磁悬浮列车原理

磁悬浮列车原理
磁悬浮列车原理

第九篇磁悬浮列车原理

§9.1磁悬浮列车综述

你一定听说过磁悬浮列车吧,最近它的上镜率可是居高不下,大家都在密切地关注着它的发展态势。我们一直都在盼望着火车的提速,可经过几轮的努力,却总是达不到心中理想的标准,如果你家住在西安,距北京1000多公里,原先回家要17个小时,现在要14个小时,唉,只减少了区区3个小时,还要有难熬的一宿呀!可是你知道吗?普通磁悬浮列车的时速就可以达到500公里/小时,那么,回家就只需要不到3个小时,跟飞机差不多了!

其实,在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。法国、日本、俄国、美国等国家列车时速由200公里向300公里飞速发展。据1995年举行的国际铁路会议预测,到本世纪末,德国、日本、法国等国家的高速铁路运营时速将达到360公里。

但要使列车在如此高的速度下持续行驶,传统的车轮加钢轨组成的系统,已经无能为力了。这是因为传统的轮轨粘着式铁路,是利用车轮与钢轨之间的粘着力使列车前进的。它的粘着系数随列车速度的增加而减小,走行阻力却随列车速度的增加而增加,当车速增至粘着系数曲线和走行阻力曲线的交点时,就达到了极限。据科研人员推算,普通轮轨列车最大时速为350-400公里左右。如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。要进一步提高速度,必须转向新的技术,这就是超常规的列车--磁悬浮列车。

尽管我们还将磁悬浮列车的轨道称为"铁路",但这两个字已经不够贴切了。

就拿铁轨来说,实际上它已不复存在。轨道只剩下一条,而且也不能称其为"轨道"了,因为轮子并没有从上面滚过。事实上,磁悬浮列车连轮子也没有了。"铁路"上行驶的这种超级列车并没有传统意义上的牵引机车,它运行时并不接触地面,只是在离轨道10厘米的高度"飞行"。

磁悬浮技术的研究源于德国,早在1922年Hermann Kemper先生就提出了电磁悬浮原理,并于1934年申请了磁浮列车的专利。进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。根据当时轮轨极限速度的理论,科研工作者们认为,轮轨方式运输所能达到的极限速度为每小时350公里左右,要想超越这一速度运行,必须采取不依赖于轮轨的新式运输系统。这种认识引起许多国家的科研部门的兴趣,但后来都中途放弃,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。

德国开发的磁悬浮列车Transrapid于1989年在埃姆斯兰试验线上达到每小时436公里的速度。日本开发的磁悬浮列车MAGLEV (Magnetically Levitated Trains)于1997年12月在山梨县的试验线上创造出每小时550公里的世界最高纪录。德国和日本两国在经过长期反复的论证之后,均认为有可能于下个世纪中叶以前使磁悬浮列车在本国投入运营。

日本超导磁悬浮列车MAGLEV

超导磁悬浮列车导轨

1. 什么是磁悬浮列车

磁悬浮列车实际上是依靠电磁吸力或电动斥力将列车悬浮于空中并进行导向,实现列车与地面轨道间的无机械接触,再利用线性电机驱动列车运行。虽然磁悬浮列车仍然属于陆上有轨交通运输系统,并保留了轨道、道岔和车辆转向架

及悬挂系统等许多传统机车车辆的特点,但由于列车在牵引运行时与轨道之间无机械接触,因此从根本上克服了传统列车轮轨粘着限制、机械噪声和磨损等问题,所以它也许会成为人们梦寐以求的理想陆上交通工具。

2. 磁悬浮列车的种类

磁悬浮列车分为常导型和超导型两大类。常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400~500公里,适合于城市间的长距离快速运输。而超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两种磁悬浮列车各有优缺点和不同的经济技术指标,德国青睐前者,集中精力研制常导高速磁悬浮技术;而日本则看好后者,全力投入高速超导磁悬浮技术之中。

3. 德国的常导磁悬浮列车

常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。

常导磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就象是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就象同步直线电动机的长定子绕组。从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就象电机的“转子”一样被推动做直线运动。从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。

4. 日本的超导磁悬浮列车

超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的

完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。其原理就象冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。

超导磁悬浮列车也是由沿线分布的变电所向地面导轨两侧的驱动绕组提供三相交流电,并与列车下面的动力集成绕组产生电感应而驱动,实现非接触性牵引和制动。但地面导轨两侧的悬浮导向绕组与外部动力电源无关,当列车接近该绕组时,列车超导磁铁的强电磁感应作用将自动地在地面绕组中感生电流,因此在其感应电流和超导磁铁之间产生了电磁力,从而将列车悬起,并经精密传感器检测轨道与列车之间的间隙,使其始终保持100毫米的悬浮间隙。同时,与悬浮绕组呈电气连接的导向绕组也将产生电磁导向力,保证了列车在任何速度下都能稳定地处于轨道中心行驶。

5. 目前存在的技术问题

尽管磁悬浮列车技术有上述的许多优点,但仍然存在一些不足:

(1)由于磁悬浮系统是以电磁力完成悬浮、导向和驱动功能的,断电后磁悬浮的安全保障措施,尤其是列车停电后的制动问题仍然是要解决的问题。其高速稳定性和可靠性还需很长时间的运行考验。

(2)常导磁悬浮技术的悬浮高度较低,因此对线路的平整度、路基下沉量及道岔结构方面的要求较超导技术更高。

(3)超导磁悬浮技术由于涡流效应悬浮能耗较常导技术更大,冷却系统重,强磁场对人体与环境都有影响。

6. 中国磁悬浮列车的研究状况

目前,中国对磁悬浮铁路技术的研究还处于初级阶段。经过铁科院、西南交大、国防科大、中科院电工所等单位对常导低速磁悬浮列车的悬浮、导向、推进等关键技术的基础性研究,已对低速常导磁悬浮技术有了一定认识,初步掌握了常导低速磁悬浮稳定悬浮的控制技术。继1994年西南交大成功地进行了4个座位、自重4吨、悬浮高度为8毫米、时速为30公里的磁悬浮列车试验之后,由铁科院主持、长春客车厂、中科院电工所、国防科技大学参加,共同研制的长为6.5米、宽为3米、自重4吨、内设15个座位的6吨单转向架磁悬浮试验车在铁科院环行试验线的轨距为2米、长36米、设计时速为100公里的室内磁悬浮实验线路上成功地进行了试验,并于1998年12月通过了铁道部科技成果鉴定。6吨单转向架磁悬浮试验车的研制成功,为低速常导磁悬浮列车的研究提供了技术基础,填补了我国在磁悬浮列车技术领域的空白。

§9.2 磁悬浮列车发展史

磁悬浮列车是自大约200年前斯蒂芬森的“火箭”号蒸气机车问世以来铁路技术最根本的突破。磁悬浮列车在今天看似乎还是一个新鲜事物,其实它的理论准备已有很长的历史。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。而美国和前苏联则分别在七八十年代放弃了这项研究计划,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。下面把各主要国家对磁浮铁路的研究情况作一简要介绍。

日本于1962年开始研究常导磁浮铁路。此后由于超导技术的迅速发展,从70年代初开始转而研究超导磁浮铁路。1972年首次成功地进行了2.2吨重的超导磁浮列车实验,其速度达到每小时50公里。1977年12月在宫崎磁浮铁路试验线上,最高速度达到了每小时204公里,到1979年12月又进一步提高到517

公里。1982年11月,磁浮列车的载人试验获得成功。1995年,载人磁浮列车试验时的最高时速达到411公里。为了进行东京至大阪间修建磁浮铁路的可行性研究,于1990年又着手建设山梨磁悬浮铁路试验线,首期18.4公里长的试验线已于1996年全部建设完成。

德国对磁浮铁路的研究始于1968年(当时的联邦德国)。研究初期,常导和超导并重,到1977年,先后分别研制出常导电磁铁吸引式和超导电磁铁相斥式试验车辆,试验时的最高时速达到400公里。后来经过分析比较认为,超导磁浮铁路所需的技术水平太高,短期内难以取得较大进展,遂决定以后只集中力量发展常导磁浮铁路。1978年,决定在埃姆斯兰德修建全长31.5公里的试验线,并于1980年开工兴建,1982年开始进行不载人试验。列车的最高试验速度在1983年底达到每小时300公里,1984年又进一步增至400公里。目前,德国在常导磁浮铁路研究方面的技术已趋成熟。

与日本和德国相比,英国对磁浮铁路的研究起步较晚,从1973年才开始。但是,英国则是最早将磁浮铁路投入商业运营的国家之一。1984年4月,伯明翰机场至英特纳雄纳尔车站之间一条600米长的磁浮铁路正式通车营业。旅客乘坐磁浮列车从伯明翰机场到英特纳雄纳尔火车站仅需90秒钟。令人遗憾的是,在1995年,这趟一度是世界上唯一从事商业运营的磁浮列车在运行了11年之后被宣布停止营业,其运送旅客的任务由机场班车所取代。

§9.3 磁悬浮列车技术基础

磁悬浮列车主要由悬浮

系统、推进系统和导向系统

三大部分组成,见图3。尽

管可以使用与磁力无关的推

进系统,但在目前的绝大部

分设计中,这三部分的功能

均由磁力来完成。下面分别

对这三部分所采用的技术进

行介绍。

悬浮系统:目前悬浮系

统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4

给出了两种系统的结构差别。

电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。

电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。

超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。其原理就像冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,

根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。

推进系统:磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就像是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就像同步直线电动机的长定子绕组。从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就像电机的"转子"一样被推动做直线运动。从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。

通俗的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈里流动的交流电的频率和电压。

推进系统可以分为两种。“长固定片”推进系统使用缠绕在导轨上的线性电动机作为高速磁悬浮列车的动力部分。由于高的导轨的花费而成本昂贵。而“短固定片”推进系统使用缠绕在被动的轨道上的线性感应电动机(LIM)。虽然短固定片系统减少了导轨的花费,但由于LIM过于沉重而减少了列成的有效负载能

力,导致了比长固定片系统的高的运营成本和低的潜在收入。而采用非磁力性质的能量系统,也会导致机车重量的增加,降低运营效率。

导向系统:导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和斥力。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。

§9.4 磁悬浮列车的优势

作为目前最快速的地面交通工具,磁悬浮列车技术的确有着其他地面交通技术无法比拟的优势:

首先,它克服了传统轮轨铁路提高速度的主要障碍,发展前景广阔。第一条轮轨铁路出现在1825年,经过140年努力,其运营速度才突破200公里/小时,由200公里/小时到300公里/小时又花了近30年,虽然技术还在完善与发展,继续提高速度的余地已不大,而困难却很大。还应注意到,轮轨铁路提高速度的代价是很高的,300公里/小时高速铁路的造价比200公里/小时的准高速铁路高近两倍,比120公里/小时的普通铁路高三至八倍,继续提高速度,其造价还将急剧上升。与之相比世界上第一个磁悬浮列车的小型模型是1969年在德国出现的,日本是1972年造出的。可仅仅十年后的1979年,磁悬浮列车技术就创造了517公里/小时的速度纪录。目前技术已经成熟,可进入500公里/小时实用运营的建造阶段。

第二,磁悬浮列车速度高,常导磁悬浮可达400-500公里/小时,超导磁悬浮可达500-600公里/小时。对于客运来说,提高速度的主要目的在于缩短乘客的旅行时间,因此,运行速度的要求与旅行距离的长短紧密相关。各种交通工具根据其自身速度、安全、舒适与经济的特点,分别在不同的旅行距离中起骨干作用。专家们对各种运输工具的总旅行时间和旅行距离的分析表明,按总旅行时间考虑,300公里/小时的高速轮轨与飞机相比在旅行距离小于700公里时才优越。而500公里/小时的高速磁悬浮,则比飞机优越的旅行距离将达1500公里以上。

第三,磁悬浮列车能耗低,据日本研究与实际试验的结果,在同为500公里/时速下,磁悬浮列车每座位公里的能耗仅为飞机的1/3。据德国试验,当TR 磁悬浮列车时速达到400公里时,其每座位公里能耗与时速300公里的高速轮轨

列车持平;而当磁悬浮列车时速也降到300公里时,它的每座位公里能耗可比轮轨铁路低33%。

§9.5 磁悬浮列车存在的问题

尽管磁悬浮列车技术有上述的许多优点,但仍然存在一些不足:

1.由于磁悬浮系统是以电磁力完成悬浮、导向和驱动功能的,断电后磁悬浮的安全保障措施,尤其是列车停电后的制动问题仍然是要解决的问题。其高速稳定性和可靠性还需很长时间的运行考验。

2.常导磁悬浮技术的悬浮高度较低,因此对线路的平整度、路基下沉量及道岔结构方面的要求较超导技术更高。

3.超导磁悬浮技术由于涡流效应悬浮能耗较常导技术更大,冷却系统重,强磁场对人体与环境都有影响。

磁悬浮铁路在一些国家里取得了较大的发展,有的甚至已基本解决了技术方面的问题而开始进入实用研究乃至商业运营阶段,但是随着时间的推移,磁浮铁路并没有出现人们所企望的那种成为主要交通工具的趋势,反而越来越面临着来自其它交通运输方式,特别是高速型常规(轮轨粘着式)铁路的强有力的挑战。

首先,磁浮铁路的造价十分昂贵。与高速铁路相比,修建磁浮铁路费用昂贵。根据日本方面的估计,磁浮铁路的造价每公里约需60亿日元,比新干线高20%。如果规划中的从东京到大阪之间的中央新干线修建为磁浮铁路,全线造价约需3万亿日元,而为了对建造磁浮铁路这一方案进行可行性研究而计划建造的一条42.8公里长的试验线,其初步预算就达3000亿日元。德国也认为磁浮铁路的造价远远高于高速铁路。根据德国在80年代初的这一项估算认为,修建一条复线磁浮铁路其造价每公里约为659万美元,而法国的巴黎至里昂和意大利的罗马至佛罗伦萨的高速铁路每公里的造价只分别为226万和236万美元。现在,德国规划中的汉堡至柏林292公里长的铁路如果建造成为磁浮铁路,其初步预算就达59亿美元,约合每公里2000万美元。磁浮铁路所需的投入较大,利润回收期较长,投资的风险系数也较高,从而也在一定程度上影响了投资者的信心,制约了磁浮铁路的发展。

其次,磁浮铁路无法利用既有的线路,必须全部重新建设。由于磁浮铁路与常规铁路在原理、技术等方面完全不同,因而难以在原有设备的基础上进行利用

和改造。高速铁路则不同,可以通过加强路基、改善线路结构、减少弯度和坡度等方面的改造,某些既有线路或某些区段就可以达到高速铁路的行车标准。如,日本1964年投入运营并大受欢迎的东京至大阪的新干线,在没有对机车做重大改进的情况下,仅通过修建曲线半径较大,即没有急转弯和陡坡较小的铁路等方法,从而使列车速度大大提高。再如德国的汉堡至柏林既有铁路线,经过技术改造后,某些区段的最高速度每小时可达230公里。此外,欧洲一些国家如德国、瑞典、意大利等国的设计人员,还采用使车厢在转向架上转动和倾斜的升降技术来对付铁路弯道(即采用摆式车体),这样在无须对既有线路进行改造和更新的情况下,也使列车行驶速度提高到每小时220公里。在对既有线路进行高速铁路改造的过程中,还可以实现高、中速混跑,列车根据不同区段的最高限速以不同的速度行驶。因而,与磁浮铁路的全部重新建设相比,高速铁路的线路和运行成本就大大降低了。

再次,磁浮铁路在速度上的优势并没有凸显出来。30多年前,许多人认为轮轨粘着式铁路的极限速度为每小时250公里,后来又认为是300-380公里。但是现在,法国的“高速列车”(TGV)、德国的“城际快车”(ICE)和穿越英吉利海峡的“欧洲之星”列车以及日本的新干线,其运行速度都达到或接近每小时300公里。1990年,在巴黎西部地区运行的法国第二代高速列车TGV-A“大西洋”号更是创下了试验时速515.3公里的世界纪录。更何况,既便是磁浮铁路的行车速度达到每小时450-500公里,在典型的500公里区间内的运行中,也只比时速为300公里的高速铁路节约半小时,其优势不是特别明显。

§9.6 磁悬浮列车在中国

我国第一条铁路建成在1876年,经过七十多年的发展,全国解放时总长2.18

万公里,承担着全国65%的客运量和约85%的旅客周转量,是主要的客运交通工具。建国以来,我国铁路得到了迅速发展,营业里程迅速增长,达到当前的6.5万公里,直到七十年代中后期,仍然保持着全国客运中的骨干地位。八十年代以来,由于公路与民航的迅速发展,以及经济发展对客运速度提高的需求日益增大,导致了铁路在客运中的地位明显下降,1997年铁路在全国客运量中的份额降至7%,在旅客周转量中份额降至35%。人们已经认识到,必须大力致力于列车客运提速,才能保持和发展铁路作为重要客运工具的地位。

中科院院士严陆光是我国发展高速磁悬浮技术的热心支持者之一。他认为,我国需要发展高速磁悬浮列车,就在于它最适合于我国高速客运专线网的发展。理由主要有以下三点:

1.我国幅员辽阔,人口众多。目前考虑的主要客运专线(京沪1320公里,京广港澳2550公里,哈大940公里,徐州宝鸡1030公里,浙赣940公里,京沈703公里,沪杭194公里)大多在1000公里以上。500公里/小时的磁悬浮列车比300公里/小时的高速轮轨列车在旅客选择民航或铁路中具有显著的优越性。

2.我国至今尚无客运专线,高速客运网的形成大约需半个世纪的持续努力,恰恰成为我们在交通领域实现技术跨越发展、发挥后发优势、后来居上的重要机遇。虽然高速磁悬浮技术不如高速轮轨技术成熟,但只要我们统一认识,下定决心,认真抓紧工作,完全可能在近期内即达到成熟,并付诸实施。

3.高速磁悬浮体系的发展将带动当前众多高新技术前沿的发展,这些高新技术本身又将为新兴产业的形成和经济发展起着重要的作用。

我们之所以对磁悬浮运载技术感兴趣,也是由于我们认识到,它代表着一种先进的趋势和先进的发展方向。目前,中国对磁悬浮铁路技术的研究还处于初级阶段。经过中国铁道科学研究院、西南交大、国防科大、中科院电工所等单位对常导低速磁悬浮列车的悬浮、导向、推进等关键技术的基础性研究,已对低速常导磁悬浮技术有了一定认识,初步掌握了常导低速磁悬浮稳定悬浮的控制技术。继1994年西南交大成功地进行了4个座位、自重4吨、悬浮高度为8毫米、时速为30公里的磁悬浮列车试验之后,由铁科院主持、长春客车厂、中科院电工所、国防科技大学参加,共同研制的长为6.5米、宽为3米、自重4吨、内设15个座位的6吨单转向架磁悬浮试验车在铁科院环行试验线的轨距为2米、长36米、设计时速为100公里的室内磁悬浮实验线路上成功地进行了试验,并于1998年12月通过了铁道部科技成果鉴定。6吨单转向架磁悬浮试验车的研制成功,为低速常导磁悬浮列车的研究提供了技术基础,填补了我国在磁悬浮列车技术领域的空白。

其实,磁悬浮运载技术它不仅能够用于陆上平面运载,也可以用于海上运载,还能用于垂直发射,美国就在试验用磁悬浮技术发射火箭;它在磁悬浮、直线驱动、低温超导、电力电子、计算机控制与信息技术、医疗等多个领域都有极重要的价值——概括的说,它是一种能带动众多高新技术发展的基础科学,又是一种

具有极广泛前景的应用技术。

我们可以预见,随着超导材料和超低温技术的发展,修建磁浮铁路的成本、技术及性能都有可能会大大降低。到那时,磁浮铁路作为一种快速、舒适的“绿色交通工具”,将会飞驰在祖国的大地,这样,距离就不再会是阻隔我们团聚的最大因素了。

磁悬浮列车的工作原理

超导磁悬浮列车的工作原理 超导磁悬浮列车工作时主要利用了磁性物质同性排斥异性吸引的基本原理,从而最终达到了列车悬浮在车轨上方,列车在磁力的牵引下高速前行,列 车在高速前行过程中自动调整姿势以避免倾斜的目的. 首先,对于列车之所以能够悬浮在轨道上方做简单说明:磁铁有同性相斥 和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁 同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导电磁铁 形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行 的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬 浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上 方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁 铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力 平衡,从而使车体悬浮于车道的导轨面上运行。 那么,磁体间为什么能产生如此强大的磁场而最终让沉重的车厢悬浮起 来呢?在演示实验中我们用的是极冷的液氮冷却那种放在车厢底部的超导元 件办到的。超导元件在相当低的温度下具有的完全导电性和完全抗磁性。而 实际运用的超导磁体是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制 成体积小功率强大的电磁铁。。超导磁悬浮列车的工作原理是利用超导材料 的抗磁性,将超导材料置于永久磁体(或磁场)的上方,由于超导的抗磁性,磁体的磁力线不能穿过超导体,磁体(或磁场)和超导体之间会产生排斥力,使超导体悬浮在上方。 其次,磁悬浮列车的高速前进也是利用电磁体间的磁力完成的。 简单的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为 电磁铁。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列 车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁 体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极) 所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就 是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电 磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈 里流动的交流电的频率和电压。 具体地讲超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集 成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上 的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超 导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的 三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波, 这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这

中国磁悬浮列车原理

磁悬浮列车 1.磁悬浮技术的原理 磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。 2.磁悬浮技术的应用 国际上对磁悬浮轴承的研究工作也非常活跃。1988年召开了第一届国际磁悬浮轴承会议,此后每两年召开一次。1991年,美国航空航天管理局还召开了第一次磁悬浮技术在航天中应用的讨论会。现在,美国、法国、瑞士、日本和中国都在大力支持开展磁悬浮轴承的研究工作。国际上的这些努力,推动了磁悬浮轴承在工业上的广泛应用。 国内对磁悬浮轴承的研究工作起步较晚,尚处于实验室阶段,落后外国约20年。1986年,广州机床研究所与哈尔滨工业大学首先对“磁力轴承的开发及其在FMS中的应用”这一课题进行了研究。此后,清华大学、西安交通大学、天津大学、山东科技大学、南京航空航天大学等都在进行这方面的研究工作。 目前在工业上得到广泛应用的基本上都是传统的磁悬浮轴承(需要位置传感器的磁悬浮轴承),这种轴承需要5个或10个非接触式位置传感器来检测转子的位移。由于传感器的存在,使磁悬浮轴承系统的轴向尺寸变大、系统的动态性能降低,而且成本高、可靠性低。此外,由于传感器的价格较高,从而导致磁悬浮轴承的售价很高,大大限制了它在工业上的推广应用。 2009年8月,参观者在北京看磁悬浮列车轨道,北京城建设计研究总院的总工杨秀仁透露,北京正在做一条磁悬浮线的长期规划———通往门头沟的S1轨道线路正在筹划,计划采用中国自主研发的磁悬浮技术。而由北京控股磁悬浮技术发展有限公司和国防科技大学合作的中低速磁浮列车,是中国唯一具有完全自主知识产权的磁悬浮列车。 3.磁悬浮技术的前景 随着电子元件的集成化以及控制理论和转子动力学的发展,经过多年的研究工作,国内外对该项技术的研究都取得了很大的进展。但是不论是在理论还是在产品化的过程中,该项技术都存在很多的难题,其中磁悬浮列车的技术难题是悬浮与推进以及一套复杂的控制系统,它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果。需要攻关的是组成系统的技术和实现工程化。 磁悬浮轴承面向电力工程的应用也具有广阔的前景,根据磁悬浮轴承的原理,研制大功率的磁悬浮轴承和飞轮储能系统以减少调峰时机组启停次数;进行以磁悬浮轴

磁悬浮列车原理

第九篇磁悬浮列车原理 §9.1磁悬浮列车综述 你一定听说过磁悬浮列车吧,最近它的上镜率可是居高不下,大家都在密切地关注着它的发展态势。我们一直都在盼望着火车的提速,可经过几轮的努力,却总是达不到心中理想的标准,如果你家住在西安,距北京1000多公里,原先回家要17个小时,现在要14个小时,唉,只减少了区区3个小时,还要有难熬的一宿呀!可是你知道吗?普通磁悬浮列车的时速就可以达到500公里/小时,那么,回家就只需要不到3个小时,跟飞机差不多了! 其实,在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。法国、日本、俄国、美国等国家列车时速由200公里向300公里飞速发展。据1995年举行的国际铁路会议预测,到本世纪末,德国、日本、法国等国家的高速铁路运营时速将达到360公里。 但要使列车在如此高的速度下持续行驶,传统的车轮加钢轨组成的系统,已经无能为力了。这是因为传统的轮轨粘着式铁路,是利用车轮与钢轨之间的粘着力使列车前进的。它的粘着系数随列车速度的增加而减小,走行阻力却随列车速度的增加而增加,当车速增至粘着系数曲线和走行阻力曲线的交点时,就达到了极限。据科研人员推算,普通轮轨列车最大时速为350-400公里左右。如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。要进一步提高速度,必须转向新的技术,这就是超常规的列车--磁悬浮列车。 尽管我们还将磁悬浮列车的轨道称为"铁路",但这两个字已经不够贴切了。

磁悬浮原理

[转载]磁悬浮原理

磁悬浮转子真空计工作原理图 时间:2008-09-16 来源:真空技术网整理编辑:真空技术网 根据磁悬浮转子转速的衰减与其周围气体分子的外摩擦有关的原理制成的真空测量仪表称为磁悬浮转子真空计。 图22:磁悬浮转子真空计结构图 由图22可见,除了用于磁悬浮转子的螺旋线圈2外,在真空室下边还设置一敏感线圈5,通过伺服电路控制螺旋线圈2的电流,使转子悬浮在预定高度。在真空室两侧的一对驱动线圈3产生旋转磁场,驱动转子以每秒200~400转的速度自转。虽然转子在给定的垂直位置会自动地趋向磁场最强处(一般在垂直对称轴上),但若受外界扰动,转子将围绕轴作水平振动。图中紧临真空室下方的阻尼钢针6可使这种振动衰减。 这种真空计是基于气体分子对自由旋转钢球的减速作用而工作的。当钢球被驱动线圈的磁场

从静止加速到每秒400转速之后,停止驱动场,由于气体分子摩擦的积分作用引起钢球自转速度衰减,其转速衰减与气体压力p有着严格的对应关系。 磁悬浮转子真空计是标准真空计,量程宽(10-1~10-5Pa),用它作互校传递标准时,累积误差小,可靠性重复性好。 SKF公司最新推出磁浮轴承(图文) SKF(斯凯孚)公司最新推出磁浮轴承。半导体工业需要极纯净的环境 来制造日益复杂的电路晶片,其中,TMP(Turbo Molecular Pumps)涡轮子真 空泵主要是利用高速旋转的涡轮叶片转子,撞击气体分子后,把气体分子带出 制程腔体。由于需要高速旋转,传统陶珠轴承系统存在油气污染问题,目前业界已大量使用无接触的磁浮轴承。 SKF磁浮轴承还可应用于三轴加工中心机床,主轴转速10万转/分钟。 此主轴目前是展示阶段的原型,唯有依赖磁浮轴承才能达到如此高的转速,而如此高的表面加工精度及轴承寿命,是传统滚动轴承所无法达到的。 磁浮轴承的性能由于软件算法的改进而大大加强,坚固性,稳定性,经济性的提高使磁浮轴承从试验

磁悬浮原理

磁悬浮原理 磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。它的时速可达到500公里以上,是当今世界最快的地面客运交通工具,有速度快、爬坡能力强、能耗低运行时噪音小、安全舒适、不燃油,污染少等优点。并且它采用采用高架方式,占用的耕地很少。磁悬浮列车意味着这些火车利用磁的基本原理悬浮在导轨上来代替旧的钢轮和轨道列车。磁悬浮技术利用电磁力将整个列车车厢托起,摆脱了讨厌的摩擦力和令人不快的锵锵声,实现与地面无接触、无燃料的快速“飞行”。 稍有物理知识的人都知道:把两块磁铁相同的一极靠近,它们就相互排斥,反之,把相反的一极靠近,它们就互相吸引。托起磁悬浮列车的,那似乎神秘的悬浮之力,其实就是这两种吸引力与排斥力。 应用准确的定义来说,磁悬浮列车实际上是依靠电磁吸力或电动斥力将列车悬浮于空中并进行导向,实现列车与地面轨道间的无机械接触,再利用线性电机驱动列车运行。虽然磁悬浮列车仍然属于陆上有轨交通运输系统,并保留了轨道、道岔和车辆转向架及悬挂系统等许多传统机车车辆的特点,但由于列车在牵引运行时与轨道之间无机械接触,因此从根本上克服了传统列车轮轨粘着限制、机械噪声和磨损等问题,所以它也许会成为人们梦寐以求的理想陆上交通工具。

根据吸引力和排斥力的基本原理,国际上磁悬浮列车有两个发展方向。一个是以德国为代表的常规磁铁吸引式悬浮系统--EMS系统,利用常规的电磁铁与一般铁性物质相吸引的基本原理,把列车吸引上来,悬空运行,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400-500公里,适合于城市间的长距离快速运输;另一个是以日本的为代表的排斥式悬浮系统--EDS系统,它使用超导的磁悬浮原理,使车轮和钢轨之间产生排斥力,使列车悬空运行,这种磁悬浮列车的悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两个国家都坚定地认为自己国家的系统是最好的,都在把各自的技术推向实用化阶段。估计到下一个? 磁悬浮的构想是由德国工程师赫尔曼?肯佩尔于1922年首先提出的。磁悬浮列车包含有两项基本技术,一项是使列车悬浮起来的电磁系统,另一项是用于牵引的直线电动机。 直线电动机的原理早在18世纪末就已经出现,形象地说,是把圆形旋转电机剖开并展成直线型的电机结构。它依靠铺在线路上的长定子线圈极性交错变化的电磁场,根据同极相斥异极相吸的原理进行牵引。 在肯佩尔的主持下,经过漫长的研究,德国于1971年造出了世界上第一台功能较强的磁悬浮列车。 磁悬浮列车按悬浮方式又分为常导型及超导型两种。常导磁悬浮列车由车上常导电流产生电磁吸引力,吸引轨道下方的导磁体,使列车浮起。常导型技术比较简单,由于产生的电磁吸引力相对较小,列车悬

磁悬浮列车工作原理

磁悬浮列车工作原理 磁悬浮列车的原理是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”。 列车上装有超导磁体,由于悬浮而在线圈上高速前进。这些线圈固定在铁路的底部,由于电磁感应,在线圈里产生电流,地面上线圈产生的磁场极性与列车上的电磁体极性总是保持相同,这样在线圈和电磁体之间就会一直存在排斥力,从而使列车悬浮起来。 前进的原理:在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。在线圈里流动的电流流向会不断反转过来。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。 当今,世界上的磁悬浮列车主要有两种"悬浮"形式,一种是推斥式;另一种为吸力式。推斥式是利用两个磁铁同极性相对而产生的排斥力,使列车悬浮起来。这种磁悬浮列车车厢的两侧,安装有磁场强大的超导电磁铁。车辆运行时,这种电磁铁的磁场切割轨道两侧安装的铝环,致使其中产生感应电流,同时产生一个同极性反磁场,并使车辆推离轨面在空中悬浮起来。但是,静止时,由于没有切割电势与

电流,车辆不能产生悬浮,只能像飞机一样用轮子支撑车体。当车辆在直线电机的驱动下前进,速度达到80公里/小时以上时,车辆就悬浮起来了。吸力式是利用两个磁铁异性相吸的原理,将电磁铁置于轨道下方并固定在车体转向架上,两者之间产生一个强大的磁场,并相互吸引时,列车就能悬浮起来。这种吸力式磁悬浮列车无论是静止还是运动状态,都能保持稳定悬浮状态。这次,我国自行开发的中低速磁悬浮列车就属于这个类型。 "若即若离",是磁悬浮列车的基本工作状态。磁悬浮列车利用电磁力抵消地球引力,从而使列车悬浮在轨道上。在运行过程中,车体与轨道处于一种"若即若离"的状态,磁悬浮间隙约1厘米,因而有"零高度飞行器"的美誉。它与普通轮轨列车相比,具有低噪音、低能耗、无污染、安全舒适和高速高效的特点,被认为是一种具有广阔前景的新型交通工具。特别是这种中低速磁悬浮列车,由于具有转弯半径小、爬坡能力强等优点,特别适合365JT城市轨道交通。

磁悬浮列车运行原理

磁悬浮列车运行原理 磁悬浮列车是现代高科技发展的产物。其原理是利用电磁力抵消地球引力,通过直线电机进行牵引,使列车悬浮在轨道上运行(悬浮间隙约1厘米)。其研究和制造涉及自动控制、电力电子技术、直线推进技术、机械设计制造、故障监测与诊断等众多学科,技术十分复杂,是一个国家科技实力和工业水平的重要标志。它与普通轮轨列车相比,具有低噪音、无污染、安全舒适和高速高效的特点,有着“零高度飞行器”的美誉,是一种具有广阔前景的新型交通工具,特别适合城市轨道交通。磁悬浮列车按悬浮方式不同一般分为推斥型和吸力型两种,按运行速度又有高速和中低速之分,这次国防科大研制开发的磁悬浮列车属于中低速常导吸力型磁悬浮列车。 磁悬浮列车的种类 磁悬浮列车分为常导型和超导型两大类。常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400~500公里,适合于城市间的长距离快速运输。而超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两种磁悬浮列车各有优缺点和不同的经济技术指标,德国青睐前者,集中精力研制常导高速磁悬浮技术;而日本则看好后者,全力投入高速超导磁悬浮技术之中。 德国和日本是世界上最早开展磁悬浮列车研究的国家,德国开发的磁悬浮列车Transrapid于1989年在埃姆斯兰试验线上达到每小时436公里的速度。日本开发的磁悬浮列车MAGLEV (Magnetically Levitated Trains)于1997年12月在山梨县的试验线上创造出每小时550公里的世界最高纪录。德国和日本两国在经过长期反复的论证之后,均认为有可能于下个世纪中叶以前使磁悬浮列车在本国投入运营。

磁悬浮列车的工作原理及技术经济特性

磁悬浮机车及技术经济特性 魏庆朝,冯雅薇(北京交通大学土木建筑工程 学院翃北京 100044) 施翃翃(北京城建设计研究总院 北京 100037) 摘要:直线电机已开始在磁悬浮铁路、城市轨道交通中应用。介绍了直线电机的分类、3种典型的磁悬浮铁路和直线电机驱动的轮轨交通,对上述交通方式的技术经济特征进行了对比,总结了上述交通方式的适用范围。 关键词:直线电机;磁悬浮;城市轨道交通;适用范围 The Modes and features of the Transit Systems Driven by Linear Motor WEI Qingchao1, FENG Yawei1, SHI Hong1,2 (1. School of Civil Engineering and Architecture, Beijing Jiaotong University 2. Beijing Urban Engineering Design & Research Institute.) Abstract: Linear motor has been successfully used in Meglev transit system and rapid rail transit system for years. The transit systems driven by linear motor are classified as Maglev system and wheel-rail system. The typical Maglev system includes Japanese MLX system, German TransRapid system and Japanese HSST system. The technical and economic features of these systems are compared and the suitable application fields of these systems are summarized in the paper. Keywords: linear motor; Maglev; urban rapid rail transit; suitable application fields 1、引言 从1825年世界第一条铁路出现算起,轨道交通已有近180年的历史。特别是上个世纪中叶以来,随着科技的进步,轨道交通运输方式不仅在诸如速度、密度、重量等性能方面有了很大提高,而且轨道交通方式本身也发生了巨大的变革。快速轨道交通有地铁、轻轨、单轨等多种方式。牵引方式历经蒸汽牵引、内燃牵引、电力牵引等阶段,目前在世界范围内又发展出直线电机牵引的交通方式,包括磁悬浮铁路、直线电机轮轨交通、磁悬浮飞机等。该交通方式目前正在迅速发展,将来会成

磁悬浮列车的原理

磁悬浮列车的原理及应用 传统的铁路列车都是依靠诸如蒸汽、燃油、电力等各种类型机车作为牵引动力,车轮和钢轨之间的相互作用作为运动导向,由车轮沿着钢轨滚动而前进的。而磁悬浮列车则是一种依靠电磁场特有的“同性相斥、异性相吸”的特性将车辆托起,使整个列车悬浮在线路上,利用电磁力进行导向,并利用直线电机将电能直接转换成推进力,来推动列车前进的交通工具。 磁悬浮列车的分类 (1)按电磁铁种类磁悬浮列车根据所采用的电磁铁种类可以分为常导和超导两大类 (2)按悬浮方式磁悬浮列车分为电磁吸引式悬浮(EMS)和永磁力悬浮(PRS)及感应斥力悬浮(EDS)。 EMS 该方式利用导磁材料与电磁铁之间的吸引力,绝大部分悬浮采用此方式。 PRS 这是一种最简单的方案,利用永久磁铁同极间的斥力,其缺点是横向位移的不稳定因素。 EDS 依靠励磁线圈和短路线圈的相对运动得到斥力,所以列车要有足够的速度才能悬浮起来,大约为100km/h,它不适用于低速。 磁悬浮列车的原理 常导磁吸式(EMS) 利用装在车辆两侧转向架上的常导电磁铁(悬浮电磁铁)和铺设在线路导轨上的磁铁,在磁场作用下产生的吸引力使车辆浮起。车辆和轨面之间的间隙与吸引力的大小成反比。为了保证这种悬浮的可靠性和列车运行的平稳,使直线电机有较高的功率,必须精确地控制电磁铁中的电流,使磁场保持稳定的强度和悬浮力,使车体与导轨之间保持大约10mm的间隙。通常采用测量间隙用的气隙传感器来进行系统的反馈控制。这种悬浮方式不需要设置专用的着地支撑装置和辅助的着地车轮,对控制系统的要求也可以稍低一些。 常导式磁悬浮列车示意图 超导磁斥式 日本磁悬浮铁路ML系统使用低温超导技术。它用液氮作为冷冻液,当线圈绕组达到-269摄氏度的温度时车载线圈绕组即进入超导状态。为了提高磁悬浮车辆上超导材料的稳定性,日本使用铌钛合金作为线圈绕组材料。低温超导原理如图

磁悬浮列车技术论文

磁悬浮列车技术 【摘要】:磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本等发达国家相继开始筹划进行磁悬浮运输系统的开发。磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。不同于传统列车利用车轮与钢轨之间的粘着力使列车前进。磁悬浮列车运行时与轨道保持10mm或者100mm的间隙,从根本上克服了传统列车轮轨黏着限制、机械噪声和磨损等问题,是一种新型的运载工具,其时速远远超过传动列车。 【关键词】:悬浮、推进、导向、创新 【正文】 一、工作原理 磁悬浮列车利用电磁体“同名磁极相互排斥,异名磁极相互吸引”的原理,让具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三分所采用的技术进行介绍。 导向系统 导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。 悬浮系统 目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。 图4给出了两种系统的结构差别。(EMS) 辆下部的悬浮和导向电磁铁的电磁排斥力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外

磁悬浮列车的基本工作原理

磁悬浮列车的基本工作原理 摘要:作为高新技术产业的当家花旦之一,磁悬浮列车的上镜率是十分高的。像许多高新技术的产物一样,它的基本原理其实并不复杂。这儿我们就磁悬浮列车的基本原理进行一个初步的探究。 磁悬浮列车的定义: 对磁悬浮列车的研究,我们首先需要对磁悬浮列车进行一个比较准确的定义,根据相关文献,我们可以得出如下资料: 中文名称:磁悬浮列车 英文名称:maglev train;magnetic suspension train 定义:以超导电磁铁相斥原理建设的铁路运输系统。区别于通常的轮轨黏着式铁路。其最高时速可以达到350~500km。 从这个定义中我们可以的出的结论有三点: 1、磁悬浮列车的基本原理运用磁铁“同性相斥,异性相吸”的性质,使我们乘坐的庞大的列 车,从轨道上悬浮起来的。 2、磁性浮列车所使用的电磁铁是采用的超导电磁铁,那么着就牵涉到关于超导材料的问 题,这个我们将在后文解释。 3、磁悬浮列车能够达到350~500km的超高时速,那么我们在研究它的基本原理的时候, 不仅要研究它是如何从轨道上悬浮起来的,还要研究它的驱动力,即是磁悬浮列车采用何种驱动方式让它能够达到如此之高的速度,并且在这一速度下比较稳定的运行的。 悬浮原理: 悬浮列车的悬浮有两种基本形式: 一种是利用磁铁“同性相斥”的原理而设计的电磁运行系统的磁悬浮列车,利用车上电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行。 另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,从而使车体悬浮于车道的导轨面上运行。 这两种悬浮方式目前都已被投入使用,前者称为推斥式,后者为吸力式。上海磁悬浮列车便是“常导磁吸型”(简称“常导型”)磁悬浮列车,也就是利用“吸力式”原理设计。

磁悬浮列车的工作原理

磁悬浮列车的工作原理 由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。 通俗的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈里流动的交流电的频率和电压。 稳定性由导向系统来控制。“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。 “常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。 简单来说: 磁悬浮列车的原理是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”。 列车上装有超导磁体,由于悬浮而在线圈上高速前进。这些线圈固定在铁路的底部,由于电磁感应,在线圈里产生电流,地面上线圈产生的磁场极性与列车上的电磁体极性总是保持相同,这样在线圈和电磁体之间就会一直存在排斥力,从而使列车悬浮起来。 前进的原理:在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,

磁悬浮列车的工作原理

磁浮火车 要以最快的速度从 一个地方去到数百公 里,甚至数千公里以外 的地方,一般人都会选 择乘搭飞机。可是,在 不久的将来,一种新的 交通工具将会带领人们 以高速于城市之间穿梭。 目前为止,一般的子弹火车能以 200 km/h 的速度前进。由于火车与路轨之间的磨擦力限制了火车的最高速度,所以人们便开始研究能悬浮于路轨之上的火车,于是便有磁浮火车的出现了。 顾名思义,磁浮火 车是利用磁力使火车悬 浮于路轨之上。磁浮火 车经常被称为 MagLev, 即 Magnetically Levitated train 的简 写。但是,利用一般的磁铁并不能把火车稳定地浮起。要是你将两块磁铁的北极相对,你会发现无法使一块磁铁稳定地浮在另一块上 (图一)。所以,要把火车

浮起并不如想象中般简单。 真正磁浮火车是如何浮起来的?目前,磁浮火车还在试验阶段。德国科学家设计了一个名为 Transrapid 的系统,利用了「电磁力悬浮法」(EMS) 把火车浮起 (图二)。在这个系统中,火车的底部包着一条导轨,在火车底部起落架的电磁铁向着导轨,磁力使火车悬浮在导轨之上约一厘米,即使在静止的时候,火车仍然保持浮起。其它导引磁铁则能使火车在行使时保持稳定。 日本的科学家则利用了「电动力悬浮 法」(EDS) 把火车浮起。还记得甚么是「电 磁感应」吗?当磁铁在导体附近移动,导体内的磁场会因而改变 (图三),并感应出电流。感应电流又能产生磁场,根据楞次定律,这样产生出来的磁场总是倾向于抗拒引起这个感应的改变。「电动力悬浮法」应用了电磁感应的原理。图四(a)显示了这种磁浮火车的原理。火车在导槽内行走,槽的两边安有一系列 "8" 字形的线圈。当一辆列车快速驶过时,车两边的超导磁铁便会在线圈上感应出电流。巧妙

磁悬浮技术原理及其应用

产业观察 Industry Observation 2017.08 数字通信世界 43 1 引言 自古以来,使物体在空中处于无接触悬浮状态一直是人类无法企及的梦想。但随着电子通信、系统控制、电气工程、电磁学和材料力学的研究进一步深入,人类利用磁悬浮技术已经实现了这一梦想。磁悬浮技术是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化高新技术。目前来说,人类利用磁悬浮技术已经实现了许多应用,如磁悬浮轴承、磁悬浮列车、磁悬浮工作台等。本文针对磁悬浮技术,提出了该技术的原理及特点,并根据其特点分析了它在工业及工程上的应用,并进行了展望。 2 磁悬浮原理及其特点 磁悬浮技术原理及其应用 纪 源 (南京金陵中学,南京 210007) 摘要: 磁悬浮技术是一门多学科交叉,并具有良好发展前景的学科。随着电子通信、系统控制、电气工程、电磁学和材料力学的研究进一步深入,磁悬浮技术目前来说已经广泛的应用与各个领域内,如航空航天、精密仪器、轨道交通等。本文针对磁悬浮技术,提出了该技术的原理及特点,并根据其特点分析了其在工业及工程上的应用,并相应地作出了展望。 关键词: 电磁学;磁悬浮技术;应用doi: 10.3969/J.ISSN.1672-7274.2017.08.018中图分类号: TM57 文献标示码:A 文章编码:1672-7274(2017)08-0043-02变化,从而使电磁铁周边产生磁场,通过控制器,使 悬浮体受到的磁力与其重力相等,从而使悬浮体在空中悬浮。并且,假设因为某种原因,悬浮体在平衡位置处出现了微小的扰动,偏离了平衡位置。此时,由位置传感器检测出悬浮体偏离的位移大小,并将该数据通过控制器的微处理器转换为控制信号,再通过功率放大器将该控制信号转换为控制电流,根据位移的方向和大小确定控制电流的大小,经过多次迭代微调,从而迫使悬浮体返回原来的平衡位置。由该原理可以看出,无论悬浮体的扰动位移方向是朝下还是朝上,它均能通过控制系统处于平衡状态[1]。磁力弹簧是磁悬浮系统中最重要的原件,根据产生磁力的方式,可分为电磁弹簧和永磁弹簧。电磁弹簧是由密集线圈产生电磁场而提供磁力,永磁弹簧通常仅由永久磁铁来提供磁力,而永久磁铁常选取稀土类磁性材料。通常来说,由于悬浮体不与外界有直接接触,因此优点明显:一是磨损很小,并且在真空和腐蚀性介质中可以长期使用;二是机械摩擦力几乎等于零,仅有少量的转动空气摩阻力,因此功耗较低,噪声小,且不需要润滑剂,从而适用于机械工程中的高速转动工程。因为磁悬浮体对于外界干扰有着很好的稳定性,同时,传感器也可实时记录数据,用于故障的诊断与运营过程中的监测。 3 磁悬浮技术应用 3.1 磁悬浮轴承 目前来说,国内外对于磁悬浮技术方面,研究比 较火热的主要有两个方向,磁悬浮轴承与磁悬浮列 图1 磁悬浮工作原理示意图 磁悬浮技术是一种依靠电磁力将物体无机械 接触地悬浮起来的技术,其简要装置示意图如图1所示。该装置由五部分组成:传感器、电磁铁、控制器、功率放大器和磁浮体。其工作原理为,通过给电磁铁提供交变电流,使电磁铁中线圈产生磁通量的

磁悬浮列车的原理及应用_陆一娣

磁悬浮列车的原理及应用 陆一娣 众所周知,传统的铁路列车都是依靠诸如蒸汽、燃油、电力等各种类型机车作为牵引动力,车轮和钢轨之间的相互作用作为运行导向,由铁路线路承受压力,借助于车轮沿着钢轨滚动前进的。而磁悬浮列车则是一种依靠电磁场特有的“同性相斥、异性相吸”的特性将车辆托起,使整个列车悬浮在线路上,利用电磁力进行导向,并利用直线电机将电能直接转换成推进力,来推动列车前进的最新颖的第五代交通运输工具。与传统铁路相比,磁悬浮列车有以下优点。 适于高速运行磁悬浮列车最大特点在于它没有通常的轮轨系统,由于消除了与轮轨之间的接触,不存在由于轮轨摩擦及黏着所造成的诸如极限速度等影响列车运行的问题,速度可达500 km/h以上。 稳定安全列车运行平稳,能提高旅客舒适度,由于磁悬浮系统采用导轨结构,不会发生脱轨和颠覆事故,提高了列车运行的安全性和可靠性。 污染小,易维护磁悬浮列车在运行中既不产生机械噪声,也不排放任何废气、废物,对周边环境的污染极小,有利于环境保护,加上磁悬浮列车由于没有钢轨、车轮、接触导线等摩擦组件,可以省去大量维修工作和维修费用。 效率高能充分利用能源、获得较高的运输效率。另外,磁悬浮列车可以实现全自动化控制,因此将成为未来最具有竞争力的一种交通工具。 磁悬浮列车的发展史 磁悬浮列车是大约二百年前斯蒂芬森的“火箭”号蒸汽机车问世以来铁路技术最根本的突破。磁悬浮列车在今天看来似乎还是一个新鲜事物,其实它的理论准备已有很长的历史。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。而美国和前苏联则分别在七八十年代放弃了这项研究计划,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。下面把各主要国家对磁浮铁路的研究情况作一简要介绍。 日本于1962年开始研究常导磁浮铁路。此后由于超导技术的迅速发展,从70年代初开始转而研究超导磁浮铁路。1972年首次成功地进行了2.2吨重的超导磁浮列车实验,其速度达到每小时50千米。1977年12月在宫崎磁浮铁路试验线上,最高速度达到了每小时204千米,到1979年12月又进一步提高到517千米。1982年11月,磁浮列车的载人试验获得成功。1995年,载人磁浮列车试验时的最高时速达到411千米。为了进行东京至大阪间修建磁浮铁路的可行性研究,于1990年又着手建设山梨磁悬浮铁路试验线,首期18.4千米长的试验线已于1996年全部建设完成。 德国对磁浮铁路的研究始于1968年(当时的联邦德国)。研究初期,常导和超导并重,到1977年,先后分别研制出常导电磁铁吸引式和超导电磁铁相斥式试验车辆,试验时的最高时速达到400千米。后来经过分析比较认为,超导磁浮铁路所需的技术水平太高,短期内难以取得较大进展,遂决定以后只集中力量发展常导磁浮铁路。1978年,决定在埃姆斯兰德修建全长31.5千米的试验线,并于1980年开工兴建,1982年开始进行不载人试验。列车的最高试验速度在1983年底达到每小时300千米,1984年又进一步增至400千米。目前,德国在常导磁浮铁路研究方面的技术已趋成熟。 与日本和德国相比,英国对磁浮铁路的研究起步较晚,从1973年才开始。但是,英国则是最早将磁浮铁路投入商业运营的国家之一。1984年4月,伯明翰机场至英特纳雄纳尔车站之间一条600米长的磁浮铁路正式通车营业。旅客乘坐磁浮列车从伯明翰机场到英特纳雄纳尔火车站仅需90秒钟。令人遗憾的是,在1995年,这趟一度是世界上唯一从事商业运营的磁浮列车在运行了11年之后被宣布停止营业,其运送旅客的任务由机场班车所取代。

相关文档
最新文档