-1附近。 核磁共振谱 1H-NMR谱中,卤素电负性较大,因此与卤素直接相连的碳上的氢的化学位移移向低场 卤代烃及亲核取代反应 反应活性次序: 叔卤烷>仲卤烷>伯卤。用于卤烷的定性分析.

卤素相同、烃基结构不同的卤代烷,其活性顺序为:1°>2°>3°。 此反应也可用于鉴别卤代烃,反应最快的是伯卤代烷,其次是仲卤代烷,反应最慢的是叔卤代烷。 Saytzeff 规则 如果分子内含有几种β-H 时,主要消除含氢较少的碳上的氢,生成双键碳上连有较多取代基的烯烃,这一经验规则称Saytzeff 规则。 RX AgNO 3 C 2H 5OH RONO 2AgX ++RBr + NaI RI + NaBr RCl + NaI RI + NaCl 丙酮丙酮R-X ROH ROR'R-CN R-NH 2O H 2NaOH ,,NH R-R R'COOR R'C CR CNa R-O-NO 2AgX AgNO 3+ △

大学有机化学知识点考试必备

大学有机化学知识点整理考试必备

————————————————————————————————作者:————————————————————————————————日期:

大学有机化学知识点提纲(一)绪论 共价键 价键理论(杂化轨道理论);分子轨道理论;共振论. 共价键的属性:键能;键长;键角;键的极性. 键的极性和分子极性的关系;分子的偶极矩. 有机化合物的特征 (二)烷烃和环烷烃 基本概念 烃及其分类;同分异构现象;同系物;分子间作用力;a键,e键;构型,构象,构象分析,构象异构体;烷基;碳原子和氢原子的分类(即1,2,3碳,氢;4碳);反应机理,活化能. 对于基本概念,不是要求记住其定义,而是要求理解它们,应用它们说明问题. 命名 开链烷烃和环烷烃的IUPAC命名,简单的桥环和螺环的命名. 烷烃和环烷烃的结构 碳原子sp3杂化和四面体构型;环烷烃的结构(小环的张力). 烷烃的构象 开链烷烃的构象,能量变化;环烷烃的构象:重点理解环己烷和取代环己烷的构象及能 量变化,稳定构象,十氢萘及其它桥环的稳定构象. 烷烃的化学性质 自由基取代反应—卤代反应及机理;碳游离基中间体—结构,稳定性;不同的卤素在反应中的活性和选择性;反应过程中的能量变化. 环烷烃的化学性质 自由基取代反应(与烷烃一致);小环(3,4元环)性质的特殊性—加成. (三)烯烃 烯烃的结构特点 碳的sp2杂化和烯烃的平面结构;键和键. 烯烃的同分异构,命名 碳架异构,双键位置异构,顺反异构(Z,E). 烯烃的物理和化学性质 烯烃的亲电加成及其机理,马氏规则;碳正离子中间体—结构,稳定性,重排. 其它加成反应:催化加氢(立体化学,氢化热);硼氢化—氧化(加成取向,立体化学);羟汞化—脱汞(加成取向);与HBr/过氧化物加成(加成取向);其它游离基加成. 氧化反应:羟基化反应—邻二醇的形成;KMnO4/H+的氧化,臭氧化反应,烯烃结构的测定. α-位取代反应:烯丙基型取代反应(高温卤代和NBS卤代)及机理—烯丙基自由基. (四)炔烃和二烯烃 炔烃 ①结构:碳的sp杂化和碳-碳三键;sp杂化,sp2杂化和sp3杂化的碳的电负性的差异及相应化合物的偶极矩. ②同分异构体 ③化学性质:末端炔烃的酸性及相关的反应;三键的加成:催化加氢,亲电加成,亲核加成;碳—碳三键与H2/Lindlar催化剂反应(顺式烯烃);碳—碳三键与Na/液氨的反应(反式烯烃);加卤素;加HX(马氏规则);加H2O(羰基化合物的形成);加HBr/过氧化物;硼氢化—氧化;加HCN及乙炔的二聚;氧化反应:KMnO4氧化和臭氧化. 二烯烃 ①共轭二烯烃的稳定性:键能和键长平均化,共轭效应.

酶与酶促反应

【课标要求】说明酶是一类能催化生化反应的有机物。 【学习目标】1.明确细胞代谢的含义,说出酶在细胞代谢中的作用。 2.分析酶实验,辨别实验中的变量。 3.掌握酶的作用原理。 【重、难点】1.酶的作用。 2.酶的作用原理。 【新课导入】“斯帕兰扎尼”鹰与笼子实验 【自主学习】 一、酶在细胞代谢中的作用 1.细胞代谢 (1)场所:细胞中。 (2)实质:各种 的总称。 (3)意义:细胞生命活动的 。 2.酶在代谢中的作用 (1)实验:比较 在不同条件下的分解。 (2)实验原理:2H 2O 2 。 二、酶的作用原理 1.活化能:分子从 转变为容易发生化学反应的 所需要的能量。 2.作用机制: 化学反应活化能。 3.意义:使细胞代谢能在 条件下快速进行。 【合作学习】 比较过氧化氢在不同条件下的分解 1.实验原理:H 2O 2在水浴加热、FeCl 3溶液中的______和肝脏研磨液中的____________的作用下加速分解。 2.实验过程和现象 试管 编号 新配制的体积分数为3%的过氧化 实验处理 H 2O 2分解速率 (气泡多少) 点燃的卫生香 2018—2019学年第一学期 导学案 课题: 降低化学反应活化能的酶(第一课时) 命制人:赵美琦

氢溶液检测 1 2 mL 不处理基本无气泡产生— 2 2 mL 90 ℃水浴加热— 3 2 mL 滴加质量分数为3.5% 的FeCl3溶液2滴 发亮 4 2 mL 滴加质量分数为20%的肝脏研磨液2滴 3.实验结论:、无机催化剂和有机催化剂都能加快过氧化氢分解,与无机催化剂相比,催化效率要高得多。 4.分析实验变量 【课堂巩固一】 在如图所示的实验中,属于自变量的是() A.试管中的过氧化氢溶液的量 B.过氧化氢分解的速率 C.产生气泡速率 D.催化剂的种类 【图示】酶降低化学反应的活化能。 【课堂巩固二】根据下图填空。 (1)图中E1、E2、E3这三部分都是活化能,其代表使用无机 催化剂的是、不使用催化剂的是、使用酶作 催化剂的是。 (2)由E2>E1>E3可以看出,催化剂的作用本质 是,且酶相对于无机催化剂,降低活

有机化学反应机理1.pdf

有机化学反应机理幻影无痕制作

1.Arbuzov 反应 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷: 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下: 这是制备烷基膦酸酯的常用方法。 除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:

反应机理 一般认为是按 S N2 进行的分子内重排反应: 反应实例 1.A rndt-Eister 反应

酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 反应机理 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例 2.Baeyer----Villiger 反应

反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例

有机化学反应机理(整理版)

1.Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 2.Baeyer----Villiger 反应 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如: 例 还原 芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。

大学有机化学人名反应总结

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间

体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】

2 C H3 3 H3 2 3 H3 2 CH CH2 C H3 H BH2 CH CH=CH (CH3CH2CH2)3 - H3CH2CH2C 22 CH3 CH2 B O CH2CH2CH3 H3CH2CH2C 2 CH2CH3 +O H- O H B - OC H2CH2CH3 CH2CH2CH3 H3CH2CH2 B O C H2CH2CH3 CH2CH2CH3 H2CH2CH3 HOO- B(OCH2CH2CH3)3 B(OCH2CH2CH3)3+3NaOH3NaOH3HOC H2CH2CH33+Na3BO3 2 【例】 CH3 1)BH 3 2)H 2 O 2 /OH- CH3 H H OH 3、X2加成 C C Br/CCl C C Br 【机理】

相关文档
最新文档