定积分习题

定积分习题
定积分习题

第九章 定 积 分

练 习 题

§1定积分概念

习 题

1. 按定积分定义证明:?-=b

a a

b k kdx ).(

2. 通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分: (1)?∑=+=

1

1

22

33

)1(4

1:;n

i n n i dx x 提示 (2)?10;dx e x

(3)?b

a

x dx e ; (4

)2(0).(:b

i a

dx

a b x

ξ<<=?

提示取 :

§2 牛顿一菜布尼茨公式

1.计算下列定积分:

(1)?+1

0)32(dx x ; (2)?+-1

022

11dx x x ; (3)?2ln e e x x dx ;

(4)?--1

02dx e e x x ; (5)?302tan π

xdx (6)?+94

;)1(dx x

x (7)?+4

0;1x dx

(8)?e

e

dx x x 12

)(ln 1 2.利用定积分求极限:

(1));21(13

34lim n n

n +++∞→ (2);)(1)2(1)

1(1222lim ??????++++++∞→n n n n n n #

(3));21

)2(111(

222lim n

n n n n +++++∞

(4))1sin 2sin (sin 1lim n n n n n

n -+++∞→ ππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )

=f (x),则有

()()().b

a f x dx F

b F a =-?

§3 可积条件

1. 证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑?≤?'

.''T T

i i i i χωχω

2. 证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ?.

!

3.设f ﹑g 均为定义在[a,b]上的有界函数。证明:若仅在[a,b]中有限个点处

()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a b

d f a b ??=

3. 设f 在[a,b]上有界,{}[],

,b a a n ?.lim c a

n

n =∞

→证明:在[a,b]上只有

() ,2,1=n a n 为其间断点,则f 在[a,b]上可积。

4. 证明:若f 在区间?上有界,则

()()()()"','".sup sup inf f f f f χ

χχχχχχχ∈?

∈?

∈?

-=-。

§4 定积分的性质

1.证明:若f 与g 都在[a,b]上可积,则

∑?=→=?n

i b

a

i i i T dx x g x f x g f 1

0,)()()()(lim ηξ

其中i i ηξ,是T 所属小区间△i 中的任意两点,i=1,2…,n.

2.不求出定积分的值,比较下列各对定积分的大小:

(1)??1

1

0;2dx x xdx 与

(2)??20

20

.sin π

π

xdx xdx 与

3.证明下列不等式:

(1)

20

;2

π

π

<

(2)1201x e dx e <

(3)2

sin 12;xdx dx x π

π

<

(4)4 6.e e

4.设f 在[a,b]上连续,且f(x)不恒等于零,证明()()

2

0.b

a

f x dx >?

5.设f 与g 都在[a,b]上可积,证明

[]

{}[]

{})(),()(,)(),()(min max ,,x g x f x m x g x f x M b a x b a x ∈∈==

在[a,b]上也都可积.

6.试求心形线πθθ20),cos 1(≤≤+=a r 上各点极径的平均值.

@

7.设f 在[a,b]上可积,且在[a,b]上满足.0)( m x f ≥证明

f

1

在[a,b]上也可积. 8.进一步证明积分第一中值定理(包括定理和定理中的中值点ξ∈(a,b).

9.证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M 、m 分别为 f(x)在[a,b]上的上、下确界,则必存在某实数μ(m ≤μ≤M),使得

??=b

a

b

a

dx x g dx x g x f .)()()(μ

10.证明:若f 在[a,b]上连续,且??==b a

b

a

dx x xf dx x f ,0)()(则在(a,b)内至少存在

两点x 1,x 2,使f(x 1)= f(x 2)=0.又若?=b

a

dx x f x ,0)(2这时f 在(a,b)内是否至少有三个零

11.设f 在[a,b]上二阶可导,且"f (x)>0.证明:

(1)?-≤??? ??+b a

dx x f a

b b a f ;)(12 (2)又若[],,,0)(b a x x f ∈≤则又有

[].,,)(2)(b a x dx x f a b x f b

a ∈-≥? / 12.证明:

(1)1

1

ln(1)11ln ;2

n n n +<++

+

<+ (2).1ln 1

211lim =+++

→n

n n

§5 微积分学基本定理·定积分计算(续)

习 题

1. 设f 为连续函数,u 、v 均为可导函数,且可实行复合f °u 与f °v 证明:

?-=)

()

().('))(()('))(()(x v x u x u x u f x v x v f dt t f dx d

2.设f 在[a,b]上连续,?-=x

a dt t x t f x F .))(()(证明F ”b].[a,),()(∈=x x f x

3.求下列极限: —

(1)?→x x dt t x 02

;cos 1lim

(2).)(0

22

2

2

lim dt

e

dt e x t x

t x ?

?∞

4.计算下列定积分:

(1)?20

5

;2sin cos π

xdx x (2)?

-1

2;4dx x (3)

?

-a

a dx x a x 0

222);0(

(4)?

+-1

02/32;)1(x x dx (5)?-+10;x x e e dx

(6)?

+2

2;sin 1cos π

dx x

x

(7)?1

;arcsin xdx (8)?20

;sin π

xdx e x (9)

;ln 1dx x e

e

?

(10)?10

;dx e x (11)?+-a

a dx x

a x

a x 0

2

);0( (12)?

+20

.cos sin cos π

θθ

νθ

d

5.设f 在[-a,a]上可积。证明: (1)若f 为奇函数,则?-=a

a

dx x f ;0)(

(2)若f 为偶函数,则??-=a a

a

dx x f dx x f 0

.)(2)(

6.设f 为(-∞,+∞)上以p 为周期的连续周期函数。证明对任何实数a ,恒有

?

?+=p

a p

a

dx x f dx x f a .)()(

7.设f 为连续函数。证明:

(1)??=20

20

;)(cos )(sin π

π

dx x f dx x f (2)??

=

π

π

π

.)(sin 2)(sin dx x f dx x xf

8.设J (m,n )?=20

,(cos sin π

n m xdx x n m 为正整数)。证明:

),,2(1

)2,(1),(n m J n

m m n m J n m n n m J -+-=-+-=

并求J(2m,2n).

9.证明:若在(0,∞)上f 为连续函数,且对任何a >0有

?==ax

x

dt t f x g 常数)()(, ),,0(+∞∈x

)

则c x x

c

x f ),,0(,)(+∞∈=

为常数。 10.设f 为连续可微函数,试求

?-x

a dt t f t x dx d ,)(')(

并用此结果求?-x

tdt t x dx d 0.sin )(

11.设)(x f y =为[a,b]上严格增的连续曲线(图 9-12)。试证存在ξ∈(a,b ),使图中两阴影部分面积 相等。

12.设f 为[0,2π]上的单调递减函数。证明:对

任何正整数n 恒有 |

?

≥π20

.0sin )(nxdx x f

13.证明:当x >时有不等式

).0(1

sin 2

c x

dt t c

x x

?

+ 14.证明:若f 在[a,b]上可积,

[],)(,)(,,b a ==β?α?βα?上单调且连续可微在

则有

??'=b

a dt t t f dx x f β

α

??.)())(()(

15.证明:若在[a,b]上f 为连续可微的单调函数,则存在[],,b a ∈ξ使得

???+=b

a

a

b

dx x f b g dx x f a g dx x g x f ξξ

.)()()()()()(

(提示:与定理及其推论相比较,这里的条件要强得多, 因此可望有一个比较简单的,不同于的证明.)

!

※§6 可积性理论补叙

1. 证明性质2中关于下和的不等式(3).

2. 证明性质6中关于下和的极限式S T s t =→)(lim 0

.

3. 设 ?

??=.,0.

,)(为无理数为有理数x x x x f

试求f 在[0,1]上的上积分和下积分;并由此判断f 在[0,1]上是否可积.

4. 设f 在[a,b]上可积,且[]],[.,,0)(b a f b a x x f 在试问=上是否可积为什么

5. 证明:定理中的可积第二充要条件等价于“任给

T T 的对于一切满足存在δδε<>>,0,0都有εω''<-=?∑)()(T s t s x i T

i .

6.据理回答: (1) … (2) 何种函数具有“任意下和等于任意上和”的性质

(3) 何种连续函数具有“所有下和(或上和)都相等”的性质 (4) 对于可积函数,若“所有下和(或上和)都相等”,是否仍有(2)的结论 7.本题的最终目的是要证明:若f 在[a,b]上可积,则f 在[a,b]内必定有无限多个处处稠密的连续点,这可用区间套方法按以下顺序逐一证明:

(1)若T 是[a,b]的一个分割,使得S (T )s(T)

(2)存在区间),,(],[111b a b a I ?=使得

.1)(inf )(sup )(1

1

1<-=∈∈x f x f I I x I x f ω

(3)存在区间),,(],[11222b a b a I ?=使得

.21

)(inf )(sup )(22

2<-=∈∈x f x f I I x I x f ω

(4)继续以上方法,求出一区间序列),,(],[11--?=n n n n n b a b a I

$

.1

)(inf )(sup )(n

x f x f I n

n

I x I x n f <

-=∈∈ω 说明{}n I 为一区间套,从而存在;,2,1,0 =∈n I x n 而且f 在点x 0连续。 (5)上面求得的f 的连续点在[a,b]内处处稠密。

总 练 习 题

1.

证明:若?在[0,a]上连续,f 二阶可导,

且0)(≥''x f ,则有

??≥a

x dt t a

f dt t f a 00).)(1())((1?? 2.证明下列命题:

(1) 若f 在[a,b]上连续增,

&

???

??=∈-=?,

),

(]

,[,)(1)(a x a f b a x dt t f a x x F x

a

则F 为[a,b]上的增函数。

(2) 若f 在],0[+∞上连续,且f (x )>0,则 ??=x

x

dt t f dt t tf x 00

)(/)()(?

为),0(+∞上的严格增函数,如果要使?在],0[+∞上为严格增,试问应补充定义?(0)=

3、设f 在],0[+∞上连续,且A x f x =+∞

→)(lim 证明

?=+∞→x

x A dt t f x 0

)(1lim

4.设f 是定义的),(+∞-∞上的一个连续周期函数,周期为p 证明

??=+∞→p

x x dt t f p dt t f x 0

0)(1)(1lim

5. 证明:连续的奇函数的一切原函数皆为偶函数;连续的偶函数的原函数中

只有一个是奇函数。 6. )

7.

证明施瓦茨(Schwarz )不等式:若f 和g 在[a,b]上可积,则

.)()()()(2

22

dx x g dx x f dx x g x f b

a b a b a ????≤??

? ??

8. 利用施瓦茨不等式证明:

(1)若f 在[a,b]上可积,则

??-≤??

? ??b

a b a dx x f a b dx x f )()()(22

(2)若f 在[a,b]上可积,且f (x )>m>0,则

?

?

-≥?b

a

b

a

a b dx x f dx x f 2)()

(1

)( (3)若f 、g 都在[a,b]上可积,则有闵可夫斯基(Minkowski )不等式: 2

122

122

1

2)()())()((??????+??????≤??????+???b

a b

a b

a dx x g dx x f dx x g x f

8.证明:若f 在[a,b]上连续,且f (x )>0,则

??-≥???

??-b a

b a dx x f a

b dx x f a b )(ln 1)(1ln 9.设f 为),0(+∞上的连续减函数,f (x )>0;又设 ∑?=-=n

k n

l

n dx x f k f a 1

.)()(

证明{}n a 为收敛数列。

b a

dx

x

f0

)

(,(提

示:由可积的第一充要条件进行反证:也可利用§习题7题的结论。)

10.证明:若f在[a,b]上可积,且个个有f(x)>0,则?>

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

定积分典型例题11254

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分典型例题56177

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘入和式中各 项.于是将所求极限转化为求定积分.即 3321lim )n n n →∞+=3 1lim )n n n n →∞+=03 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π. 例18 计算 2 1 ||x dx -? . 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1 ||x dx -? =02 1 ()x dx xdx --+?? =220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算 2 20 max{,}x x dx ? . 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717 max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且1 ()3()f x x f t dt =+? ,则()________f x =. 分析 本题只需要注意到定积分 ()b a f x dx ? 是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而 1 ()f t dt ? 是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且1 1 (3)()x a dx f t dt a +==??. 所以

定积分习题及讲解

第四部分 定积分 [选择题] 容易题1—36,中等题37—86,难题87—117。 1.积分中值定理?-=b a a b f dx x f ))(()(ξ,其中( ) 。 (A) ξ是],[b a 内任一点; (B). ξ是],[b a 内必定存在的某一点; (C). ξ是],[b a 内唯一的某一点; (D). ξ是],[b a 的中点。 答B 2.???????=≠?=0 ,0,)()(2 x c x x dt t tf x F x ,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( ) 。 (A).0=c ; (B).1=c ; (C).c 不存在; (D).1-=c . 答A 3.a dx x x I a n n n (,1sin lim ?=+∞→为常数)由积分中值定理得?=+a n n a dx x x ξξ1sin 1sin ,则 =I ( )。 (A)a a a a a n 1 sin 1 sin lim 1 sin lim 2==→∞ →ξ ξξ ξξ; (B).01 sin lim 0 =→ξ ξa ;

(C).a a =∞ →ξ ξξ1 sin lim ; (D).∞=∞ →ξ ξξ1 sin lim a . 答C 4.设)(x f 在],[b a 连续,?=x a dt t f x )()(?,则( ) 。 (A).)(x ?是)(x f 在],[b a 上的一个原函数; (B). )(x f 是)(x ?的一个原函数; (C). )(x ?是)(x f 在],[b a 上唯一的原函数; (D).)(x f 是)(x ?在],[b a 上唯一的原函数. 答A 5.设0)(=?b a dx x f 且)(x f 在],[b a 连续,则( ) 。 (A).0)(≡x f ; (B).必存在x 使0)(=x f ; (C).存在唯一的一点x 使0)(=x f ; (D).不一定存在点x 使 0)(=x f 。 答B 6.设?=a dx x f x I 023)( (0.>a ), 则( )。 (A).?=2 0)(a dx x xf I ; (B).?=a dx x xf I 0)(; (C).?=2 0)(21a dx x xf I ; (D).?=a dx x xf I 0)(21. 答 C 7.=-+?-11 21)1(dx x x ( )

定积分练习题.doc

定积分练习题 一.选择题、填空题 1 p 2 p 3 p ....... n p 1.将和式的极限 lim P 1 ( p 0) 表示成定积分 n n 1 1 1 p dx 1 1 p dx 1 x p dx A . dx B . x C . ( ) D . () x 1 1 0 1 0 x 0 n 2.将和式 lim ( ......... ) 表示为定积分 n n 1 n 2 2n 3.下列等于 1 的积分是 1 xdx B . 1 1)dx 1 1dx 1 1 A . ( x C . D . dx 2 4. 1 4 | dx = | x 2 A . 21 B . 22 C . 23 D . 25 3 3 3 3 5.曲线 y cos x, x [0, 3 ] 与坐标周围成的面积 2 C . 5 A . 4 B . 2 D . 3 2 1 e x )dx = 6. (e x A . e 1 B . 2e 2 D . e 1 e C . e e 7. 若 m 1 e x dx , n e 1 dx ,则 m 与 n 的大小关系是( ) 1 x ( ) . ( ) ( ) ( ) ( ) A . m n B . m n C . m n D .无法确定 8. 9.由曲线 y x 2 1 和 x 轴围成图形的面积等于 S .给出下列结果: 1 1 x 2 )dx ;③ 2 1 (1 x 2 )dx . ① ( x 2 1)dx ;② (1 (x 2 1)dx ;④ 2 1 1 1 则 S 等于( ) A .①③ B .③④ C .②③ D .②④ y x 10. (sin t cost sin t )dt ,则 y 的最大值是( ) A . 1 B . 2 C . 7 D . 0 2 17 f ( x) 11. 1 f ( x) dx 1 2 若 f ( x) 是一次函数,且 5, xf ( x)dx ,那么 dx 的值是 6 1 x . 15.设 f (x ) sin x x f (x) cos2 xdx ( ) 3 ,则 其余

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134( -+-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12) 3x x e dx ?

定积分典型例题

定积分典型例题 例 1 求 Iim J 2(^n τ +Q2n 2 +H ∣ +V ∏3). n _.: ∏ 分析将这类问题转化为定积分主要是确定被积函数和积分上下限?若对题目中被积函数难以想到, 可采取如下方法:先对区间[O, 1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 1 III 1 解 将区间[0, 1] n 等分,则每个小区间长为.汉=丄,然后把—=丄1的一个因子-乘入和式中 n n n n n 各项?于是将所求极限转化为求定积分?即 n i ?^贰+痢+山+疔)=曲(£ +£ +川+晋)=MdX=扌? 例 2 £ J 2x 一 X d X __________ . 解法1由定积分的几何意义知, °?2x -χ2dx 等于上半圆周(x_1) y =1 (y_0) 与X 轴所围成的图形的面积?故 2? 2^x 2dx = _ ? ■° 2 解法2本题也可直接用换元法求解?令 x_1 = sint (—巴

定积分典型例题精讲

定积分典型例题 例1 求 332 1lim )n n n →∞ ++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把 2111 n n n =?的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即 332 1lim )n n n →∞+=3 1lim )n n n n →∞+=3 4 =?. 例2 0 ?=_________. 解法 1 由定积分的几何意义知,0 ?等于上半圆周 22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t ππ -≤≤ ), 则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较12x e dx ?,2 12x e dx ?,1 2(1)x dx +?.

分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当 0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2] 上,有1x e x >+.又 1 22 1()()f x dx f x dx =-? ?,从而有2 111 222 (1)x x x dx e dx e dx +>>???. 解法 2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得 1x e x >+.注意到12 2 1 ()()f x dx f x dx =-??.因此 2 1 11 2 22 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2 ()x x f x e -=, 因为 2 ()(21) x x f x e x -'=-, 令()0f x '=,求得驻点 12 x = , 而 (0)1f e ==, 2 (2)f e =, 141 ()2 f e -=, 故 124 (),[0,2]e f x e x -≤≤∈,

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分计算例题

第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A . ()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B. ()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。 A. ? -1 1 2dx x B. ? 1 2dx x C. ? 1 dy y D.? 1 2 dy y

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

定积分典型例题

定积分典型例题 例1求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解将区间[0,1]n 等分,则每个小区间长为1i x n ?= ,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 332 1lim )n n n →∞+=3 1lim )n n n n →∞+=3 4 =?. 例20 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法 2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

最新定积分典型例题20例答案

定积分典型例题20例答案 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

定积分典型例题20例答案

定积分典型例题20例答案 例 1 求lim 丄(循2 丁2『L Vn 3) ? n n 分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函 数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来 找出被积函数与积分上下限. 解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘 n n n n n 入和式中各项?于是将所求极限转化为求定积分?即 lim A (习n 2 ^2n 2 L Vn 3) = lim -(^— L ^—) = VXdx - ? n n n nn,n ,n ° 4 2 -- ------ r 例 2 o (2x x dx = ___________ ? 2 . ________ 解法1由定积分的几何意义知, ° . 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0) 与x 轴所围成的图形的面积.故 2 ,2x x 2dx = _ ? 0 2 '1 sin 2 tcostdt = 2。 2 J sin 2t costdt =2 : cos 2 tdt^ 2 2 x 2 2 x 例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)= 分析这是求变限函数导数的问题,利用下面的公式即可 (1) f (x) =2xe x e x 可得 x f (x) = 0 f (t)dt xf (x) ? x 1 例 4 设 f(x)连续,且。f(t)dt x ,贝U f (26) = _________________ O A x 1 解 对等式0 f(t)dt x 两边关于x 求导得 3 2 f(x 1) 3x 1, 解法2本题也可直接用换元法求解.令 x 1 = Sint ( 2 t 2),则 d v(x) dx u(x) f(t)dt f[v(x)]v(x) f[u(x)]u (x) ? (2) 由于在被积函数中 x 不是积分变量,故可提到积分号外即 x f (x) x 0 f (t)dt ,则 x 2dx =

定积分典型例题

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 332 1lim )n n n →∞+=3 1lim )n n n n →∞+=34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10 ()x dx xdx --+??=220210[][]22 x x --+=5 2. 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=? ≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=??? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.