排烟风机电气控制原理图的优化教案资料

排烟风机电气控制原理图的优化教案资料
排烟风机电气控制原理图的优化教案资料

排烟风机电气控制原理图的优化

上海铠绎建筑设计有限公司的研究人员刘海波,在2015年第5期《电气技术》杂志上撰文,排烟风机入口处总管上设置的280℃排烟防火阀在关闭后应直接联动控制风机停止,但图集10D303-2《常用风机控制电路图》中此部分控制原理图,在应用于室外安装的风机时可能存在一定的不安全因素,本文对此不安全因素进行分析,并对《图集》此部分控制原理图进行优化设计。《建筑设计防火规范》

GB50016-2006 第9.4.8条第四款规定:“在排烟风机入口处的总管上应设置当烟气温度超过280℃时能自行关闭的排烟防火阀,该阀应与排烟风机连锁,当该阀关闭时,排烟风机应能停止运转”。《高层建筑设计防火规范》GB50045-95(2005年版)第8.4.7条也有类似的规定。为了满足规范要求,电气专业在设计排烟风机控制箱系统图时需要设计这个连锁

控制。然而大多数设计人员设计控制电路原理图时均会引用图集10D303-2《常用风机控制电路图》(以下简称《图集》),但这种不加修改的引用《图集》做法,可能会给设计人员带来一定的麻烦。笔者有次在现场处理风机运行问题时,手无意碰触到了风阀,竟然发生了电击事故(还好不严重),经过检查发现防火阀接线端子被雨水淋湿,整个防火阀带电。这台风机的控制原理图正是按《图集》照搬而来的。经

过分析发现问题出在两个方面:①安装于室外的防火阀信号接线端子缺少必要的防水及防护措施;②风机控制箱“风阀连锁”信号线缆引出了AC220V电源。问题①为暖通专业产品选择问题,问题②为电气设计安全问题。笔者认真研读《图集》,发现此部分控制原理图,在应用于室外安装的风机时存在一定的电气安全隐患。为减少安全隐患,避免触电事故,本文就问题②对《图集》此部分控制原理图提出自己的修改优化意见,并望能起到抛砖引玉的作用。1 问题分析及优化1.1消防兼平时两用双速风机的控制原理图图1为《图集》P28页中消防兼平时两用双速风机的控制原理图(图中省略了主要设备及材料表、接线端子的表示,下同),图中KH为280℃防火阀现场联锁常闭触点(或称微动开关),由接线端子X1:5、X1:6引出两根线缆接至现场280℃防火阀常闭触点接线桩上。大家是否注意到,引出的线缆带有AC220V 电源,这样阀门接线桩也就带有AC220V电源,并且不管风机是否运行还是停止的状态均带电。试想想,如果本阀长期位于室外,而又没有必要的防护措施,就会存在安全隐患,甚至发生严重的触电伤亡事故。众所周知,消防风机经常露天放置在屋面上,并且少有防护措施,其入口总管处的280℃防火阀也少有防水及防触电措施。可想而知没有必要的防护措施,下雨接线端子进水后就会造成整个金属阀门带电(AC220V),这时只要有人员碰触到阀门就会带来触电危

险。笔者上述提到的意外触电就是因为这个原因。鉴于以上原因,笔者认为十分有必要对本部分控制原理图进行优化设计。根据《剩余电流动作保护装置安装和运行》

GB13955-2005第4.5.1条第d款规定:“安装室外的电气装置必须装剩余电流保护装置”;第4.7条第a款规定:“使用安全电压供电的电气设备可不装剩余电流保护装置”。很显然室外防火阀采用引接安全电压更加合理、更加安全(为了节省篇幅本处不做讨论)。为此,结合规范要求,笔者优化设计后的消防兼平时两用双速风机控制原理见图2、3所示。图2、3中把防火阀连锁触点“KH”设置的位置做了调整,放置在控制变压器AC24V端,并增加一AC24V中间继电器KA4与其串接,原防火阀连锁触点“KH”处改为了中间继电器KA4的常闭(或常开)触点,其他的不做改变,这样引接至防火阀的信号电源就变为了AC24V安全电压。改进后即能很好的满足规范要求,又能有效防止室外防火阀自身防护不完善带来的意外触电事故。如果没有防火阀接线端子的限制要求(有些防火阀只提供一对常闭触点),笔者建议采用图2的控制原理图,因为图3中中间继电器KA4一直处于带电工作状态,长期带电工作会造成kA4出现老化故障,为正常使用带了隐患;再之KA4长期带电工作也不符合节能设计要求。另《火灾自动报警系统设计规范》GB50116-2013 第4.5.5条规定:“排烟风机入口处的总管上设置的280℃排烟防火阀在关闭

后应直接联动控制风机停止,排烟防火阀及风机的动作信号应反馈至消防联动控制器”。这里提到了“排烟防火阀”的动作信号应反馈至消防联动控制器,即:联动风机停止同时需要反馈信号至消防联动控制器。在图1中并没有此反馈信号,然而优化设计图2、3通过增加的中间继电器KA4,能很好地完成此部分的反馈,具体详见图2、3中防火阀返回信号。图1 消防兼平时两用双速风机控制原理图

图2 改进后消防兼平时两用双速风机控制原理图(连锁线接防火阀常开触点)

图3 改进后消防兼平时两用双速风机控制原理图(连锁线接防火阀常闭触点)

1.2两用单速风机的控制原理图图4为《图集》P20页中两用单速风机的控制原理图。从图中可以看出,较图1,防火阀连锁触点“KH”的设置位置有所不同。这个位置的变化,可使风机非工作时防火阀接线端子不带有AC220V电源,减少触电危险。但这只是减少了触电危险几率,并没有根本地改善AC220V电源接在防火阀上的事实。为了满足规范要求,杜绝触电危险,笔者根据上面修改消防兼平时两用双速风机控制原理图的思路修改本风机控制原理图,具体详见图5、6所示。《图集》中其他带防火阀风机的控制原理图也存在类似的问题,可参照上述思路优化设计,本文不一一列举。图4 两用单速风机控制原理图

图5 改进后两用单速风机控制原理图(连锁线接防火阀常开触点)

图6 改进后两用单速风机控制原理图(连锁线接防火阀常闭触点)

2 结论电气配电设计安全只是整个电气系统安全的一部分,安装室外电气装置做好防水及防护同样非常重要,设计人员也需重视。希望电气设计人员在碰到上述问题时一定需要与暖通设计人员沟通,并要求其在材料清单中注明“安装室外的防火阀接线端子需有防水帽”,以便在这个问题上做到更全面的安全保障。★★★会议通知★★★2015第四届分布式发电与微电网技术大会将于7月在内蒙古盛大召开︱会议通知

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

消防巡检柜原理图、电路图接线图

消防巡检柜接线图、原理图及电路图 产品概述 1、产品用途:仅为只有一路电源的消防设施或一级负荷中的电动机提供一种可变频的三相应急电源系统, 以解决电动机的应急供电及其启动过程中对供电设备的冲击。如:水泵、风机的电动机或其它设备的电动机。 2、具体规格有:3.7、5.5、7.5、11、15、18.5、22、30、37、45、55、75、9 3、110、132、160、 187、200、220、250、280、315、400KV A等。 3、安装形式:落地式(标准配电柜) 4、备用时间:可按设计要求配置备用时间。 设计“五合一” 规格、型号的标定 示例: KM-YJS/P-15KV A,可变频三相应急电源,输出PWM波,额定适用电机容量15KV A。 KM-YJS/P-15KV A/SHL,互投装置,输出额定容量15KV A。 注:

1、KM-YJS/P系列仅用于一对一的拖动电机,KM-YJS/P系列自带变频启动功能。 2、自动互投装置为选用件,KM-YJS/P系列自身带消防联动。 3、选用KM-YJS/P系列电源其具体规格的输出额定容量与电机负载为1:1即可。 例:负载50KV A( 电机负载) 采用本电源则选用KM-YJS/P-50KVA。 4、同等容量FEPS,KM-YJS/P系列价格一般不高于KM-YJS/S系列FEPS。 KM-YJS/P系列FEPS产品的原理图 1、单逆变单台负载原理及接线图 说明: 当三相输入电正常时经整流给逆变器提供直流电,同时充电器对电池组充电;如果当三相输入电停电或者低 于380V-15%时,KM1吸合由电池组给逆变器提供直流电。当需要电机负载工作时,给予启动信号 ( 如运行信 号、远程控制、消防联动信号),逆变器立即输出。从OHZ-50HZ变频电能给电动机进行变频启动,当其频率达 到50HZ后保持正常运行。 手动/自动选择转换开关,在自动位置可进行远程控制和消防联动( DC24)操作,在手动位置可进行本机操 作,此时远程控制和消防联动不能进行操作,运行信号和手动或者自动位置消防中心可监控。 2、单逆变单台负载一用一备原理图及接线图

双速电机控制电路图

双速电机控制电路图 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p =1。 ∴转速比=2/1=2 控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、 W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开, 防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM 2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入K M2线圈回路,也形成互锁控制。

消防联动及电动排烟窗方案设计

一、消防联动系统中所包括的主要设备、元件及其技术要求 1探测器 1.1 所有烟感探测器、温感探测器应置于同一类底座上,当有需要更换地址码或探头类型时,底座不需更换,当探测器拆离底座时,控制机会报故障。 1.2 探测器上应有原装LED,当此探测器收到报警讯号时,LED必须启亮、显示火警,并有供连接遥远指示灯之接口。 1.3在潮湿场所应配置防水底座,确保探测器能正常工作。 1.4在易爆场所应配置防爆探测器。 1.5要求二总线制连接,所有探测器的地址编码采用消防报警控制机编码方式。功耗低,可靠性高,环境适应性强,结构合理,对火灾早期的阴燃和明火都有很好响应的自带CPU 智能型探测器,能够独立自检测环境状态并与探测器内置的火灾特性曲线参数进行比较,准确地判断如下状态:火灾报警(非误报)、干扰〔例如:污染)、探测器完好或断线、脱落(内置短路隔离器)、诊断方式中的趋势判定(火警趋势、自身污染度和灰化程度)。 2手动报警器要求 2.1手动报警器应为具有独立地址码的“易碎玻璃”类型,当玻璃被敲碎后即可自动触动报警器内之电气触点,每个报警器按钮均具有地址码,直接接入探测回路使管理者能迅速而准确地确定报警位置。盖面应以特制的键锁紧,玻璃则需牢固地夹在报警器内,按钮应由不燃烧及抗腐蚀材料制成,并以红色外壳正面有中英文样。 2.2手动报警器的设置位置须符合有关设计规范的规定,在潮湿区域应设置防潮型手动报警器,在易燃易爆区域应设置防爆型的手动报警器。安装方法应与建筑师配合确定。 3警铃及电路 3.1警铃工作电压应为直流 24 伏,铃盖应由冷压钢制成并烤上红瓷漆,盖身直径至少为150 毫米,底座应由耐蚀性材料制造,并可装于直径 50 毫米之圆形接线盒上。 3.2安装在室外之警铃的构造应为可防风雨性的,警报电路上的警铃应以由类比控制模块分区分别控制从主控盘接出,而每组电路由报警按钮内以独立熔丝

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

消防风机控制柜安装

按照消防规范的要求,管理区域内需要配备各种消防设备、设施,标识也要安装在合适、醒目的位置上。那么,消防风机控制柜安装的方法是什么呢?下面就让上海浦浪泵业制造有限公司为您简单介绍,希望可以帮助到您! 消防风机控制柜安装方法: 1、如果消防风机控制柜设备上安装了有多线控制盘,需要连五根线到风机控制箱,分别接启动,停止,反馈,故障,COM,接线端上。 2、当探测区域内的报警器手报等发出报警信号后,消防主机接受这个信号,发出报警信号,并通过预先在主机内设置好的程序,是相应的联动系统动作(电源强切,电梯迫降,卷帘控制,声光报警,广播启动,排烟风机启动等)。 3、如果消防主机是在自动裆上,就会自动启动相应的联动系统,如果在手动,会发出请求信号,需要操作员手动启动。

4、从消防主机多线柜拉到泵或风机控制柜,泵或风机控制柜里面可以接线的,就四个接线点,二个启动,二个点灯,根据表示可以轻松地完成其中的接线,个别控制柜多加二个停止接点,就可以完成消防风机控制线的安装了。 5、风机柜接线时应对各部件进行全面检查,机件是否完整,各部件连接是否紧固。消防风机控制柜安装时注意保持风机的水平位置,对风机与地基的结合面和出风管的联接等,应调整使之自然吻合不得有强行联接,不允许将管道重量加在风机的部件上。 上海浦浪泵业制造有限公司是一家集水泵、生活消防自动给水设备及水泵智能控制的开发、生产、销售为一体的现代化中型企业。公司自成立以来,一直致力于从事恒压切线消防泵、分段式多级泵、卧式分段式多级泵、XBD卧式恒压消防泵、立式不锈钢多级泵、GC卧式多级泵的生产研发,产品广泛应用于大型污水处理排放系统、水利工程及高层建筑增压送水、化工、消防等领域,并为我国的给排水系统工程事业作出了巨大的贡献。

防排烟系统的联动控制

第一章防排烟系统的联动控制 一、防烟系统的联动控制 对采用总线控制的系统,当某一防火分区发生火灾时,将该防火分区内的感烟、感 温探测器探测的火灾信号发送至消防控制主机,主机发出开启与探测器对应的该防火分区内前室及合用前室的常闭加压送风口的信号,至相应送风口的火警联动模块,由它开启送风口,消防控制中心收到送风口动作信号,就发出指令给装在加压送风机附近的火警联动模块,启动前室及合用前室的加压送风机,同时启动该防火分区内所有楼梯间的加压送风机。当防火分区跨越楼层时,应开启该防火分区内全部楼层的前室及合用前室的常闭加压送风口及其加压送风机。当火灾确认后,火灾自动报警系统应能在 15s 内联动开启常闭加压送风口和加压送风机。除火警信号联动外,还可以通过联动模块在消防中心直接点动控制,或在消防控制室通过多线控制盘直接手动启动加压送风机,也可手动开启常闭型加压送风口,由送风口开启信号联动加压送风机。另外设置就地启停控制按钮,以供调试及维修用。系统中任一常闭加压送风口开启时,相应加压风机应能联动启动。火警撤销由消防控制中心通过火警联动模块停加压送风机,送风口通常由手动复位。消防控制设备应显示防烟系统的送风机和阀门等设施的启闭状态。防烟楼梯间及前室、消防电梯间前室和合用前室加压送风控制程序如图 3-10-22 所示

图1^10-22防烟楼梯间反前室、消防电棉间前室和合用前室加压送风E制程厚 二、排烟系统的联动控制 机械排烟系统中的常闭排烟阀(口)应设置火灾自动报警系统联动开启功能和就地 开启的手动装置,并与排烟风机联动。火警时,与排烟阀(口)相对应的火灾探测器探得火 灾信号发送至消防控制主机,主机发出开启排烟阀(口)信号至相应排烟阀的火警联动模块,由它开启排烟阀(口),排烟阀的电源是直流 24V。消防控制主机收到排烟阀(口)动作信号,就发出指令给装在排烟风机、补风机附近的火警联动模块,启动排烟风机、补风机。除火警信号联动外,还可以通过联动模块在消防中心直接点动控制,或在消防控制室通过多线 控制盘直接手动启动,也可现场手动启动排烟风机、补风机。另外,设置就地启停控制按钮,以供调试及维修用。当火灾确认后,火灾自动报警系统应在15s内联动开启同一排烟区域 的全部排烟阀(口)、排烟风机和补风设施,并应在 30s内自动关闭与排烟无关的通风、空

双速电机接线图及控制原理分析

双速电机接线图及控制原理分析 一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。 下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析(双速电机接线图如下图)

1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的

电机基本控制原理图简介

电机基本控制原理图简介 一、星三角启动原理图简介 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 为了叙述方便,将图纸整理了一下,添加了触点的编号。整理后的图纸见附图。 合上QS,按下ST,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,避免KM△误动作; KM-1闭合,自保启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP,才能使全部接触器线圈失电跳开,才能停止运转。

接线图:

二、电机直接启动原理图 图l中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU 是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。 图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。 电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。 电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。 停止指示绿灯HG和运行指示红灯HR分别受接触器的常『利(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上.

排烟风机电气控制原理图的优化教案资料

排烟风机电气控制原理图的优化 上海铠绎建筑设计有限公司的研究人员刘海波,在2015年第5期《电气技术》杂志上撰文,排烟风机入口处总管上设置的280℃排烟防火阀在关闭后应直接联动控制风机停止,但图集10D303-2《常用风机控制电路图》中此部分控制原理图,在应用于室外安装的风机时可能存在一定的不安全因素,本文对此不安全因素进行分析,并对《图集》此部分控制原理图进行优化设计。《建筑设计防火规范》 GB50016-2006 第9.4.8条第四款规定:“在排烟风机入口处的总管上应设置当烟气温度超过280℃时能自行关闭的排烟防火阀,该阀应与排烟风机连锁,当该阀关闭时,排烟风机应能停止运转”。《高层建筑设计防火规范》GB50045-95(2005年版)第8.4.7条也有类似的规定。为了满足规范要求,电气专业在设计排烟风机控制箱系统图时需要设计这个连锁 控制。然而大多数设计人员设计控制电路原理图时均会引用图集10D303-2《常用风机控制电路图》(以下简称《图集》),但这种不加修改的引用《图集》做法,可能会给设计人员带来一定的麻烦。笔者有次在现场处理风机运行问题时,手无意碰触到了风阀,竟然发生了电击事故(还好不严重),经过检查发现防火阀接线端子被雨水淋湿,整个防火阀带电。这台风机的控制原理图正是按《图集》照搬而来的。经

过分析发现问题出在两个方面:①安装于室外的防火阀信号接线端子缺少必要的防水及防护措施;②风机控制箱“风阀连锁”信号线缆引出了AC220V电源。问题①为暖通专业产品选择问题,问题②为电气设计安全问题。笔者认真研读《图集》,发现此部分控制原理图,在应用于室外安装的风机时存在一定的电气安全隐患。为减少安全隐患,避免触电事故,本文就问题②对《图集》此部分控制原理图提出自己的修改优化意见,并望能起到抛砖引玉的作用。1 问题分析及优化1.1消防兼平时两用双速风机的控制原理图图1为《图集》P28页中消防兼平时两用双速风机的控制原理图(图中省略了主要设备及材料表、接线端子的表示,下同),图中KH为280℃防火阀现场联锁常闭触点(或称微动开关),由接线端子X1:5、X1:6引出两根线缆接至现场280℃防火阀常闭触点接线桩上。大家是否注意到,引出的线缆带有AC220V 电源,这样阀门接线桩也就带有AC220V电源,并且不管风机是否运行还是停止的状态均带电。试想想,如果本阀长期位于室外,而又没有必要的防护措施,就会存在安全隐患,甚至发生严重的触电伤亡事故。众所周知,消防风机经常露天放置在屋面上,并且少有防护措施,其入口总管处的280℃防火阀也少有防水及防触电措施。可想而知没有必要的防护措施,下雨接线端子进水后就会造成整个金属阀门带电(AC220V),这时只要有人员碰触到阀门就会带来触电危

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

双速风机原理

双速风机原理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

接触器控制的双速电动机电气原理图 一、双速风机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为 p=1。 ∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把

三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入KM2线圈回路,也形成互锁控制。 三、定子接线图如下 低速时绕组的接法高速时绕组的接法

风机控制系统结构原理分解

风机控制系统结构

一、风力发电机组控制系统的概述 风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标: 1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。 2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。 3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。 4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。 主要完成下列自动控制功能: 1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。 2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。同样,在小风自动脱网停机后,5min内不能软切并网。 3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。 4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围 ±15°。 5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。 6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。其余时间(运行期间、正常和故障停机期间)均处于归位状态。 7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,

电气电箱原理图

变压器T1:总容量:1473KW 空调多联机KT2(631KW) T1 空调多联机KT3(631KW) -2APE1,2,3(210KW) 用于循环泵 变压器T2:总容量:1374KW 空调多联机KT1(480KW) 2AP4(135KW)用于消防水泵机组 T2 3AP4(67KW)用于消防水泵机组 4AP4(157KW)用于消防水泵机组 冷却塔1—5(114KW) 变压器T3:总容量:1498KW 配电干线P1(480KW) 配电干线P4(450KW) 应急照明干线1(45KW) 应急照明干线2(50KW) 应急照明干线3(20KW) T3 DTAT3(35KW)用于电梯控制箱、机房照明、机房插座、 电梯竖井照明、电梯竖井底插座、轿箱照 明及风扇、风机 DTAT1(85KW)用于电梯控制箱、机房照明、机房插座、 电梯竖井照明、电梯竖井底插座、轿箱照 明及风扇、风机

DTAT2(85KW)用于电梯控制箱、机房照明、机房插座 电梯竖井照明、电梯竖井底插座、轿箱照 明及风扇、风机 1APE1(20KW)用于照明 1AT1(20KW)用于照明、插座、空调插座 6ATT1(22KW)用于消防控制室 20AT1(53.5KW)用于泵房 --2APE4,5(165KW)用于喷淋泵、消防泵 T3 XDTAT1(20KW)用于消防电梯控制箱、机房照明、插座 电梯竖井照明、电梯竖井底插座、轿箱照 明及风扇、风机 XDTAT2(20KW)用于消防电梯控制箱、机房照明、插座 电梯竖井照明、电梯竖井底插座、轿箱照 明及风扇、风机 --2APE6(16.5KW)用于水泵 --2AP1(169KW) --2AP4(200KW)

双速电机控制原理图及文字解析

双速电机控制原理图 一、双速电动机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适 用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法, 磁极对数从p=2变为p=1。

∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L 3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机 p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L 1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开, 防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,

常用电动机控制电路原理图全解

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

双速电机接线原理图

双速电机接线原理图 接触器控制的双速电动机电气原理图

一、双速电动机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同

双速电动机电气原理图

三角-双星星-双星,/前表示低速接法,/后表示高速接法.如果只用一种速度,三角-双星,低速将接线端子按单速电机三角接法接线.高速将接线端子按单速电机星型接法接线.星-双星,低速只接U1V1W1,U2V2W2不接.高速将接线端子按单速电机星型接法接线.

接触器控制的双速电动机电气原理图 一、双速电动机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。

双速风机原理

接触器控制的双速电动机电气原理图一、双速风机简介

双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入KM2线圈回路,也形成互锁控制。

排烟风机控制案例分析

排烟风机控制案例分析 一、某广场消防工程 1.项目总体情况:工程名称:广场消防工程消防系统供应及安装专业分包工程,建设地点:四川省成都市武侯区,工程规模:本项目总建筑面积约262,170 平方米(一期一标段建筑面积120,246 平方米,二期建筑面积133,093 平方米,农行建筑面积未包含在本工程),地下为2层(局部3层)地下室,地上为1~4层裙楼商业和5、6~15层塔楼;建筑类型:高层;结构形式:框剪结构;建筑耐火等级:一级;抗震设防烈度:七度;工期:本工程工期需配合总包工期,预计竣工时间为2015年9月,我公司签订合同并进场时间为2013年8月,合同金额5345万元。 本工程是一个港资项目,该项目是一个集餐饮、娱乐、大型商场、电影院、酒店、公寓于一体的城市综合体项目,系统包括火灾自动报警系统、自动喷淋系统、消火栓系统、气体灭火系统、通风及排烟系统外,还包括防火卷帘系统、消防水炮系统、防火漏电系统,体量大、系统复杂。 2.施工中遇到技术问题及解决方案案例 本项目设计单位成都某建筑设计有限公司设计的双速排烟(兼排风)风机控制电路图如下图1,单速排风(兼排烟)风机控制电路图、送风(兼消防补风)风机控制电路图如下图2 图1:双速排烟风机控制原理图

图2:排风(兼排烟)风机控制电路图、送风(兼消防补风)风机控制电路图此两图为设计单位从图集套用过来,成套厂家生产的控制箱也是按设计图纸生产,从此图可以看出,风机控制箱转换开关必须打到自动才能实现消防强启功能,其余情况均不能强启,此设计应该说是符合规范要求的,但是可能造成使用不便,本项目风机多达219台,风机经常手动使用送风或排风,按此设计,所有风机在手动使用后必须马上将转换开关打到自动,处于随时可以启动的待命状态,对于双速排烟风机,如正手动启动低速排风,消防强启命令发出后不能启动高速排烟。 针对本项目风机数量太多,因无法预测紧急情况何时发生,即使能预测要将分散在各栋的风机控制箱全部打到自动也需要相当长时间,物业管理单位设备使用人员难以确保所有风机控制箱全部打到自动,使用起来相当不便。我作为消防施工单位项目经理,大胆向各方建议,将按标准图集生产的风机控制箱控制电路修改,使强启继电器KAX接转换开关的常开触点上端直接接AC220V火线L1,修改后,无论转换开关处于手动、自动还是停止状态,只要消防控制室强启命令一发出,即可控制KAX状态翻转启动风机,让所有参与消防联动的风机随时处于待命状态,应该说,此项建议不仅确保了系统的安全可靠,同时使用上也非常方便,避免了设备管理人员的大量无谓劳动,具有很大推广价值。

相关文档
最新文档