植物体叶绿素荧光测定仪的原理与使用方法

植物体叶绿素荧光测定仪的原理与使用方法
植物体叶绿素荧光测定仪的原理与使用方法

植物体叶绿素荧光测定仪的原理与使用方法

【实验目的】

?了解目前在光合作用研究中先进的叶绿素荧光技术,了解便携式叶绿素荧光仪测定

植物光合作用叶绿素荧光参数的基本原理和仪器的使用方法。

?老师演示和学生分组利用便携式叶绿素荧光仪(PAM2100)测定实验植物的叶绿素荧

光基本参数(Fo, Fm, Fv/Fm, Fm’, Fo’, Yield, ETR, PAR, qP, qN等)。

?了解荧光仪的广泛应用

【实验原理】

仪器介绍和工作原理

叶绿素荧光(Chlorophyll Fluorescence)的产生

?传统的光合作用测定是通过测量植物光合作用时CO2的消耗或干物质积累计算出

来。叶绿素荧光分析技术通过测量叶绿素荧光量准确获得光合作用量及相关的植物生长潜能数据。

?叶绿素荧光动力学技术在测定叶片光合作用过程中光系统对光能的吸收、传递、耗

散、分配等方面具有独特的作用,与“表观性”的气体交换指标相比,叶绿素荧光参数更具有反映“内在性”特点。

?本实验以调制式叶绿素荧光仪PAM-2100(W ALZ)为例,测定植物叶绿素荧光主

要参数。植物叶片的生长状况不同,所处位置的不同,光照不同,叶绿素荧光参数数值也会有所不同,所以不同叶片之间叶绿素荧光产量存在着一定的差异。

【实验内容与步骤】

一、仪器使用步骤讲解

1. 仪器安装连接

将光纤和主控单元和叶夹2030-8相连接。光纤的一端必须通过位于前面板的三孔光纤连接器连接到主控单元,光纤的另一端固定到叶夹2030-B上。同时,叶夹2030-B还应通过LEAF CLIP插孔连接到主控单元。

2. 开机

按“POWER ON”键打开内置电脑后,绿色指示灯开始闪烁,说明仪器工作正常。随后在主控单元的显示器中会出现PAM-2100的表示。从仪器启动到进入主控单元界面大概要40秒。

3. PAM-2100的键盘

PAM-2100主控单元上有20个按键,现分别简要介绍主要按键的功能。

Esc:退出菜单或报告文件

Edit:打开报告文件

Pulse:打开/停止固定时间间隔的饱和脉冲

Fm:叶片暗适应后打开饱和脉冲测量Fo、Fm和Fv/Fm

Menu:打开动力学窗口的主菜单

Shift:该键只有和其它键结合时才能起作用

+:增加选定区的数值(参数)设置

-:减少选定区的数值(参数)设置

Store:存储记录的动力学曲线

Com:打开命令菜单

<:指针左移

>:指针右移

∧:指针上移

∨:指针下移

Act:打开光化光

Yield:打开一个饱和脉冲以测定照光状态的光系统II有效量子产量△F/Fm′。

4.开始测量

(1)通过选择合适的测量光强、增益和样品与光纤的距离来调节Fo在200-400 mV之间。同时,为了避免人为误差,得到最好的结果,建议通过检查饱和脉冲时得到的荧光动力学变化曲线来设置合理的饱和脉冲强度和持续时间,通过按Com菜单的Pulse kinetics功能来实现。

(2)Fo、Fm和Fv/Fm的获得:

可以通过按“shift + return”键调出菜单执行Fo-determination来测定Fo,也可以通过按外接键盘的“Z”键来测量Fo。

可以通过按“Fm”键或按外接键盘的“M”键来测量Fm,Fv/Fm也会自动获得。(3)量子产量Yield的获得:

只需按“Yield”键即可。或者将指针移到“RUN”处,激活“RUN 1”,只需按叶夹2030-B 上的红色遥控按钮即可。

5. 数据输出

(1)将RS-232数据线和PAM-2100主控单元连接好

(2)进入动力学窗口,按“Menu”键,进入Data子菜单,选择Transfer Files并按回车键。(3)打开一个窗口选择RS-232数据线的Com-Port,选择并激活Com-Port后,出现另一个窗口,其中示出了PAM-2100中存储的数据文件。双击该文件就可进行传输。

6. 关闭仪器

按“Com”键,会出现一个命令选择菜单,通过按“∨”,选择“Quit program”,并按回车键即可关闭仪器。将光纤和叶夹2030-B卸下并整理好,放入荧光仪专用箱子中。

7.仪器充电

当PAM-2100电力不足时,需进行充电。关闭主机,连接充电器2120-N对内置锂电池进行充电。

8.注意事项

禁止在开机的情况下连接外接电源!

禁止过度弯曲光导纤维!

二、植物叶片叶绿素荧光主要参数的测定

(实验报告)

1.叶片Fo、Fm和Fv/Fm的测定

在校园内,选取两个树种成熟叶片测定Fo、Fm和Fv/Fm,试比较不同植物之间的异同。2.叶片量子产量Yield的测定

在校园内,选取2-3种实验植物成熟叶片测定Yield,试比较不同植物之间的异同。

【思考题】

?(1)影响叶绿素荧光参数的主要环境因子有哪些?

?(2)在一天的不同时间段,叶绿素荧光主要参数是否会出现变化?如果会,主要是什

么原因引起的?

高级植物生态学试题

《高级植物(生理)生态学》课程考试试题 生命科学学院周晓丽学号:G2004477 一、名词解释(30分) 1.光补偿点和光饱和点 光补偿点:光合作用吸收的二氧化碳与呼吸作用放出的二氧化碳数量相等时的光强。阴生植物的光补偿点低于阳生植物,C3植物低于C4植物。 光饱和点:在一定的光强范围内,植物的光合强度随光照度的上升而增加,当光照度上升到某一数值之后,光合强度不再继续提高时的光照度值。 2.CO2饱和点和CO2补偿点 CO2饱和点:CO2浓度增加到一定程度时光合速率不再增加,此时环境中CO2的浓度称二氧化碳饱和点。 CO2补偿点:光合作用释放的氧气与呼吸作用消耗的氧气相等时外界环境中的CO2浓度,就是光合作用的CO2补偿点。 3.量子产率与羧化效率 量子产率:体系吸收每一个光子所引发的某种事件的数目。符号为ψ,Y。积分量子产率为Ф=事件数/吸收光子数。对于光化学反应,ψ=反应物消耗(或产物产生)的数量/吸收光子数量。微分量子产率为φ=(d[x]/dt)/n。式中d[x]/dt为某可测量量的变率,n为单位时间内所吸收的光子数(摩尔或爱因斯坦)。ψ可用于光物理过程或光化学反应。 羧化效率:在低CO2浓度条件下,CO2浓度是光合作用的限制因子,直线的斜率(CE)受羧化酶活性和量的限制。因而,CE被称为羧化效率。CE值大,则表示Rubisco的羧化效率较高。 4.叶面积指数:单位土地面积上植物植株绿叶面积与土地面积的比值。是反映作物群体大小的较好的动态指标。 5.植物的碳同位素区异:主要指C3、C4在植物体内的不同含量。

二、简答题(40分) 1、画图示意光合速率的光响应曲线,并标示出暗呼吸、光补偿点和光饱和 点。 光和响应曲线 2、如何理解叶绿素荧光动力学中的F V/F m和NPQ,它们在分析植物光合生 理分析有何意义? 调制叶绿素荧光全称脉冲-振幅-调制(Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。 调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的三大技术。由于其测量快速、简单、可靠、且测量过程对样品生长基本无影响,目前已成为光合作用领域发表文献最多的技术。 调制叶绿素荧光仪的工作原理 1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber 博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。 所谓调制技术,就是说用于激发荧光的测量光具有一定的调制(开/关)频

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

SPAD-502叶绿素测定仪

种子仪器/农业仪器/粮油仪器设备价格优惠,专业生产销售厂家:郑州南北仪器设备有限公司(南北设备集团),南北通过向客户提供领先的产品性能来追求种子仪器/农业仪器/粮油仪器设备行业第一领先地位 便携式叶绿素测定仪/叶绿素仪/便携式叶绿素仪 仪器型号: SPAD-502Plus 产地:日本原装进口 产品介绍:轻巧,简便,实用 SPAD-502Plus是一种可以通过测量作物叶子中的叶绿素含量来帮助用户了解作物营养状况的仪器。叶绿素含量与作物的生长条件有关,因此,可以由此来判断是否还需要添加相应的肥料。通过营养条件最优化,才能生长出更健康的作物,最终得到高质量的大丰收。产品特点: 测量迅速、简便。测量时只需要将叶片插入并合上测量探头即可,无需将叶片剪下,这样就可以在作物的生长过程中全程对特定的叶片进行监测,从而得到更科学的分析结果。叶绿素仪趋势图显示 测量的多组数据走势会显示在图中,那些差异较大的数据可以一目了然就被发现出来,从而得到重视并进行分析。 防水功能 SPAD-502Plus有防水功能(IPX-4),即使下雨天,也可在室外进行测量工作。不可将仪器浸入水中,或用水直接对仪器进行清洗。SPAD-502Plus拥有小巧的机身,仅200g的重量,可以方便地装入口袋并带到现场进行测量。电池消耗低,SPAD-502Plus使用的是LED照明光源,因此可大大降低电池的消耗,一组2节的AA电池,可进行测量约20,000次。 SPAD-502原理 SPAD-502Plus通过测量叶子对两个波长段里的吸收率,来评估当前叶子中的叶绿素的相对含量。下图显示了两种叶子样品中的叶绿素对于光谱的吸收率。

便携式叶绿素测定仪详细介绍

便携式叶绿素测定仪详细介绍 据实验研究表明,叶片中的叶绿素含量判断植物营养状况好坏的标志,根据它可以判断出植物需要什么肥料及肥料配比的数量,而传统的叶绿素检测方法十分麻烦。为此,托普云农研究开发出一种便携式的叶绿素测定仪仪,可以带到田间直接测量各种植物叶片上叶绿素的浓度和含量,从而即时调整田间的施肥标准。本文就从各方面详细介绍一下便携式叶绿素测定仪。 一、便携式叶绿素测定仪是什么? 便携式叶绿素测定仪是一款可以无损快速测量植物的叶绿素相对含量或“绿色程度”仪器,仪器主要是通过测量叶片在两种波长范围内的透光系数来确定叶片当前叶绿素的相对数量,也就是在叶绿素选择吸收特定波长光的两个波长区域,根据叶片透射光的量来计算测量值。 二、便携式叶绿素测定仪有哪些功能特点? 1、快速无损植物活体检测,不影响植物成长。 2、一次操作可同时测定所有参数,实时显示。 3、叶绿素,叶温两种参数同一屏幕同时中文显示,且可同时储存,自动求取四种指标的平均值 4、中文界面具有“系统设置”“查看数据”“节能设置”“时钟设置”“删除数据”等功能。 历史数据查看,既可顺序查看,也可跳转查看。 6、可输入植物名称,标准氮含量及利用率可以直接计算出标准施肥量 7、意外断电后已保存在主机里的数据不丢失。 8、对于历史数据既可逐条删除,也可以一键式全部删除。 9、仪器自带USB接口,可连接计算机将测量数据导出,便于植物养分的管理和分析。 10、内置锂电池供电,可直接充电无需换电池,仪器自带背光功能。 三、便携式叶绿素测定仪该怎么用? TYS-B便携式叶绿素测定仪使用方法: 1、校准:打开电源开关,进入主页面,按住测量压头,直到显示屏显示校验成功,同时蜂鸣器发出“滴”声; 2、测量:测量时请将植物放入测量位置,按下测量压头2-3秒,蜂鸣器会 发出“滴”声,此时松开测量压头,显示屏自动显示所测叶片的叶绿素值和叶片温度值; 3、均值:在主界面下,长按确定键3秒,可对最近几次测量数据取平均值; 4、使用完毕,关闭电源开关。 TYS-B便携式叶绿素测定仪使用注意事项: 1、保持测量位置的清洁,以免影响测量结果。

便携式叶绿素测定仪的使用原理及方法

便携式叶绿素测定仪 仪器用途: 可以即时测量植物的叶绿素相对含量(单位SPAD)或绿色程度、氮含量、叶面湿度、叶面温度,从而了解植物真实的硝基需求量并且了解土壤硝基的缺乏程度或是否过多地施加了氮肥。可以通过此款仪器来增加氮肥的利用率,并可保护环境。可广泛应用于农林相关科研单位和高校对植物生理指标的研究和农业生产的指导。 功能特点: 快速无损植物活体检测,不影响植物成长。 一次操作可同时测定所有参数,实时显示。 氮,叶绿素,叶温,叶片湿度四种参数同一屏幕同时显示,且可同时储存 内置GPS定位功能,实时显示当前经纬度 历史数据查看,即可顺序查看。 测量数据可连接计算机将测量数据导出,便于植物养分的管理和分析。 历史数据查看,即可顺序查看,也可跳转查看。 意外断电后已保存在主机里的数据不丢失。 对于历史数据可以一键式全部删除。 可连接计算机将测量数据导出,便于植物养分的管理和分析。 使用锂电池供电,带背光功能。 每种参数的报表、曲线图均可选择时段查询查看。 可将存储记录的数据以EXCEL格式备份保存,方便以后调用。 可将存储记录的数据曲线图以BMP图片格式备份保存,方便以后调用。 技术参数: 1、测量范围:叶绿素:0.0-99.9SPAD 氮含量:0.0-99.9mg/g 叶面湿度:0.0-99.9RH% 叶面温度:-10-99.9℃ 2、测量精度:叶绿素:±1.0 SPAD单位以内(室温下,SPAD值介于0-50) 氮含量:±5% 叶面湿度:±5% 叶面温度:±0.5℃ 3、重复性:叶绿素:±0.3 SPAD单位以内(SPAD值介于0-50) 氮含量:±0.5单位 叶面湿度:±0.5单位 叶面温度:±0.2℃ 4、测量面积:2mm*2mm 5.测量时间间隔:小于3秒 6.数据存储容量:2000组数据 7.电源:4.2V可充电锂电池 8.电池容量:2000mah 9.重量:200g

叶绿素含量测定仪的特点及应用

叶绿素含量测定仪的特点及应用 叶绿素含量的测定方法有很多种,使用最广泛的方法是研磨法,也是比较传统的一种方法,该方法需要把植物植物的材料研磨并经转移、过滤或离心处理,不仅工作量大,损害植物,而且不可避免地使试验人员较长时间与挥发于空气中的试剂相接触,对人体损害较大。因此,为了弥补传统检测方法的不足,叶绿素含量测定仪的研发及应用得到了实验人员的广泛的关注,该仪器的应用不仅提高了工作效率,还能够实现快速无损植物活体检测,而且还不影响植物的生长。 除此之外,叶绿素含量测定仪的测量方法也很简单,操作人员只需要手持叶绿素含量测定仪,将叶片插入仪器的感应部位,然后合上测量探头即可。这种测量方法还有一大好处就是,不会对叶片造成损伤,可以实现无损快速测量,尤其是在作物的生长过程中全程对特定的叶片进行监测,可以得到更科学的分析结果。除此之外,应用于这种测定的仪器又被叫做便携式叶绿素仪,因为该叶绿素含量测定仪拥有小巧的机身,仅200g的重量,可以方便地装入口袋并带到现场进行测量。由此可见,叶绿素含量测定仪产品拥有诸多的特点。 托普云农研发生产的TYS-B叶绿素含量测定仪,其主要是通过测量叶片在两种波长范围内的透光系数来确定叶片当前叶绿素的相对数量,也就是在叶绿素选择吸收特定波长光的两个波长区域,根据叶片透射光的量来计算测量值。植物之所以呈现绿色,正是因为它含有丰富的叶绿素,而植物叶片中的叶绿素含量指示了植物本身的状况,长势良好的植物的叶子会含有更多的叶绿素,并且有相关研究表明,叶绿素的含量与叶片中氮的含量有很密切的关系,因此使用叶绿素含量测试仪快速无损测量植物的叶绿素含量还能反应植物真实的硝基需求量,从而有利于合理的施加氮肥,提高氮的利用率,并可保护环境。

植物体叶绿素荧光测定仪的原理与使用方法

植物体叶绿素荧光测定仪的原理与使用方法 【实验目的】 ?了解目前在光合作用研究中先进的叶绿素荧光技术,了解便携式叶绿素荧光仪测定 植物光合作用叶绿素荧光参数的基本原理和仪器的使用方法。 ?老师演示和学生分组利用便携式叶绿素荧光仪(PAM2100)测定实验植物的叶绿素荧 光基本参数(Fo, Fm, Fv/Fm, Fm’, Fo’, Yield, ETR, PAR, qP, qN等)。 ?了解荧光仪的广泛应用 【实验原理】 仪器介绍和工作原理 叶绿素荧光(Chlorophyll Fluorescence)的产生 ?传统的光合作用测定是通过测量植物光合作用时CO2的消耗或干物质积累计算出 来。叶绿素荧光分析技术通过测量叶绿素荧光量准确获得光合作用量及相关的植物生长潜能数据。 ?叶绿素荧光动力学技术在测定叶片光合作用过程中光系统对光能的吸收、传递、耗 散、分配等方面具有独特的作用,与“表观性”的气体交换指标相比,叶绿素荧光参数更具有反映“内在性”特点。 ?本实验以调制式叶绿素荧光仪PAM-2100(W ALZ)为例,测定植物叶绿素荧光主 要参数。植物叶片的生长状况不同,所处位置的不同,光照不同,叶绿素荧光参数数值也会有所不同,所以不同叶片之间叶绿素荧光产量存在着一定的差异。 【实验内容与步骤】 一、仪器使用步骤讲解 1. 仪器安装连接 将光纤和主控单元和叶夹2030-8相连接。光纤的一端必须通过位于前面板的三孔光纤连接器连接到主控单元,光纤的另一端固定到叶夹2030-B上。同时,叶夹2030-B还应通过LEAF CLIP插孔连接到主控单元。 2. 开机 按“POWER ON”键打开内置电脑后,绿色指示灯开始闪烁,说明仪器工作正常。随后在主控单元的显示器中会出现PAM-2100的表示。从仪器启动到进入主控单元界面大概要40秒。 3. PAM-2100的键盘 PAM-2100主控单元上有20个按键,现分别简要介绍主要按键的功能。

手持叶绿素测定仪技术参数及功能特点

手持叶绿素测定仪技术参数及功能特点 手持叶绿素测定仪可以即时测量植物的叶绿素相对含量(单位SPAD)或绿色程度、叶面温度,从而解植物真实的硝基需求量并且了解土壤硝基的缺乏程度或是否过多地施加了氮肥。可以通过便携式叶绿素仪来增加氮肥的利用率,并可保护环境。便携式叶绿素测定仪广泛应用于农林相关科研单位和高校对植物生理指标的研究和农业生产的指导。 托普云农手持叶绿素测定仪/便携式叶绿素仪可以即时测量植物的叶绿素相对含量或绿色程度、叶面温度,从而了解植物真实的硝基需求量并且了解土壤硝基的缺乏程度或是否过多地施加了氮肥。 手持叶绿素测定仪原理: 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 手持叶绿素测定仪技术参数: 测量范围:叶绿素:0.0-99.9SPAD

叶面温度:-10-99.9℃ 测量精度:叶绿素:±3.0 SPAD单位以内 (室温下,SPAD值介于0-50) 叶面温度:±0.5℃ 重复性:叶绿素:±0.3 SPAD单位以内(SPAD值介于0-50) 叶面温度:±0.2℃ 测量面积:2mm×2mm 测量时间间隔:小于3秒 数据存储容量:32KB 电源:4.2V可充电锂电池 电池容量:2000mah 重量:200g 工作及存储环境:-10℃~50℃≤85%相对湿度 手持叶绿素测定仪功能特点: 1、快速无损植物活体检测,不影响植物成长。 2、一次操作可同时测定所有参数,实时显示。 3、叶绿素,叶温两种参数同一屏幕同时显示,且可同时储存。 4、中文界面具有“系统设置”“查看数据”“节能设置”“时钟设置”“删除数据”等功能。 5、历史数据查看,既可顺序查看,也可跳转查看。 6、可以输入植物名称,标准氮含量及利用率可以直接计算出标准施肥量。 7、意外断电后已保存在主机里的数据不丢失。 8、对于历史数据既可逐条删除,也可以一键式全部删除。 9、仪器自带USB接口,可连接计算机将测量数据导出,便于植物养分的管理和分析。 10、内置锂电池供电,直接充电无需换电池,仪器自带背光功能。

YLS-501叶绿素测定仪和叶绿素测定仪价格

YLS-501叶绿素测定仪和叶绿素测定仪价格 YLS-501叶绿素测定 仪 标题:YLS-501叶绿素测定仪 叶绿素测定仪 仪器仪器名称:叶绿素测定仪 仪器型号:YLS-501 叶绿素计/手持叶绿素仪功能特点: *测量时间快速 *LCD 直接显示叶绿素值 *仪器小巧便携,可随身携带到野外测量 *30个数据,自动计算并显示平均值 叶绿素计/手持叶绿素仪技术参数: 测量样品:各种植物叶片 测量面积: Ф10mm 测量方式: 2波长光学浓度差方式 感应器: 硅半导体光电二极管 显示方式:测量值:3位数液晶显示 测量次数:2位数液晶显示 测量的最小间隔: 小于2秒 测量范围: 0.0-99.9SPAD 精度: ±1.0 SPAD (室温下,SPAD 值介乎0-50) 重复性: ±0.3 SPAD 单位以内(SPAD 值介乎 0-50) 重现性: ±0.5 SPAD 单位以内 (SPAD 值介乎0-50) 操作温度: 0~50℃ 储存温度:-20~~55℃ 电源:2节5号AA 碱性锰... 厂家:上海政泓 市场价格: 优惠价格:百度搜索联系 TYS-A 叶绿素仪/叶绿 素计 标题:TYS-A 叶绿素仪/叶绿素计 仪器名称:手持叶绿素仪、叶绿素计 叶绿素计/手持叶绿素仪用途: 叶绿素仪可以即时测量植物的叶绿素相对含量或“绿色程度”,植物叶片中的叶绿素含量指示了植物本身的状况,长势良好的植物的叶子会含有更多的叶绿素,叶绿素的含量与叶片中氮的含量有很密切的关系,因而叶绿素测量值还能说明植物真实的硝基需求量,通过这种仪器有利于合理施加氮肥,提高氮的利用率,并可保护环 境(防止施加过多的氮肥而使环境特别是水源受到污染) 叶绿素计/手持叶绿素仪测量原理: TYS 系列叶绿素仪通过测量叶片在两种波长范围内的透光系数来确定叶片当前叶绿素的相对厂家:上海政泓 市场价格: 优惠价格:百度搜索联系

对叶绿素荧光仪各参数的说明

对叶绿素荧光仪各参数的说明 各参数顺序按照数据传输软件上传出数据的顺序 SL(T):饱和脉冲强度。 AL(T):光化光强度。 Total T:测量总时长。 FR T:远红光时长。 Dark T:黑暗时长。 Fo:固定荧光,初始荧光(minimalfluorescence),也称基础荧光,0水平荧光,是光系统Ⅱ(PS Ⅱ) 反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。 Fj:在O-J-I-P 荧光诱导曲线j点处的荧光强度 Fi:在O-J-I-P 荧光诱导曲线i 点处的荧光强度 Fm:荧光产量(maximal fluorescence) ,是PS Ⅱ反应中心处于完全关闭时的荧光产量。可反映通过PSⅡ的电子传递情况。通常叶片经暗适应20 min 后测得。 Fv = Fm - Fo,为可变荧光(variable fluorescence) ,反映了QA 的还原情况(许大全等,1992) 。 Fv/Fm:是PSⅡ光化学量子产量(optimal/ maximal photochemical efficiency of PSⅡin the dark) 或(optimal/ maximal quantum yield of PS Ⅱ) ,反映PSⅡ反应中心内禀光能转换效率(intrinsicPSⅡefficiency)或称PSⅡ的光能转换效率(optimal/ maximal PS Ⅱefficiency) ,叶暗适应20 min 后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降(许大全等,1992) 。 Fo':光下荧光,在光适应状态下全部PSⅡ中心都开放时的荧光强度,qP=1,qN≥0。为了使照光后所有的PSⅡ中心都迅速开放,一般在照光后和测定前应用一束远红光(波长大于680nm,几秒钟)。 Fm':光下荧光,在光适应状态下全部PSⅡ中心都关闭时的荧光强度,qP=0,qN≥0。Fm'受非光化学猝灭的影响,而不受光化学猝灭的影响。 Fs:稳态荧光产量。响应光合作用在光反应与暗反应达到平衡时的荧光产量。

叶绿素仪测量水稻叶绿素变化

叶绿素仪测量水稻叶绿素变化 叶绿素仪测量水稻叶绿素变化 氮肥是农作物需要量最大的一类化学肥料,按照农作物的生长状况和阶段营养需要量来确定氮肥的精确施肥量一直是十分困难的,但现在则可以用叶绿素计来完成这一工作了。 大田农作物在缺氮时,一般会表现出一些明显的缺素症状,如叶片叶绿素含量降低导致颜色变浅,而氮素过多则植物颜色变深,也就是说叶片中的叶绿素含量与氮含量密切相关,通过精确测定叶片的变化就可了解作物营养状况,叶绿素仪就是根据这一特点和原理研制成的。 水稻叶绿素变化与叶片衰老紧密联系,影响叶绿素变化有高温、强光等因素。品种的感光性和感温性决定了不同生态条件下的生育期变化情况,特别是抽穗期的变化。而水稻抽穗期,决定着品种的种植范围和季节适应性,是水稻生态适应性育种的重要目标性状和重要检测指标之一。 叶绿素仪已经在水稻、小麦、玉米、棉花、马铃薯、蔬菜等作物的营养和精确施用氮肥方面发挥了重要作用。 叶绿素仪的工作原理 是采用两个不同波长的光源分别照射植物叶片表面,通过比较穿透叶片的光密度差异而得出叶绿素值,因而,叶绿素值是一个相对比值,与叶片中的叶绿素含量成正相关的关系。也就是说,用叶绿素仪测定的是作物叶片中叶绿素的相对含量,而叶绿素含量又是作物叶片含氮量紧密相关的,一般认为作物含氮量对叶绿素的影响有三种关系:1.正线性关系:即叶绿素含量随叶片含氮量的增加而增加,如水稻、烟草、绿叶蔬菜等;2.类二次型关系:即含氮量增高,叶绿素含量上升,但达到一定值以后,含氮量再增加,叶绿素含量也不会增加而保持在一个平台线上,如玉米、小麦、甜菜、大豆、棉花等;3.线性及线性加平台关系。因此,无论哪种作物的叶绿素含量都可以在一定程度上标示出作物当时的氮营养状态,以确定是否需要施氮肥。 测定部位在具体应用中对作物测定部位很有讲究,一般在作物生长前期取新展开的第一片完全展开叶作为测定部位;生长后期则取功能叶为测定部位;田间测位点的选择则可根据实际情况确定,或取其测定的平均值,或依据田间各点不平衡状态确定各局部田块的施氮量。 叶绿素仪测量水稻叶绿素变化 水稻感光性是指水稻品种因受日照长短的影响而改变其生育期的特性,水稻品种的这种特性表现为在适宜生长发育的日照长度范围内,短日照可使生育期缩短,长日照可使生育期延长;感温性是指水稻品种因受温度影响而改变其生育期的特性,即水稻品种在适宜的生长发育温度范围内,高温可使其生育期缩短,低温可使其生育期延长。实际上,由于光温互作以及品种对光温反应的补偿作用,品种材料对光温生态条件的反应是综合的和相互作用的,又是很难严格区分的。实践上,同一水稻品种在不同地区播始历期的差

X荧光光谱仪的原理结构及应用

X荧光光谱仪的原理结构及应用 【摘要】X荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。本文就X荧光光谱仪的工作原理及其应用做简单阐述。 【关键词】X荧光;光谱仪;原理;应用 一、X荧光的基本原理: 当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了X荧光。X荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征X射线,也称荧光X射线或X荧光。 X荧光光谱法就是由X射线光管发生的一次X射线激发样品,试样可以被激发出各种波长的特征X射线荧光,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析的方法。该方法是一种非破坏性的仪器分析方法,常用的有能量色散型和波长色散型两种类型。广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。下面我以波长色散型X射线光谱仪为例讲一下它的原理及构造。 二、X荧光光谱仪的原理与仪器构造: 使用X荧光光谱法的仪器叫X射线荧光光谱仪。X荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。 1、激发光源—X射线管 X光管可以分成端窗和侧窗二种,但是近代X光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。 如图:管体内为高度真空。管内有阳极,阴极,灯丝,冷却水管,X射线出射窗(铍窗);尾部有高压电缆接头,冷却水接口和灯丝电缆;头部为X射线出射窗口。

叶绿素仪与浸提法测定玉米叶绿素含量的比较.

叶绿素仪与浸提法测定玉米叶绿素含量的比较 2010-11-17 9:05:34 本站阅读129次 [中国种子检验仪器网 https://www.360docs.net/doc/209352687.html,] 对叶绿素的研究一直是人们极其关注的课题。叶绿素含量测定方法主要有分光光度法和活体叶绿素仪法两大类,后来又发展了光声光谱法。但是,用手持叶绿素仪 或光谱分析仪测得的是色素相对含量指标,并且不同种类植物叶片中的色素指标与实际叶绿素含量之间的关系方程式不同,即不能用一种关系来转换不同植物的色素含量。在日常实验中普遍采用分光光度法,用的较多的是Arnon法。Arnon法需要把植物材料研磨,经过过滤或离心长,在操除渣、移液、定容、比色等过程,工作量大,提取时间作过程中误差较大,且易受光氧化的破坏,不适于对田间大量样品的测定和大量叶绿素的提取,并且也不适合大批量样本的应急检测。后来又提出了丙酮乙醇混合液浸提法,证明利用混合液进行叶绿素浸提的可行性。进一步研究后发现,混合液法比传统Arnon法提取叶绿素效率高,稳定性好。 选材:剪取叶片,洗净后弃除叶柄和中脉,然后用纱布或吸水纸将叶片表面的水分 吸干。为了试验的精确度更高,我们在取样时仅取每片叶的中间部位,并用SPAD-502测定其叶绿素相对含量值,使其偏差保持在(-5,+5)之间,超出范围者弃掉。把挑选的叶片剪成小于2mm碎条,混匀。分两份,一份在室温(25℃)下,立即用研磨法(80%丙酮,95%乙醇)和直接浸提法(8种提取液)提取叶绿素;另一份每次用千分之一天平精准称取(200 mg,称取24份;1 g,称取6份),分别装袋,密封好,储放到冰箱中备用。为增加不同测定方法之间可比性,样品在冷冻前称量分装好。 浸提法:分别于容量瓶中加入15mL提取液,把叶片剪成宽度小于2mm的细丝或小块,混匀,分别准确称取200mg放入盛有提取液的容量瓶中,封口,置于黑暗条件下直接浸提。研磨法每个处理重复3次。室温试验时,按8种提取液分8组,每组12个50mL的容量瓶,分别按照上述方法加入叶片和各浸提液,并计时,在室温黑暗条件下直接浸提叶绿素,并不时摇动。分别于10h、13h、16h和48h时,每组各取出3个容量瓶,定容至50mL后在645nm和663nm波长下测定吸光度值。取出冷冻20h的 叶片按照如上方法和程序或研磨或浸提。每个处理3个重复,浸提在50℃水浴中 进行,用肉眼观察叶组织完全变白,即说明浸提完全,取出冷却后定容,在645 nm和663 nm波长下测定吸光度值。 叶绿素仪:现在市面上最流行的莫过于SPAD502。SPAD502是有日本柯尼卡美能达研制生产的,SPAD502通过测量叶子对两个波长段里的吸收率,来评估当前叶子中的叶绿素的相对含量。该仪器拥有小巧的机身,仅200g的重量,可以方 便地装入口袋并带到现场进行测量,因此又叫做手持叶绿素仪。叶绿素仪操作也非常方便,你只需将叶片插入并合上测量探头即可,无需将叶片剪下,这样就可

便携式调制叶绿素荧光仪技术参数

便携式调制叶绿素荧光仪技术参数 用途:采用独特的调制技术和饱和脉冲技术,通过测量活体叶绿素荧光来研究植物的光合作用变化: l 可测荧光诱导曲线的快速上升动力学O-I-D-P相和O-J-I-P相 l 可测荧光诱导曲线的慢速下降动力学并进行淬灭分析(Fo、Fm、F、Fo’、Fm’、Fv/Fm、Y(II)( ΔF/Fm’)、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶温等) l 可测光响应曲线和快速光曲线(RLC) l 利用超便携式个人电脑(UMPC)进行操作,操作更简单 1. 工作条件: 1.1 环境温度:-5~+40℃ 1.3 适用电源:内置铅酸电池,12 V/2 Ah;可连外置12 V电池;外接交流电 2. 技术指标: 2.1 *测量光:红色LED,630 cnm,FWHM 20 nm;调制频率测量Fo时5-5000 Hz 可选,打开光化光时1-100 kHz可选,测量荧光诱导动力学的快相时200 kHz;20级可调。 2.2 光化光源:两种不同颜色的LED。蓝色LED,455 nm,FWHM 20 nm,光强范围0-800 μmol m-2 s-1 PAR,20级可调;红色LED,630 nm,FWHM 15 nm,光强范围0-5000 μmol m-2 s-1 PAR,20级可调。 2.3 饱和脉冲:红色LED,630 nm,FWHM 15 nm,最大PAR 25 000 μmol m-2 s-1,持续时间0.1-0.8 s可调,光强20级可调。 2.4 远红光:LED,750 nm,FWHM 25 nm,20级可调。 2.5 *单周转饱和闪光:红色LED,630 nm,FWHM 15 nm,最大PAR 125 000 μmol m-2 s-1,持续时间5-50 μs可调。 2.6 *多周转饱和闪光:红色LED,630 nm,FWHM 15 nm,最大PAR 25 000 μmol m-2 s-1,持续时间1-300 ms可调,光强20级可调。 2.7 信号检测:PIN-光电二极管,带长通滤光片(T(50%)=715 nm),带选择性锁相放大器。 2.8 *测量参数:Fo、Fm、F、Fo’、Fm’、Fv/Fm、Y(II)、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶温等。 2.9 工作软件:操作简单、功能强大,完全免费升级。 2.10 *测量程序:必须带荧光诱导曲线、光响应曲线、快速光曲线、荧光诱导加暗弛豫、光响应曲线加暗弛豫、快速荧光诱导动力学(OIDP或OJIP)等程序测量功能,必须能够测量qL、Y(NO)和Y(NPQ)等参数。 2.11 *曲线拟合:必须能够利用两种方程对光响应曲线进行非线性拟合并自动计算出拟合参数 2.12 耗电:基础操作1.6 W,内置光源(测量光、红色和蓝色光化光、远红光)为最大输出时8 W,饱和脉冲最大输出时37 W。 2.13 充电时间:关机状态下约需6 h。 2.14 光强测量:测量光合有效辐射(PAR),测量范围0~20000 μmol m-2 s-1。传感器与叶片之间的距离不超过1 mm。 2.15 叶温测量:Ni-CrNi热电耦,直径0.1 mm,测量范围-20~+60℃ 2.16 相对湿度测量:20%-95%(防止结露) 2.17 数据通讯:USB;蓝牙v2.0+EDR Class 2 3. 基本配置:

叶片荧光测量实验报告

叶片荧光测量实验报告 1.实验目的 2.实验方法 利用PAM100,荧光成像系统测量叶绿素荧光 3.实验原理及一些参数的意义 荧光的变化反映光合与热耗散的变化。 光化学淬灭(Photochemical Quenching):由于光合作用引起的荧光下降,反映了光合活性的高低。 qP=(Fm’-Fs)/Fv’=1-(Fs-Fo’)/(Fm’-Fo’) (基于“沼泽模型”) qL=(Fm’-F)/(Fm’-Fo’)·Fo’/F=qP·Fo’/F (基于“湖泊模型”) 非光化学淬灭(Non-Photochemical Quenching):由于热耗散引起的荧光下降。 qN=(Fv-Fv’)/Fv=1-(Fm’-Fo’)/(Fm-Fo) NPQ=(Fm-Fm’)/Fm’=Fm/Fm’-1 ,不需测定Fo’,适合野外调查qN或NPQ反映了植物耗散过剩光能转化为热的能力,反映了植物的光保护能力。 Fv/Fm =(Fm-Fo)/Fm : PS II的最大量子效率,反映植物潜在最大光合能力,高等植物一般在0.8-0.84之间,当植物受到胁迫(Stress)时,Fv/Fm显著下降。 ΦPS II = Yield = (Fm’-Fs)/Fm’ = ΔF/Fm’= qP·Fv’/Fm’: 任一光照状态下PS II的实际量子产量(实际光合能力、实际光合效率)

不需暗适应,不需测定Fo’,适合野外调查。 Y(NPQ)=1-Y(II)-1/(NPQ+1+qL(Fm/Fo-1)):调节性能量耗散,PS II 处调节性能量耗散的量子产量。若Y(NPQ)较高,一方面表明植物接受的光强过剩,另一方面则说明植物仍可以通过调节(如将过剩光能耗散为热)来保护自身。Y(NPQ)是光保护的重要指标。 Y(NO)=1/(NPQ+1+qL(Fm/Fo-1)):非调节性能量耗散 PS II处非调节性能量耗散的量子产量。若Y(NO)较高,则表明光化学能量转换和保护性的调节机制(如热耗散)不足以将植物吸收的光能完全消耗掉。也就是说,入射光强超过了植物能接受的程度。这时,植物可能已经受到损伤,或者(尽管还未受到损伤)继续照光的话植物将要受到损伤。Y(NO)是光损伤的重要指标。 P:光合速率,即相对电子传递速率rETR Pm: 最大光合速率,即最大相对电子传递速率rETRmax α:初始斜率,反映了光能的利用效率 β:光抑制参数 Ik=Pm/α:半饱和光强,反映了样品对强光的耐受能力。

叶绿素a、b含量的测定(分光光度计法和SPAD叶绿素仪法)

实验四叶绿素a、b含量的测定(分光光度计法和SPAD叶绿素仪法)植物叶面积的测定(仪器法、画纸称重法) 一、实验目的: 1.掌握叶绿素的提取方法及叶绿素含量测定的两种方法; 2.学会使用VIS-723G和723N(new)的分光光度计的比色杯较正和定波长的两个 程序;仪器法、复印称重法测定植物叶面积 3.学会SPAD叶绿素仪和AM-300手持式叶面积仪的使用 4.了解CB-1102便携式光合蒸腾测定仪 二、实验原理:略、 三、实验步骤: 1.叶绿素a、b含量的测定(分光光度计法)P37 3人一组,实验材料为大红花成熟叶和嫩叶 a)叶绿体色素的提取(0.5g叶片剪碎,加少量石英砂和碳酸钙用95%乙醇研 磨,提取定容至25mL) b)稀释至5倍后测A665nm和A649nm c)计算(请列出计算公式) ?更正: ? 1.请用95%乙醇取代丙酮提取叶绿素。 ? 2. 仍用书本上所列的公式。 2.叶绿素a、b含量的测定(SPAD叶绿素仪法) 3人一组,实验材料为灰莉叶片 实验原理: 1.SPAD-502 叶绿素仪通过测量叶片在两种波长光学浓度差方式650nm 和 940nm来确定叶片当前叶绿素的相对数量。

2.测量值是通过对在二个不同波长区域,叶片传输光的数量进行计算, 在这二个区域叶绿素对光吸收不相同的。这二个区域是红光区(对光有较高的吸收且不受胡萝卜素影响)和红外线区(对光的吸收极低)。 SPAD—502叶绿素仪使用说明 一)电池安装 1、按照电池盒上面的箭头标定方向旋转,打开电池盒盖。 2、放入盒内两节AA号码电池,并确信是按照指示放入电池。 3、必须是碱性或是碳—锌电池。不要混淆电池型号和新旧电池。 4、把电池盒盖按照上面箭头方向旋转,直到盖子和仪器比较适当为止,不能太紧。 5、当电源开关打到ON的位置时,如果电源符号出现在显示屏上,表示电池已经耗尽,应该更换电池了。如果电源符号没有出现,检查一下电池是否正确地插入或是否有电。 二)调零 无论什么时候关闭电源之后需要在打开时,都需要调零。仪器可以按照下面的步骤来进行调零。 1、电源开关打开到ON,显示屏显示就会出现。 2、在取样夹没有样品时,用手指按闭样品夹,直到发现“滴”的声音和显示屏显示“———”,放开样品夹,调零完成。 3、如果发出连续的“滴滴”声、屏幕显示“CAL”,那么调零就没有正确的完成(原因使在调零时样品夹没有完全关闭或者是在调零完成前就打开样品夹)。重复步骤2,保持样品夹完全关闭直到调零完成。 4、如果发出连续的“滴滴”声、屏幕显示“CAL”和“EU”在屏幕顶端出现,样品夹的发射窗品与接收窗口可能脏了。用镜头纸清洁重复进行步骤2。 三)测量 SPAD-502能够很容易在野外进行测定 1、测量面积仅为2㎜×3㎜,能够用来测量比较小的叶子,样品厚度可达到1.2㎜。中心线指示测量面积的中心。 2、用手指按住样品夹,直到发出“滴”的一声测量值出现在显示屏上为止。测量值会自动储存在内存中。 3、当直接在太阳光下利用仪器时,用身体给仪器遮住阳光,这样就不会影响测量结果。 4、不要企图去测量绝对厚的部分,如叶脉。如果测量的叶片有很多的叶脉,最好的办法是进行几次测量并取平均值。 5、如果一系列的“滴滴”声和“———”闪现在显示屏上,就是错误的执行了测量步骤(样品夹没有完全密封,在测量没有完成之前样品夹被打开,或者样本太厚或太小)。 6、如果测量值出现小数点闪现、没有小数点或测量值大于50.0的情况,说明测量精度不能保证,请重新测量。 7、如果样品夹的发射或者窗口变脏或者有一些水,就不会有精确的测量结果。在测量前请先查看样品夹窗口是否清洁。 四)数据处理 1、如果内存已满后,继续测量就会出现编号1的数据消失,其他数据依次向前移动储存位置,新测量的数据就会保存在测量时编号的内存中。 2、在测量几个值或内存已满后,可以计算这此值的平均值,按动“A VERGE”键,屏幕就会显示平均值。注意该平均值是内存中所有数值的平均值。

第4章第1节_叶绿素荧光参数及意义-v2

第四章 叶绿素荧光技术应用 第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统 II 的叶绿素 a ,而光系统 II 处于整个光合作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统 II ,进而引起叶绿素 a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图 1)。而最低激发态的叶绿素分 子可以稳定存在几纳秒(ns ,1 ns=10-9 s )。 A 较高激发态 B 热耗散 吸收蓝光 吸收红光 最低激发态 能量 荧光 基态 蓝 波长 红 荧光 图 1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图 2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素 a ,用于进行光化学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而 光化学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能 量主要用于进行光化学反应,荧光只占约 3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素 b 到叶绿素 a 的传递几乎达到 100%的效率,因此基本检测不到叶绿素 b 荧光。在常温常压下,光系统 I 的叶绿素 a 发出的荧光很弱,基本可以忽略不计,对光系统 I 叶绿素 a 荧光的研究要在 77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系统 II 的叶绿素 a 发出的荧光。

相关文档
最新文档