不定积分练习题

不定积分练习题
不定积分练习题

不定积分

(A)

1、求下列不定积分

1)?2

x dx

2)?x x dx 2

3)dx x ?-2

)2( 4)dx x

x ?+2

2

1

5)??-?dx x x x 32532 6)dx x

x x

?22sin cos 2cos

7)dx x e x

)32(?

+

8)dx x x x

)1

1(2?-

2、求下列不定积分(第一换元法)

1)dx x ?-3)23( 2)

?

-3

32x

dx

3)dt t

t ?

sin 4)?

)

ln(ln ln x x x dx

5)?x

x dx

sin cos 6)?-+x x e e dx

7)dx x x )cos(2

? 8)dx x x ?-4

3

13 9)dx x

x

?3cos sin 10)dx x x ?--2491 11)?-122x dx 12)dx x ?3cos

13)?xdx x 3cos 2sin 14)?

xdx x sec tan 3

15) dx x x ?+2

39 16)dx x x ?+22sin 4cos 31

17)

dx x

x ?

-2

arccos 2110 18)dx x x x ?

+)

1(arctan

3、求下列不定积分(第二换元法)

1)dx x

x

?+2

11 2)dx x ?sin

3)dx x x ?

-42 4)?>-)0(,222

a dx x

a x

5)?

+3

2

)

1(x dx 6)

?+

x

dx 21

7)

?-+

2

1x

x dx 8)

?-+

2

11x

dx

4、求下列不定积分(分部积分法)

1)inxdx xs ? 2)?

xdx arcsin

3)?

xdx x ln 2

4)dx x

e x

?

-2

sin 2

5)?xdx x arctan 2 6)?

xdx x cos 2

7)?xdx 2ln 8)

dx x x 2

cos 2

2?

5、求下列不定积分(有理函数积分)

1)dx x x ?+3

3

2)?-++dx x x x 1033

22

3)

?+)1(2x x dx

(B) 1、

一曲线通过点)3,(2

e ,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲

线的方程。

2、

已知一个函数)(x F 的导函数为

2

11x -,且当1=x 时函数值为π2

3

,试求此函数。

3、

证明:若

?+=c x F dx x f )()(,则 )0(,)(1

)(≠++=+?

a c

b ax F a

dx b ax f 。

4、 设)(x f 的一个原函数为

x

x

sin ,求?'dx x f x )(。

5、

求下列不定积分

1)dx x

?

2

cos 2

2)dx x ?-2sin 1

3)?

+dx x x

2

11arctan

4)dx x

x

x

?+-11 5)?++)

)((2222b x a x dx

6)dx x a x x ?-2

7)

?+dx x

x

x ln 1ln 8)?

+dx x xe x 2

32arctan )

1(

(C)

1、求以下积分

1)?

-dx e xe x x 1

2)?

+x

x dx

sin 2)2sin(

3)dx e e x x ?2arctan 4)dx x x ?+435

1

5)dx x x x ?+-1

85 6)dx x x x

x ?+cos sin cos sin

不定积分 习 题 答 案

(A)

1、(1)c x

+-1

(2)c x +--23

32

(3)

c x x x ++-423

123

(4)c x x +-arctan (5)c x x

+--3

ln 2ln )32(52 (6)c x x ++-)tan (cot (7)c x e x

++ln 32 (8)

c x

x ++4

27)7(4

2、(1)c x +--4

)23(8

1 (2)c x +--32

)32(21

(3)c t +-cos 2 (4)c x +ln ln ln (5)c x +tan ln (6)c e x

+arctan

(7)c x +)sin(212 (8)c x +--41ln 43

(9)c x

+2

cos 21 (10)c x x +-+24941

32arcsin 21 (11)

c x x ++-1

21

2ln

2

21 (12)c x

x +-3sin sin 3 (13)

c x x +-5cos 101cos 21 (14)c x x +-sec sec 3

1

3 (15)

c x x ++-)9ln(29

2122 (16)

c +3

2arctan 321 (17)c x

+-

10

ln 210arccos 2 (18)c x +2)(arctan 3、(1)c t t +-cot csc ln (2)c x x x +--)sin

cos (2

(3)c x

x +--)2

arccos 24(tan

22 (4)c x a a

x a x a +--)(arcsin 22222

(5)

c x

x ++2

1 (6)c x x ++-)21ln(2

(7)

c x x x +-++)1ln (arcsin 21

2 (8)c x

x x +-+-

211arcsin 4、(1)c x x x ++-sin cos (2)c x x x +-+21arcsin

(3)

c x x x +-3391ln 31 (4)c x

x e x ++--)2sin 42(cos 1722 (5)c x x x x +++-)1ln(6

161arctan 312

23 (6)c x x x x x +-+sin 2cos 2sin 2

(7)c x x x x x ++-2ln 2ln 2

(8)

c x x x x x x +-++sin cos sin 21612

3 5、(1)c x x x x ++-+-3ln 2792

3312

3 (2)c x x +++-5ln 2ln

(3)c x x ++-)1ln(21ln 2

(4) c x x x x +-+-+-arctan 2

1)1ln(411ln 21ln 2

(5)c x x x x ++++++-3

1

2arctan 3311ln 2122

(B)

1、 设曲线)(x f y =,由导数的几何意义:x y 1=',c x dx x

+=?ln 1,点)3,(2

e 代入即可。

2、 设函数为)(x F ,由2

11)()(x

x f x F -=

=',得

C x dx x f x F +==?arcsin )()(,代入)2

3

,1(π即可解出C 。

3、 由假设得)()(),()(b ax f b ax F x f x F +=+'∴=',故

c b ax F a

dx b ax f b ax F b ax F a ++=+∴+'='+?)(1

)(),(])(1[。 4、把)(x f '凑微分后用分部积分法。

5、(1)用倍角公式:2

cos 12cos

2

x

x += (2)注意0sin cos ≥-x x 或0sin cos <-x x 两种情况。

(3)利用)cot (11

,

cot 1arctan 2

x arc d dx x x arc x -=+=。 (4)先分子有理化,在分开作三角代换。

(5)化为部分分式之和后积分。 (6)可令t a x 2

sin 2=。

(7)可令,sin )(2

t a b a x -=-则t a b x b 2

cos )(-=-。 (8)令t x =+ln 1。 (9)分部积分后移项,整理。 (10)凑x

e

arctan 后分部积分,再移项,整理。

(11)令t x

=2

tan

。 (12)变形为

?

-?--4

)2(2

3

x x x dx 后,令

t x x =--2

3

, 再由22

1

1t x =--

,两端微分得

tdt dx x 2)2(12=-。

(C)

1) 解:令1-=x e u ,则du u u

dx u x 2

2

12),1ln(+=

+= 所以原式du u u u u du u ??+-+=+=2

2

2

2

14)1ln(2)1ln(2 c u u u u ++-+=arctan 44)1ln(22

c e e e x x x x +-+---=1arctan 41412

2)解:方法一:

原式???==+=2

cos 2tan )

2(tan 412cos 2sin )2(4

1)cos 1(sin 22

3x x x d x x x d x x dx c x x x d x x

++=+=?2

tan ln 412tan 81)2(tan 2tan 2tan 14122 方法二:令t x

=2

tan

方法三:变形为

?+-)cos 1)(cos 1(2sin 2x x xdx

,然后令u x =cos

再化成部分分式积分。 3)解:原式)(arctan 2

1

2?--

=x x e d e ])

1()(arctan [21222?+--=-x

x x x

x e e e d e e (令u e x

=)])

1(arctan [2

12

22?

+--=-u u du

e e

x x

]1arctan [212

22??++--=-u du u du e e x x []

c e e e e x x x x +++-=--arctan arctan 2

1

2

4)解:原式)](1

1)(11[31)(131********

433x d x x d x x x d x x ???+-++=+=

)]1()1()1()1([3

1341

334

3

3++-++=??-x d x x d x

c x x ++-+=43

3473)1(9

4

)1(214 5)解:原式??-++=+-=----2)()(2122222443x x x x d dx x

x x x ,令2

2-+=x x u c u u u du ++-=-=

?22

ln 2412212

c x x x x ++++-=1

212ln

2

412

4

24

6)解:原式dx x

x x x ?+-+=

cos sin 1

1cos sin 221

dx x

x dx x x x x ??+-++=cos sin 121cos sin )cos (sin 212 ?++--=)

4

sin()4(221)cos (sin 21ππ

x x d x x

?+-++-=)

4

(cos 1

)

4cos(221)cos (sin 212ππ

x x d x x

)4cos(])

4cos(11)4cos(11[241)cos (sin 21πππ+++++-+-=?x d x x x x c x x x x ++-+

++-=)

4

cos(1)

4cos(1ln 2

41

)cos (sin 21π

π

定积分测试题及答案

定积分测试题及答案 班级: 姓名: 分数: 一、选择题:(每小题5分) 1.0=?( ) A.0 B.1 C.π D 4π 2(2010·山东日照模考)a =??02x d x ,b =??02e x d x ,c =??02sin x d x ,则a 、b 、c 的大小关系是( ) A .a

8.函数F (x )=??0 x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=??1 x 1t d t ,若f (x )

(完整版)定积分的证明题

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 解答_ 。 )()()()()()()()()()()()() ()()()( a f x f x f a f dt t f t x dx d dt t f a f x a dt t f a x t f t x t df t x dt t f t x x a x a x a x a x a -=+-='-=∴ +-=+-=-='-????? 题目2证明题 容易 。 利用积分中值定理证明 0sin lim :40 0=?→dx x n n π 解答_ 。 使 上存在点在由积分中值定理 0sin lim 0 sin lim 1sin 0sin lim 4 ]4 [0, ( )04( sin lim sin lim ,]4 ,0[, 40 00 40 =∴=∴<

定积分练习题1.doc

定积分练习题 一.选择题、填空题 1.将和式的极限 lim 1p 2 p 3p ....... n p 0) 表示成定积分 n P 1 ( p ( ) n 1 1 1 p dx 1 1 p dx 1 x p dx A .dx B . x C .() D . () 0 x 0 x n 2.将和式 lim ( 1 1 ......... 1 ) 表示为定积分 . n n 1 n 2 2n 3.下列等于 1 的积分是 ( ) A . 1 xdx B . 1 C . 1 1 1 ( x 1)dx 1dx D . dx 2 1 2 4 | dx = 4. | x ( ) A . 21 B . 22 23 25 3 3 C . 3 D . 3 5.曲线 y cos x, x [0, 3 ] 与坐标周围成的面积 ( ) 2 5 A .4 B .2 D . 3 C . 2 1 e x )dx = 6. (e x ( ) A . e 1 B .2e 2 D . e 1 e C . e e 7.若 m 1 e x dx , n e 1 dx ,则 m 与 n 的大小关系是( ) 1 x A . m n B . m n C . m n D .无法确定 8. 9 y x 2 1 和 x 轴围成图形的面积等于 S .给出下列结果: .由曲线 1 1)dx ; ② 1 1 ①( x 2 (1 x 2 )dx ; ③ 2 ( x 2 1)dx ; ④ 2 (1 x 2 )dx . 1 1 1 则 S 等于( ) A . ①③ B . ③④ C . ②③ D . ②④ 10. y x cost sin t)dt ,则 y 的最大值是( (sin t ) A . 1 B . 2 C . 7 D . 0 2 17 f ( x) 11. 若 f (x) 是一次函数,且 1 1 2 dx 的值是 f ( x) dx 5 , xf ( x)dx 6 ,那么 x 1 . 15.设 f (x ) sin x 3 x ,则 f (x) cos2 xdx ( ) 其余

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

定积分练习题

定积分 2.定积分的定义 函数f (x )在区间[a ,b ]上的定积分,记作____________,其中f (x )称为________________,x 称为________________,f (x )d x 称为__________, [a ,b ]为________________,a 为____________,b 为______________,“?”称为积分号. 3.?b a f (x )d x 的实质 (1)当f (x )在区间[a ,b ]上大于0时,?b a f (x )d x 表示______________________________, 这也是定积分的几何意义. (2)当f (x )在区间[a ,b ]上小于0时,?b a f (x )d x 表示________________________________. (3)当f (x )在区间[a ,b ]上有正有负时,?b a f (x )d x 表示介于x =a ,x =b (a ≠b )之间x 轴上、下相应的曲边梯形的面积的代数和. 4.定积分的运算性质 (1)?b a kf (x )d x =____________ (k 为常数). (2)?b a [f (x )±g (x )]d x =______________________. (3)?b a f (x )d x =__________________________. 5.微积分基本定理 一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么?b a f (x )d x =F (b )-F (a ).这个 结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.可以把F (b )-F (a )记为F (x )|b a .即?b a f (x )d x =F (x )|b a =F (b )-F (a ). 6.利用牛顿——莱布尼茨公式求定积分的关键是____________________,可将基本初等函数的导数公式逆向使用. 要点梳理 2. ?b a f (x )d x 被积函数 积分变量 被积式 积分区间 积分下限 积分上限 3.(1)由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积 (2)由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积的相反数 4.(1)k ?b a f (x )d x (2)?b a f (x )d x ±?b a g (x )d x (3)?c a f (x )d x +?b c f (x )d x (a

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

定积分的证明题

定积分的证明题https://www.360docs.net/doc/862314872.html,work Information Technology Company.2020YEAR

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 解答_ 。 )()()()()()()()()()()()() ()()()( a f x f x f a f dt t f t x dx d dt t f a f x a dt t f a x t f t x t df t x dt t f t x x a x a x a x a x a -=+-='-=∴ +-=+-=-='-????? 题目2证明题 容易 。 利用积分中值定理证明 0sin lim :400=?→dx x n n π 解答_ 。 使 上存在点在由积分中值定理 0sin lim 0 sin lim 1sin 0sin lim 4 ]4 [0, ( )04( sin lim sin lim ,]4 ,0[, 40 00 40 =∴=∴<

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ))(2 122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 23xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 23xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π ? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==? 若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、1 2

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ) )(2122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 2 3xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 2 3xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、 1 2

定积分习题

定积分习题

————————————————————————————————作者: ————————————————————————————————日期: ?

第九章 定 积 分 练 习 题 §1定积分概念 习 题 1.按定积分定义证明:?-=b a a b k kdx ).( 2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分: (1)?∑=+= 1 1 22 33 )1(4 1:;n i n n i dx x 提示 (2)?10;dx e x (3)?b a x dx e ; (4)12(0).(:)b i i i a dx a b x x x ξ-<<=?提示取 §2 牛顿一菜布尼茨公式 ??1.计算下列定积分: (1)?+1 0)32(dx x ; (2)?+-1 022 11dx x x ; (3)?2ln e e x x dx ; (4)?--1 2 dx e e x x ; (5)? 30 2tan π xdx (6) ? + 9 4 ;)1(dx x x (7)?+4 0;1x dx (8)?e e dx x x 12 )(ln 1 2.利用定积分求极限: (1));21(13 34lim n n n +++∞→ (2);)(1)2(1)1(1222lim ??????++++++∞→n n n n n n (3));21 )2(111( 222lim n n n n n +++++∞ →

(4))1sin 2sin (sin 1lim n n n n n n -+++∞→ ππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外 有F '(x)=f (x),则有 ()()().b a f x dx F b F a =-? §3 可积条件 1.证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑?≤?' .''T T i i i i χωχω 2.证明:若f在[a ,b ]上可积,[][][]上也可积在则ββ,,,,a f b a a ?. 3.设f ﹑g 均为定义在[a,b]上的有界函数。证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b ]上可积时,g 在[a,b]上也可积,且 ()().χχχχd g a b d f a b ??= 3.设f 在[a,b]上有界,{}[], ,b a a n ?.lim c a n n =∞ →证明:在[a ,b]上只有 () ,2,1=n a n 为其间断点,则f在[a,b ]上可积。 4.证明:若f在区间?上有界,则 ()()()()"','".sup sup inf f f f f χ χχχχχχχ∈? ∈? ∈? -=-。 §4 定积分的性质 1.证明:若f与g都在[a ,b]上可积,则 ∑?=→=?n i b a i i i T dx x g x f x g f 1 0,)()()()(lim ηξ 其中i i ηξ,是T所属小区间△i中的任意两点,i=1,2…,n . 2.不求出定积分的值,比较下列各对定积分的大小: (1)??101 ;2 dx x xdx 与 ?(2)??20 20 .sin π π xdx xdx 与 3.证明下列不等式:

定积分单元测试题

定积分单元测试题 一、填空题 1、 dx x ? +4 1 1=___________。 2、广义积分43 x dx - +∞ =? 3、________1 1 02=+?dx x x 。 4、()________1202 =-?dx x 。 5、设 ()32 1 2-=? -x dt t f x ,则()=2f 。6、=+? 3 1 ln 1e x x dx 。 7、()=?? ????++++??-dx x x x x x π πcos 113sin 222 4 。8、x dt t x x ?→0 20cos lim =____________ 9、12 12|| 1x x dx x -+=+? 。 10、= -?dx x 201. 11、2 22sin 1cos x x dx xdx π π-+=+? 12、已知()2 cos ,x F x t dt =?则()F x '= 13、已知()2 x t x F x te dt -=?,则()F x '= 二、单项选择 1、若连续函数 ()x f 满足关系式()2ln 220+?? ? ??=?x dt t f x f ,则()x f 等于( )。 (A )2ln x e ; (B ) 2ln 2x e ; (C ) 2ln +x e ; (D ) 2ln 2+x e 。 2、设 )(x f 连续,则=-?x dt t x tf dx d 0 22)(( ) (A ))(2x xf ; (B ))(2x xf -; (C ))(22x xf ; (D ))(22x xf -。 3、设 )(x f 是连续函数,且?+=10 )(2)(dt t f x x f ,则)(x f =( ) (A )1-x ; (B )1+x ; (C)1+-x ; (D )1--x 。 4、设()()x a x F x f t dt x a = -?,其中()f x 为连续函数,则lim ()x a F x →=( ) (A )a (B ))(a af (C ))(a f (D )0 5、 =?dt e dx d b x t 2( ) (A)2x e (B)2x e - (C)22x b e e - (D)2 2x xe - 6、=-+?→x dt t x x cos 1)1ln(lim 2sin 0 ( ) (A)8 (B)4 (C)2 (D)1 7、反常积分收敛的是( )

定积分练习题精品文档10页

第九章 定 积 分 练 习 题 §1定积分概念 习 题 1.按定积分定义证明:?-=b a a b k kdx ).( 2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作 是对应的积分和的极限,来计算下列定积分: (1)?∑=+= 1 1 22 33 )1(4 1:;n i n n i dx x 提示 (2)?10;dx e x (3)?b a x dx e ; (4 )2(0).(:b i a dx a b x ξ<<=? 提示取 §2 牛顿一菜布尼茨公式 1.计算下列定积分: (1)?+1 0)32(dx x ; (2)?+-1 022 11dx x x ; (3)?2ln e e x x dx ; (4)?--1 02dx e e x x ; (5)?302tan π xdx (6)?+94;)1(dx x x (7)?+4 0;1x dx (8)?e e dx x x 12 )(ln 1 2.利用定积分求极限: (1));21(13 34lim n n n +++∞→Λ (2);)(1)2(1)1(1222lim ?? ????++++++∞→n n n n n n Λ (3));21 )2(111( 2 22lim n n n n n +++++∞ →Λ

(4))1sin 2sin (sin 1lim n n n n n n -+++∞→Λππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点 外有F '(x )=f (x),则有 ()()().b a f x dx F b F a =-? §3 可积条件 1.证明:若T ˊ是T 增加若干个分点后所得的分割,则 ∑∑?≤?' .'' T T i i i i χωχω 2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ?. 3.设f ﹑g 均为定义在[a,b]上的有界函数。证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且 ()().χχχχd g a b d f a b ??= 3.设f 在[a,b]上有界,{}[], ,b a a n ?.lim c a n n =∞ →证明:在[a,b]上只有 ()Λ,2,1=n a n 为其间断点,则f 在[a,b]上可积。 4.证明:若f 在区间?上有界,则 ()()()()"','".sup sup inf f f f f χ χχχχχχχ∈? ∈? ∈? -=-。 §4 定积分的性质 1.证明:若f 与g 都在[a,b]上可积,则 ∑?=→=?n i b a i i i T dx x g x f x g f 1 0,)()()()(lim ηξ 其中i i ηξ,是T 所属小区间△i 中的任意两点,i=1,2…,n. 2.不求出定积分的值,比较下列各对定积分的大小:

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

定积分练习题及答案(基础)

第六章 定积分练习题及答案 一、填空题 (1) 根据定积分的几何意义,?-=+2 1)32(dx x 12 =-?dx x 2 024π ,=?π0 cos xdx ____0____ (2)设?-=1110)(2dx x f ,则?-=1 1)(dx x f _____5____, ?-=1 1)(dx x f ____-5___,?-=+1 1]1)(2[51dx x f 512 . (3) =?102sin dx x dx d 0 (4) =?2 2sin x dt t dx d 4sin 2x x 二、选择题 (1) 定积分?12 21ln xdx x 值的符号为 (B ) .A 大于零 .B 小于零 .C 等于零 .D 不能确定

三、计算题 1.估计积分的值:dx x x ?-+3 121 解:设1)(2+=x x x f ,先求)(x f 在]3,1[-上的最大、最小值, ,) 1()1)(1()1(21)(222222++-=+-+='x x x x x x x f 由0)(='x f 得)3,1(-内驻点1=x ,由3.0)3(,5.0)1(,5.0)1(==-=-f f f 知,2 1)(21≤≤- x f 由定积分性质得 221)()21(2313131=≤≤-=-???---dx dx x f dx 2.已知函数)(x f 连续,且?- =10)()(dx x f x x f ,求函数)(x f . 解:设 a dx x f =?10)(,则a x x f -=)(,于是 a adx xdx dx a x dx x f a -=-=-==????2 1)()(1 0101010, 得41=a ,所以4 1)(+=x x f . 3. dx x x x ?++1 31 222) 1(21 解:原式=dx x x dx x x x x )111()1(1213 121312222++=+++?? 3112+-= π 4. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 5. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 6. ?-1 02dx xe x

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

第五章定积分综合练习题

第五章定积分综合练习题 一、填空: 1、函数)(x f 在],[b a 上有界是 )(x f 在],[b a 上可积的 条件,而) (x f 在],[b a 上连续是)(x f 在],[b a 上可积的 条件; 2、由定积分的几何意义,则 ? -1 21dx x = ; 3、设 ,18)(31 1 =? -dx x f ,4)(3 1 =?-dx x f 则=?3 1 )(dx x f ; 4、正弦曲线 x y sin =在 ],0[π上与x 轴所围成的平面图形的面积 是 ; 5、某汽车开始刹车,其运动规律为,510)(t t v -=问从刹车开始到停车,汽车驶过的距离是 ; 6、?=x tdt y 02sin ,则4 π= 'x y = ; 7、估计定积分? +4 /54 /2)sin 1(ππdx x 的值的范围是: ; 8、比较下列两个积分值的大小:? 2 1 ln xdx ?2 1 2)(ln dx x ; 9、)(x f ''在],[b a 上连续,则=''? b a dx x f x )( ; 10、无穷积分? +∞ 1 dx x p 收敛,则p 的取值范围是 . 二、计算下列各导数. 1、 ?+2 211x x dt t dx d 2、?? ???==??t t udu y udu x 00sin cos ,求dx dy . 三、计算下列各定积分. 1、 dx x x )1(2 1 +? 2、dx x ?+3 31211 3、dx x ?--2121211

4、 dx x ? 40 2 tan π 5、dx x x x ?-+++0 122 41133 6、dx x ?π20sin 四、求极限 2 )sin(0 2lim x tdt x x ?→. 五、用换元积分法求下列定积分: 1、?-+1 12 ) 511(1 dx x 2、?2 /6 /2 cos ππ udu 3、?+2 1 ln 1e x x dx 4、 ? -π θθ0 3 )sin 1(d 5、? -2 2 2dx x 6、? +41 1x dx 六、用分部积分法求下列定积分: 1、 ? e xdx x 1 ln 2、? 2 /30 arcsin xdx 3、?-1 dt te t 七、求定积分 ?10 dx e x 八、求定积分 ?2 /0 cos πxdx e x 九、求定积分 ? π 3cos 2sin xdx x . 十、求定积分 ? 4 /0 4tan πxdx . 十一、设 ,0 ,0,1)(2???≥<+=-x e x x x f x 求?-2 )1(dx x f . 十二证明:若函数)(x f 在],[a a -上连续,则?-=--a a dx x f x f 0)]()([. 十三证明:??+=+1 1 12211x x t dt t dt . 十四、判定无穷积分 ? +∞ 1 41 dx x 的收敛性,如果收敛,计算其值.

定积分的证明题44题

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 题目2证明题 容易 。利用积分中值定理证明 0sin lim :400=?→dx x n n π 题目3证明题 一般 。使内至少存在一点证明:在,内可导,且在设函数0) (f ],[0)(0)(],[)(='==?ξξb a dx x f a f b a x f b a 题目4证明题 一般 。为正整数时证明:当, 设??=+=a na dx x f n dx x f n a x f x f 0 0 )()( )()(

题目5证明题 一般 。证明: )1()1(1 0 1 0 ??-=-dx x x dx x x m n n m 题目6证明题 一般 。且 上可积在则有上任意两点且对上有定义在设2)(21)()()(,],[)( .)()(, ,],[,],[)(a b a f a b dx x f b a x f y x y f x f y x b a b a x f b a -≤---≤-? 题目7证明题 一般 。其中证明且内可导在上的连续在设 )(sup ,)()(4 :. 0)()(,),(,],[)( 2x f M a b M dx x f b f a f b a b a x f b x a b a '=-≤==<

题目8证明题 一般 。使, 内至少存在一点上正值,连续,则在在设???==b b dx x f dx x f dx x f b a b a x f a a )(21)()( ),( ],[ )(ξξξ 题目9证明题 一般 。证明: sin sin 0 202 01??<<+ππ xdx xdx n n 题目10证明题 一般 。求证:?<+-<1032 6421πx x dx

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

相关文档
最新文档