新型液态金属电池资料

《专题研究》试卷--郑超

2014级《专题研究》试卷 1.解释p-n结的形成及光生伏特效应。 答:p-n结的形成:当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层,界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是P-N结。 “光生伏特效应”( Photovoltaic effect),简称“光伏效应”。光伏效应指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的光子能够在P型硅和N型硅中将电子从共价键中激发,以致产生电子-空穴对。界面层附近的电子和空穴在复合之前,将通过空间电荷的电场作用被相互分离。电子向带正电的N区和空穴向带负电的P区运动。通过界面层的电荷分离,将在P区和N区之间产生一个向外的可测试的电压。通过光照在界面层产生的电子-空穴对越多,电流越大。界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。 2.简述半导体光催化在环境光催化和能源光催化中的应用。 环境光催化方面:我们面临越来越严重的空气污染,来自工业生产、汽车尾气释放的有机气体造成了室内外的空气质量显著下降.研究表明,利用TiO2光催化所产生的活性氧可有效地降解这些有机污染物,而且不产生二次污染。例如,在居室墙壁,陶瓷等建材表面,涂敷TiO2光催化薄膜或在房间内安放TiO2光催化设备,不仅能减少空气中的微生物和病菌污染颗粒,而且还能有效降解空气中的各种有害有机物质和臭味物质,净化室内空气,改善空气质量。 能源光催化:以光催化制氢为例。目前的氢能还主要是依靠煤和天然气的重整来获得,这必然会加剧非可再生能源的消耗,而且还会带来环境污染问题。以水和生物质等可再生物资为原料,利用太阳能光催化分解水制氢的方法可以从根本上解决能源及环境污染问题,光催化分解水制氢已成为新能源探索的研究热点之一。 3.简述目前商业化的电化学能量存储系统有哪些,各自优缺点以及 未来发展趋势? 全钒液流电池:优点为,钒离子溶解于水溶液,在充、放电过程中,只发生钒离子的价态变化,因此充放电应答速度快;电解质溶液为水溶液,无潜在爆炸或着火危险,安全性高;钒离子作为唯一的金属离子,离子环境单一,则增加其使用寿命;电池材料廉价,前期投资少。缺点是,电池总体效率低,占用体积大,设备容易被腐蚀,且对运行环境温度要求苛刻。 钠硫电池:优点是,比能量高,理论比能量达760W·h/kg;充放电效率高;由于采用固态电解质,因此没有自放电,能量效率高;能耐2000次以上的充放电,寿命长,无污染。缺点是:钠硫电池不能过充与过放,需要严格控制电池的充放电状态;电解质变质或者受到破坏,容易在电池内部造成钠和硫的短路而烧毁;硫和钠在350℃时熔解,因此需要外接加热设备。 锂离子电池:优点是,锂离子电池能量密度大,实际比能量大,使用寿命长,相比其他

深度解密液态金属

深度解密液态金属 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

深度解密:液态金属 液态金属,这个不断从Apple传出绯闻的材料,从iphone4开始,iphone5,iphone6,iwatch,还有未来将要上市的iphone7,每次新品发布前各种各样的爆料和揭秘都有她的身影 传闻iPhone 7还将加入一种硬度更高的液化金属,这种液态金属材料可以有效减少机身弯曲状况的发生,困扰苹果很久的“弯曲门”事件将不会在iPhone 7上出现。 那今天我们借着这个主题来看看这个屌炸天的‘液态金属’。首先我们调研下,你是否以为液态金属就是有着液体一样形态的金属(当然如果你是这个行业的大拿可以直接跳过这一段)。 首先我们先说液态金属NOT液态的! 很多东西是不能按照字面意思来理解的,就好像玻璃钢,它既不是玻璃也不是钢,但是人家就是任性的这么取名字了。同理,液态金属并不是成液体状的金属。 Liquidmetal,在常温下是固体的,和金银铜铁之类的普通金属没什么两样。 我们来重新定义一下液态金属(Liquid Metal):Liquidmetal(由液态与金属两字所复合)与 Vitreloy 是一系列由加州理工学院研究团队所开发出来的非晶态金属合金的商业名称,目前由该团队所组织的液态金属科技公司(Liquidmetal Technologies Inc.)进行行销,并是公司的产品名称与商标名称。 液态金属科技有限公司总部坐落在美国加州Rancho Santa Margarita, California, along with the Corporate R&D Technology Center. 非晶态金属合金,英文Amorphous Alloy,其中Amorphous是指的非晶态的,Alloy则是指的合金。简单来说就是非晶+合金,这不是废话吗...因其与常见晶体材料有明显的结构区别而得名。同时,也被称为金属玻璃(Metallic Glass),因其与常见的玻璃有类似结构。顺便多说一句,该种材料最先由美国加州理工的Duwez 教授在1960年用快淬工艺制备得到,当时得到的是Au-Si非晶合金。 接下来,我们要引入一个重要概念: Crystallinity 结晶性

液态金属新型散热材料

液态金属新型散热材料 液体金属在很大程度上胜过单相液体的解决方案。因其材料的热性能和物理性能,使它们提供了极高散热能力。在低气压下,这种物质的沸点超过2000度。这个特性使液体金属的相在没有改变的情况下,能使极高热密度冷却下来,散热密度取决于制冷器性能。这种液体金属是非易燃的、无毒的、环保的。作为一种首选材料,它必须具有好的导热性和导电性能。热传导性使热量能够很快移除和发散,电导体特性使我们能使用电磁泵的作用推动液体。 目前,我国有正规采暖散热器生产企业2100多家,年产值达70亿元左右,年产散热器约3.8亿片。但是,规模以上生产企业只有100多家,“松散型”及“作坊式”小企业仍然占大多数。 2002年,中国科学院理化技术研究所科研人员提出以低熔点金属或其合金作为冷却流动工质的计算机芯片散热方法,该方法是计算机热管理领域近年来取得的突破性原创成果,其中引入的概念崭新的冷却工质——低熔点液态金属以远高于传统流动工质的热传输能力,最大限度地解决了高密度芯片的散热难题。特别是,由于采用了液态金属,散热器可做得很小且易于使用功耗极低的电磁泵驱动,由此可实现集成化的无噪音散热器,同时可在传统散热方式能耗的基础上节能数倍。 通常,工作中的计算机芯片表面具有较高温度,其与环境之间会形成自然的温差,因而利用这种温差,可借助半导体发电片获得电能后,转而供应磁力泵并驱动循环通道内的金属冷却剂流动,从而完成热量的输运。由此发展的散热器可实现微型化及低功耗。据此项研究的第一作者马坤全博士生介绍,目前不使用任何风扇及外加电流,已能实现50瓦的散热量,已能满足普通计算机芯片的冷却降温需求,但要实现对更高功率密度芯片散热,则还需辅以一定的外加电流。随着半导体技术的发展,其热电转换效率越来越高,因而由此发展的温差驱动散热技术预计会在各类光电设备如笔记本电脑、台式机、投影仪等发挥作用。

储能技术的三类价值体现

储能技术的三类价值体现 在过去相当长一段时间,储能在电网的应用技术主要是抽水蓄能,应用领域主要是移峰填谷、调频及辅助服务等。近年来,随着新能源发电技术的发展,风电、太阳能光伏发电等波动性电源接入电网的规模不断扩大,以及分布式电源在配网应用规模的扩大,储能及其在电网的应用领域和应用技术都发生了很大变化。储能技术类型不断增多,应用范围也在扩大,本文就从储能技术的类型与应用范围谈起。 储能技术即能量存储和再利用的技术,按其基本原理分类,可分为物理储能、化学储能以及一些前沿储能技术,其中物理储能包括抽水蓄能、压缩空气储能、飞轮储能、超导储能等,化学储能有铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器等,液态金属电池、铝空气电池、锌空气电池等属于比较前沿的技术。不同的储能技术其特征和应用范围也有所区别。单从储能技术评价指标来看,就包括功率规模、持续时间、能量密度、功率密度、循环效率、寿命、自放电率、能量成本、功率成本、技术成熟度、环境影响等。可以说,没有一种单一储能技术可以适应所有的储能需求,应按需选择合适的储能技术或技术组合。 1、储能技术简介 1.1抽水蓄能电站 抽水蓄能使用两个不同水位的水库。谷负荷时,将下位水库中的水抽入上位水库;峰负荷时,利用反向水流发电。抽水储能电站的最大特点是储存能量大,可按任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%——85%。 1.2压缩空气储能 压缩空气储能系统主要由两部分组成:一是充气压缩循环,二是排气膨胀循环。在夜间负荷低谷时段,电动机—发电机组作为电动机工作,驱动压缩机将空气压入空气储存库;白天负荷高峰时段,电动机—发电机组作为发电机工作,储存的压缩空气先经过回热器预热,再与燃料在燃烧室里混合燃烧后,进入膨胀系统中(如驱动燃气轮机)发电。 1.3飞轮储能系统 飞轮储能利用电动机带动飞轮高速旋转,将电能转化成机械能储存起来,在需要时飞轮带动发电机发电。近年来,一些新技术和新材料的应用,使飞轮储能技术取得了突破性进展,例如:磁悬浮技术、真空技术、高性能永磁技术和高温超导技术

新能源材料与器件导论试卷

新能源材料与器件导论 试卷 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

新能源材料与器件导论试卷 1. 可再生能源中生物质能、风能、太阳能、水能等能量来自于太阳。 2. 太阳能电池主要分为硅太阳能电池、染料敏化太阳能电池、多元化合物太阳能电池、聚合物太阳能电池四种。 3. 电池按照工作性质分类有原电池、蓄电池、贮备电池、燃料电池等四种。 4. 半导体发光材料的主要制备方法有固相合成法、溶胶凝胶法、水热与溶济热法、微波反应法、沉淀法等。 5. 吸附法、熔融共混法、封装法、溶胶凝胶法、压制烧结法是定型相变材料的主要制备方法。 6. 锂离子电池正极材料主要有钴酸锂、锰酸锂、磷酸铁锂、LiMPO4、镍钴锰等五种。 7.太阳能电池主要由电池片、钢化玻璃、EVA、背板、铝合金、接线盒、硅胶等七部分构成。 8. 燃料电池的催化剂主要有贵金属、贵金属合金、过渡金属三种。 9. 相变储能材料主要应用于太阳能、工业余热、液化天然气冷能蓄冷、农业温室、电力调峰,建筑节能等方面。 1. 新能源,可再生能源,新材料;新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。可再生能源包括太阳能、水力、风力、生物质能、波浪能、潮汐能、海洋温差能等。它们在自然界可以循环再生。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。 2.电池:电池是指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间,是一种以化学能的形式存储电能的装置。具有正负极之分。随着科技的进步,电池泛指能产生电能的小型装置。

液态金属散热静音高效

液态金属散热静音高效 液态金属散热静音高效;电脑的应用改变了我们的工作方式和生活方式,伴随着;早在20世纪80年代计算机刚刚兴起的时候,对散热;目前主流的散热技术主要有风冷、热管、水冷等;“液态金属”散热器拥有这传统散热器所无法比拟的优;研究人员采用金属镓的合金作为散热器的导热剂,熔点;中国科学院院士周远研究员表示,液态金属散热技术不;对应的市场需求也就随之增长;依米康表示,目前液态金属散热静音高效 电脑的应用改变了我们的工作方式和生活方式,伴随着人们对功能的不断需求,电脑也一直在不停地升级换代。但是,随着电脑芯片集成度的与日俱增,传统的电脑CPU散热方式渐渐遭遇瓶颈。如何解决高集成度芯片的热障问题成为全球IT界亟待解决的重大难题。 早在20世纪80年代计算机刚刚兴起的时候,对散热的要求并不是很高。因为计算机的集成度、发热度比较低,即使没有散热技术,也不妨碍系统的运行。而随着计算机的飞速发展,其运算能力呈指数级增长,给散热带来了巨大的挑战。 目前主流的散热技术主要有风冷、热管、水冷等。风冷散热技术导热能力有限,只能应用于低功耗的电子产品;热管散热优于风冷,但是存在烧毁极限,甚至会发生管道破裂失效现象;水冷散热由于运

行过程中存在蒸发、泄露等问题,容易导致器件老化,对液体及流动管道的要求也较高。 “液态金属”金旗舰钢制散热器竹节jinqijian 拥有这传统散热器所无法比拟的优点,那就是集高效、紧凑、安全、静音于一体。具有良好的导热能力和比热容性能,但体积却丝毫没有增大,用相同的体积带来更优良的性能,将紧凑性体现的淋漓尽致。“液态金属”不会泄露,不易蒸发,也不会变质,运行安全,使用寿命长。由于散热管道内置电磁泵,受电磁力作用而产生压力梯度,推动液体前进,不会产生噪音,让用户享受到静音散热器。 研究人员采用金属镓的合金作为散热器的导热剂,熔点低、无毒无害,吸热快,沸点很高。目前该产品已经申请了专利,让我国在散热器和“液态金属”应用方面取得巨大的突破。虽然从其稀有金属的使用以及复杂的制造可以判断其价格可能比较昂贵,但是物有所值,良好的性能和不一样的体验,绝对能让高端DIY用户和狂热的超频玩家满意。下个月这款“液态金属”散热器就能正式发布了。 中国科学院院士周远研究员表示,液态金属散热技术不仅仅可以应用于CPU冷却,它的核心技术范围可以推广到更多方面,包括仪器工业、钢铁制造、太阳能捕获、国防军工等,前景不可限量。由于各类芯片及光电器件应用的广泛性,相应冷却技术的市场需求十分巨大。资料显示,以计算机CPU所需的散热组件,如风扇及鳍片等产品

如何应对高热流密度散热(维酷)

应对高热流密度导热——维酷导热膏/导热片详测 随着电子元器件的集成度和功率的不断提高,散热量和热流密度也越来越大,散热问题的解决成为一个极其关键的技术。散热问题不仅对传统散热技术提出了更高的要求,同时也对导热材料有更高的要求。

维酷(VRYCUL)液态金属导热膏和导热片 产品性能参数, 测试平台简介 实验平台如图1所示,由热源、上下铜块、导热片、铝散热器及风扇组成,热源功率200W,热源上方放置两铜块,四周放置绝热材料,两铜块间放置Vrycul 导热产品,铜块上方放置铝散热器和风扇。两铜块上分别有三等距测温孔T1、T2、T3,T4、T5、T6,其中T2=1/2(T1+T3),T5=1/2(T4+T6)。分别测量时间为20h、40h、60h、80h、100h 时接触热阻的变化情况。

T6 T1T4 T3T2T5 导热膏/ 图1 热阻测试平台 高温实验测试:若保证导热膏在60℃寿命达到5年,则根据阿伦尼乌斯公式知,在本加速实验条件下,须在150℃情况下测试100小时。测试结果如图2所示,由图可知,经过150°C 高温100小时试验后,维酷(VRYCUL )的TG-I 导热膏和TP-I 导热片表现稳定,性能未见衰减。

图2 Vrycul TG-I导热膏和TP-I导热片高温100h热阻变化图腐蚀性测试 腐蚀性实验用紫铜和紫铜镀镍作为腐蚀材料,在150°C下,腐蚀100小时。实验结果见图3和图4。由图片可见,接触TP-I导热片和TG-I导热膏的结构材料均无明显腐蚀迹象。 图3 TG-I导热膏和TP-I导热片腐蚀紫铜和紫铜镀镍前后对比图

图4 腐蚀前后的热阻对比值 热冲击测试:将TG-I导热膏和TP-I导热片在-40°C至125°C之间循环测试200小时。实验结果如图4所示。实验结果表明,维酷(VRYCUL)TG-I导热膏和TP-I导热片的性能稳定,未见衰减,耐温度冲击性能极佳。 图4 Vrycul TG-I导热膏和TP-I导热片的热冲击实验结果

2020届二轮复习 电化学 作业(全国通用)

电化学 1.一种全天候太阳能电池的工作原理如图所示,下列说法正确的是() A.光照时,b极周围pH增大 B.光照时,H+由a极室透过质子膜进入b极室 C.夜间无光照时,a极的电极反应式为V2+-e-===V3+ D.该电池与硅太阳能电池供电原理相同 解析:A项,根据太阳能电池的工作原理图可知,光照时,b极周围发生电极反应:VO2++H2O-e-===VO+2+2H+,产生H+,pH减小,错误;B项,光照时,b极产生H+,根据电子流向可知,H+由b极室透过质子膜进入a极室,错误;C项,夜间无光照时,反应相当于蓄电池的放电反应,此时b极为电池的正极,a极为电池的负极,正确;D项,硅太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电转换反应,本题中电池是原电池的一种,发生的是化学变化,两者供电原理不同,错误。 答案:C 2.(2019·唐山一模)研究人员研发了一种“水电池”,这种电池能利用淡水与海水之间含盐量的差别进行发电。在海水中,电池的总反应可表示为:5MnO2+2Ag +2NaCl===Na2Mn5O10+2AgCl,下列“水电池”在海水中放电时的有关说法正确的是() A.正极反应式:Ag+Cl-+e-===AgCl B.每生成1 mol Na2Mn5O10转移4 mol电子 C.Na+不断向“水电池”的负极移动 D.AgCl是氧化产物

解析:根据电池总反应可知,该电池的正极反应:5MnO2+2e-===Mn5O2-10,负极反应:Ag+Cl--e-===AgCl,A错误;由正极反应式可知,1 mol Na2Mn5O10转移2 mol电子,B项错误;钠离子向正极移动,与Mn5O2-10结合,C错误;负极反应:Ag+Cl--e-===AgCl,Ag失电子,被氧化,则AgCl是氧化产物,D正确。 答案:D 3.埋在地下的钢管道可以用如图所示方法进行电化学保护。下列说法正确的是 () A.该方法将电能转化成化学能 B.在此装置中钢管道作正极 C.该方法称为“外加电流的阴极保护法” D.镁块上发生的电极反应为O2+2H2O+4e-===4OH- 解析:构成的是原电池,该方法是将化学能转化成了电能,A错误;根据图片知,该金属防护措施采用的是牺牲阳极的阴极保护法,钢管道作正极,B正确;根据图片知,该金属防护措施采用的是牺牲阳极的阴极保护法,C错误;镁块作负极,电极反应:Mg-2e-+4OH-===Mg(OH)2↓,D错误。 答案:B 4.近几年科学家发明了一种新型可控电池——锂水电池,工作原理如图所示。下列有关说法不正确的是()

DIY 教你如何让笔记本散热变得更好

DIY 教你如何让笔记本散热变得更好绝对罕见金旗舰教你如何给笔记本散热;近年来,双核+独显的全能学生机十分流行;后面我们测试了他们的极限温度,回归温度(也就是到;笔记本硅脂替换测试成绩;对于改造笔记本的散热有兴趣的朋友,请点击下一页,;串行散热体系;其中,芯片的DIE,就是芯片晶圆的硅制外壳,它可;热导率定义为单位截面、长度的材料在单位温差下和单;导热率:传递的热量, 绝对罕见教你如何给笔记本散热 近年来,双核+独显的全能学生机十分流行。在享受高性能的同时,笔记本的散热却总不能让我们满意。苛刻的玩家,总是不满足于原厂的设计,只要有一点点提升的空间,我们就要自己动手改造散热,其中的乐趣,是旁人无法体会的。笔者曾经对笔记本改造散热乐此不疲,今天就给大家分享一点经验。今天我们主要从硅脂的角度,来讨论一下改造散热这个话题。此次实验,所测试的硅脂类导热介质有:倍能事达白色硅脂、信越7783纳米硅脂、3M导热垫、固态硅脂、液态金属。 后面我们测试了他们的极限温度,回归温度(也就是到达极限温度后的空负载最低温度)。测试结果如下: 笔记本硅脂替换测试成绩 对于改造笔记本的散热有兴趣的朋友,请点击下一页,看看详细的过程。首先,来分析一下笔记本散热系统,我们就会发现一些问

题。一个典型的散热系统,是一个串行的体系。热量从源头,通过热传递导出到外界空气的过程,要经过如下介质:芯片DIE、导热硅脂、铜吸热面、焊锡、热管、焊锡、散热鳞片。 串行散热体系 其中,芯片的DIE,就是芯片晶圆的硅制外壳,它可以保护内部精密的晶体管电路不受氧化和磨损,更重要的是,能把内部电路产生的热量传导到表面。从上图可以看出,热量从芯片内部产生后,要经过7层介质,才会散发到周围的空气中。类比电路,我们可以看出,这里的热量传导,是一个串行的体系。各种介质,导热的能力,有一个物理常量来衡量,那就是导热系数,又称导热率。下面,我们就对于这些介质进行分析。 热导率定义为单位截面、长度的材料在单位温差下和单位时间内直接传导的热量。 导热率ρ=ΔQ*L/S*ΔT*t ΔQ:传递的热量,L:长度,S:截面积,ΔT:两端温差,t:时间。常见的介质导热率如下: 常见材料导热率 这里,笔者把液态金属的导热率也列了出来,因为等下要进行液态金属的实验。顺便说一下,芯片DIE硅材料的导热率可大500以上。 从上表可以看出,我们CPU所用的导热硅脂,也就“传统导热膏”的导热率,是最大的瓶颈。但是,为什么我们还要用导热硅脂呢? 因为不

CPU散热器的发展现状与发展趋势

引言 过去的三十年见证了现代电子工业的个人电脑及其服务器的日新月异。同时,由于增加的热流体的散热问题严重阻碍了超级高性能的CPU的发展。目前,传统的冷却技术,如风冷,水冷和热管依然在散热领域扮演着主要的角色。这主要归因于这些技术,结构简单,冷却效率高以及低成本。除此之外,一系列的新的和更高级的冷却技术正在涌现,比如说,微通道,离子风,压电式翅片,磁性极化纳米流体,以及微包裹体相变流体等。这些令人欣喜的策略具有独一无二的优势以及一些甚至能够处理极端高热流体的条件。然而,对于大部分散热的方式来说,一些技术问题,比如复杂的制造工艺,高成本,以及可靠性问题,离大规模的商业使用依然有很大的提升空间。 在许多的新创意中,液态金属冷却技术迅速成为了近年来最吸引人的散热技术。它最典型的优势在于,液态金属的高的热物性以及它独一无二的电磁驱动特性。目前,基于金属镓的合金被认为是最好的可用于该技术最好的材料。该合金的有低的熔点(<10℃),高的导热率,无毒,高的沸点,因此有了优秀的冷却能力和高的可靠性。 现在最常用的风冷技术已经达到了它的极限,随着CPU芯片集成技术的发展,风冷技术将无法满足市场的要求。新型的液体金属散热方法虽然理论上具有很大的发展潜力,但昂贵的价格不利于大规模生产,而且在实际应用中其散热效果并不理想,与目前最先进的风冷散热器相比,并没有完全处于优势地位。液体具有良好的流动性和导热性,因此液体散热技术的应用非常广泛,成为各种台式计算机及大型工作站散热的首选,而且效果也明显优于常规的风冷散热。目前对于液体冷却主要是研究其流道结构和冷却液成分,冷却液主要包括水、纳米流体、液体金属。液态金属的导热系数最高,其次是纳米流体,最后是水。谢开旺提出在液体金属中加入纳米粉体,可以形成导热系数更高的纳米金属流体。宋思洪等通过研究表明,不同功率下芯片温度随导热系数的升高而降低,但导热系数越高,芯片温度降低的幅度越小,可见单纯提高导热系数并不能大幅提高冷却液的散热性能。因此,还需从冷却液的其他热物性方面入手(如提高比热)来增强工质的散热性能,以期获得一种具有较高导热系数以及较大等效比热的潜热型低熔点液态金属功能热流体。 1 液体散热技术 CPU芯片过热所导致的“电子迁移”是造成CPU内部芯片损坏的主要原因。电子迁移是指电子流动所引起的金属原子迁移的现象。在芯片内部电流强度很高的金属导线上,电子的流动会给金属原子一个动量,当电子与金属原子碰撞时,可能会使金属原子脱离金属表面四处流动,导致金属表面上形成坑洞或凸起,这是一个不可逆转的永久性伤害。如果这个慢性过程一直持续,则将最终造成内部核心电路的短路或断路,彻底损坏CPU。 液体冷却是一种非常有效的散热手段,被广泛应用在工业上,如强激光和高功率微波技术的散热系统、汽车发动机的热交换等。液体具有非常高的比热容,可以在CPU 芯片的发热部位吸收大量的热,而且由于良好的流动性,液体可以流动到其他低温部位再将热量排出,这样连续不断地吸热和散热,保证了芯片部位一直处于较低温度,从而达到保护芯片的目的。 表1 目前CPU芯片的散热方式 散热方式散热介质原理器件优点缺点 风冷散热液冷散热 半导体散 空气 水及其他几种液 体 半导体 空气流动带走热量 液体流动吸热并带走热量 利用帕尔贴效应,通电的半 风扇 液体循环 系统 一组串联 简单,方便,廉价 散热效果好,廉价 能够较精确地控制温度, 散热效果差,噪音大 器件大,安装不方便 易凝结露水,工艺不成熟,

深度解密:液态金属..

深度解密:液态金属 液态金属,这个不断从Apple传出绯闻的材料,从iphone4开始,iphone5,iphone6,iwatch,还有未来将要上市的iphone7,每次新品发布前各种各样的爆料和揭秘都有她的身影? 传闻iPhone 7还将加入一种硬度更高的液化金属,这种液态金属材料可以有效减少机身弯曲状况的发生,困扰苹果很久的“弯曲门”事件将不会在iPhone 7上出现。 那今天我们借着这个主题来看看这个屌炸天的‘液态金属’。首先我们调研下,你是否以为液态金属就是有着液体一样形态的金属?(当然如果你是这个行业的大拿可以直接跳过这一段)。

首先我们先说液态金属NOT液态的! 很多东西是不能按照字面意思来理解的,就好像玻璃钢,它既不是玻璃也不是钢,但是人家就是任性的这么取名字了。同理,液态金属并不是成液体状的金属。

Liquidmetal,在常温下是固体的,和金银铜铁之类的普通金属没什么两样。 我们来重新定义一下液态金属(Liquid Metal):Liquidmetal(由液态与金属两字所复合)与Vitreloy是一系列由加州理工学院研究团队所开发出来的非晶态金属合金的商业名称,目前由该团队所组织的液态金属科技公司(Liquidmetal Technologies Inc.)进行行销,并是公司的产品名称与商标名称。

液态金属科技有限公司总部坐落在美国加州Rancho Santa Margarita, California, along with the Corporate R&D Technology Center. 非晶态金属合金,英文Amorphous Alloy,其中Amorphous是指的非晶态的,Alloy 则是指的合金。简单来说就是非晶+合金,这不是废话吗?...因其与常见晶体材料有明显的结构区别而得名。同时,也被称为金属玻璃(Metallic Glass),因其与常见的玻璃有类似结构。顺便多说一句,该种材料最先由美国加州理工的Duwez教授在1960年用快淬工艺制备得到,当时得到的是Au-Si非晶合金。 接下来,我们要引入一个重要概念: Crystallinity 结晶性 Cristallinity,其实就是元素中,原子排列的形式,我们可以想象,金属内部如果放大,不会是乱成一锅粥的,这是它的天然属性,就是我们常说的晶体结构。但是,并非所有的物体,都有这个晶体结构,比如玻璃、陶瓷等等Ceramics(无机非金属)材料或者一部分Polymers(有机高分子)材料。 所以,往下又会分出三种类型的材料: 1、Crystalline 晶体

戴尔 D630加铜片改造散热

戴尔 D630加铜片改造散热 发布时间:2009-06-19 08:06 来源:互联网作者:yangyu2008 已有3条评论我要评论 关键词:戴尔, D630, 加铜片, 改造散热 D630的显卡热是出名的,我的机器08年2月买的,到09年2月到电脑城让人清了一次灰,花费40人民币。但是还不会拆机。当时看到GPU和北桥上用的是散热垫(蓝色的那种),后来在寒假坚持了1个月,临近夏季,在玩儿游戏时显卡终于撑不住了,平时上网也就60到79度之间,在默认的频率下400(核心)800(流处理器)598(显存)温度就能达到89度,长时间约1小时左右报警。我用的BIOS是A15的。再加上最近要玩儿使命召唤4,在一般特效下,D 630的显卡不超频就是和看幻灯片差不多,所以决定动手改造。 结合论坛上的大侠们的帖子,我决定先采用价格比较实惠的铜片改造,因为银片觉得太贵,要 15mm*15mm*1.2mm一片的估计的25到35元,液态金属导热垫儿也太贵,要60多一片30mm*30mm的好像。因为我是学生,所以选用最实惠的。 在淘宝上搜了一下,店主态度非常好,所以决定购买,这是我买的部分东西。 这次改造用的原料有:15mm*15mm*1.2mm的铜片一个,7783导热硅脂,相变材料15mm*15mm2块,进口高级导热材料(俗称面团)一块。细砂纸一张。 改造的条件有限,就在我寝室。先来张全家福: 先拆键盘上的塑料条,实际上关于拆解前面的版主,楼主已经有很多介绍,我现在只把我认为关键的部分重点介绍,其实对于一个新手来说,如果能吧这个塑料条拆下来可以说是完成了拆机的一半也不为过,因为这个条我认为是相当难拆的(当然是第一次拆机),因为如果你能拆下来的话就说明你已经克服了拆机的心理障碍,而且你会懂得什么是胆大心细的真正内涵。我当时拆这个条花了将近20分钟,感觉就是无从

镁锑液态金属储能电池原理 Mg-Sb Liquid Metal Battery

Magnesium ?Antimony Liquid Metal Battery for Stationary Energy Storage David J.Bradwell,Hojong Kim,*Aislinn H.C.Sirk,?and Donald R.Sadoway * Department of Materials Science and Engineering,Massachusetts Institute of Technology,77Massachusetts Avenue,Cambridge,Massachusetts 02139-4307,United States *Supporting Information arge-scale energy storage is poised to play a critical role in enhancing the stability,security,and reliability of tomorrow ’s electrical power grid,including the support of intermittent renewable resources.1Batteries are appealing because of their small footprint and flexible siting;however,conventional battery technologies are unable to meet the demanding low-cost and long-lifespan requirements of this application.A high-temperature (700°C)magnesium ?antimony (Mg ||Sb)liquid metal battery comprising a negative electrode of Mg,a molten salt electrolyte (MgCl 2?KCl ?NaCl),and a positive electrode of Sb is proposed (Figure 1).Because of density differences and immiscibility,the salt and metal phases stratify into three distinct layers.During discharge,at the negative electrode Mg is oxidized to Mg 2+(Mg →Mg 2++2e ?),which dissolves into the electrolyte while the electrons are released into the external circuit.Simultaneously,at the positive electrode Mg 2+ions in the electro-lyte are reduced to Mg (Mg 2++2e ?→Mg Sb ),which is deposited into the Sb electrode to form a liquid metal alloy (Mg ?Sb)with attendant electron consumption from the external circuit (Figure 2).The reverse reactions occur when the battery is charged.Charging and discharging of the battery are accompanied by volumetric changes in the liquid electrodes.The difference in the chemical potentials of pure Mg (μMg )and Mg dissolved in Sb [μMg(in Sb)] generates a voltage that can be expressed as E RT F a a 2ln cell Mg(in Sb)Mg =????? ?? ?where R is the gas constant,T is temperature in Kelvins,F is the Faraday constant,a Mg(in Sb)is the activity of Mg dissolved in Sb,and a Mg is the activity of pure Mg. Recent work on self-healing Li ?Ga electrodes for lithium ion batteries has demonstrated the appeal of liquid components.2While solid electrodes are susceptible to mechanical failure by mechanisms such as electrode particle cracking,3these are inoperative in liquid electrodes,potentially endowing cells with unprecedented lifespans.The self-segregating nature of liquid electrodes and electrolytes could also facilitate inexpensive manufacturing of a battery so constructed.However,there do not appear to be economical materials options that exist as liquids at or near room temperature. Previous work with elevated-temperature liquid batteries demon-strated impressive current density capabilities (>1000mA/cm 2when discharged at 0V)with a variety of chemistries.4?7However,that work generally used prohibitively expensive metalloids (such as Bi and Te)as the positive electrode.The resulting cells exhibited self-discharge current densities of 40mA/cm 2,attributed to the solubility of the negative electrode metal (i.e.,Na)in the Received:October 17,2011 Published:January 6, 2012 Figure 1.Sectioned Mg ||Sb liquid metal battery operated at 700°C showing the three stratified liquid phases upon cooling to room temperature.The cell was filled with epoxy prior to sectioning.

第四章 传 热

第四章传热 第一节概述 传热是指由于温度差引起的能量转移,又称热传递。 热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一种平衡状态变到另一种平衡状态所需要的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。热力学(能量守衡定律)和传热学(传热速率方程)两者的结合,才可能解决传热问题。 化工生产中对传热的要求经常有以下两种情况:一种是强化传热过程;另一种是削弱传热过程。 传热系统(例如换热器)中不积累能量(即输入能量等于输出的能量),称为定态传热。定态传热的特点是传热速率(单位时间传递的热量)在任何时刻都为常数,并且系统中各点的温度仅随位置变化而与时间无关。 根据传热机理不同,热传递有三种基本方式:传导、对流和辐射。在无外功输入时,净的热流方向总是由高温处向低温处流动。 若物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的运动而引起的热量传递称为热传导(又称导热)。固体中的热传导属于典型的导热方式。 流体中各部分之间发生相对位移所引起的热传导过程称为热对流(简称对流)。热对流仅发生在流体中。 流体中对流原因可分为两种:一是自然对流;二是强制对流。 在化工传热过程中,常遇到的并非单纯对流方式,而是流体流过固体表面时发生的对流和热传导联合作用的传热过程,即热由流体传到固体表面(或反之)的过程,通常将它称为对流传热(又称为给热)。 因热的原因而产生的电磁波在空间的传递,称为热辐射。所有物体(包括固体、液体和气体)都能将热能以电磁波形式发射出去,而不需要任何介质,也就是说它可以在真空中传播。物体之间相互辐射和吸收能量的总结果称为辐射传热。任何物体只要在热力学温度零度以上都能发射辐射能,但只有在物体温度较高时,热辐射才能成为主要的传热方式。 传热过程中,热、冷流体热交换可分为三种基本方式:一、直接接触式换热器和混合式换热器;二、蓄热式换热器和蓄热器;三、间壁式换热和间壁式换热器。

液态金属材料整理

液态金属材料情况整理 一、液态金属是什么 液态金属是一类新型合金的商品名称,这种合金拥有一种独一无二的原子结构,这种结构更接近玻璃,因此也将其称为“大块金属玻璃”或“大块非晶态合金”。液态金属是一种可转型态的金属,它在常温下是液体,可以像水一样自由流动,但却拥有金属的特性,其导热能力和比热容(吸纳热量的能力)远远高于传统的甲醇和水等导热剂,是新一代革新性的理想散热介质。液体金属技术主要应用于消费电子领域,具有熔融后塑形能力、高硬度、抗腐蚀、高耐磨等特点,由于其不同于晶体的特殊原子排列结构,表现出超高比强、大弹性变形能力、低热膨胀系数等特异性能,受到各国科学家重视,成为当今最活跃的材料学研究领域之一,孕育着继钢铁、塑料之后的第三次材料工业革命。 二、液态金属市场背景及应用前景 液态金属是一种高新技术材料,具有卓越的物理、化学和力学性能,是电力、电子、计算机、通讯等高新技术领域的关键材料,市场需求大,产业化前景非常广阔,而且它的发展和应用可带动一批相关领域的技术进步和协同发展。在电子技术中,液态金属以其高效、低损耗、高导磁等优异的物理性能有力促进了电子元器件向高频、高效、节能、小型化方向的发展,并可部分替代传统的硅钢、坡莫合金和

铁氧体等材料。可以预测,在未来的电子技术中液态金属将占据十分重要的位置。因而,液态金属又被称为跨世纪的新型功能材料。 在国际上,美国、德国、日本等国都先后投入巨资发展液态金属产业。我国也在连续4个五年计划中投入大量资金,组织重点科技攻关。作为主要承担单位,钢铁研究总院通过近20年的努力,在基础研究、材料研究、工艺装备、应用开发及产业化等方面取得了200多项具有国际先进水平的科研成果。2015年钢铁研究总院控股的安泰科技股份有限公司成功上市,为液态金属材料的产业化创造了良好环境。 实际上,液态金属除被证明可应用于医学领域外,其在消费电子、航天航空、生物医学、精密机械等领域都有重要的应用前景。2015年6月,苹果与液态金属授权商续签独家使用权利的协议,液态金属有望应用在下一代苹果手机上的猜测再次泛起。业内人士预测,未来大约2-3年内,消费电子行业有望大规模应用液态金属,随着液态金属技术持续开发完善和规模成本降低,苹果如果能够在手机外壳或者其它部件使用的话,整个产业有望达到百亿美元规模。 业内人士指出,液态金属是一种神奇材料,是金属材料中的新贵,而且有很多特性,是金属领域中少有的高利润产品,它未来有可能逐渐替代现有的材料,并制造出突破性产品,有着很大的发展空间。液态金属有可能成为继工程塑料、轻合金之后的消费电子产品第三代新材料。

静音散热方案

电脑的应用改变了我们的工作方式和生活方式,伴随着人们对功能的不断需求,电脑也一直在不停地升级换代。但是,随着电脑芯片集成度的与日俱增,传统的电脑cpu散热方式渐渐遭遇瓶颈。如何解决高集成度芯片的热障问题成为全球it界亟待解决的重大难题。早在20世纪80年代计算机刚刚兴起的时候,对散热的要求并不是很高。因为计算机的集成度、发热度比较低,即使没有散热技术,也不妨碍系统的运行。而随着计算机的飞速发展,其运算能力呈指数级增长,给散热带来了巨大的挑战。 目前主流的散热技术主要有风冷、热管、水冷等。风冷散热技术导热能力有限,只能应用于低功耗的电子产品;热管散热优于风冷,但是存在烧毁极限,甚至会发生管道破裂失效现象;水冷散热由于运 行过程中存在蒸发、泄露等问题,容易导致器件老化,对液体及流动管道的要求也较高。 “液态金属”金旗舰钢制散热器竹节jinqijian 拥有这传统散热器所无法比拟的优点,那就是集高效、紧凑、安全、静音于一体。具有良好的导热能力和比热容性能,但体积却丝毫没有增大,用相同的体积带来更优良的性能,将紧凑性体现的淋漓尽致。“液态金属”不会泄露,不易蒸发,也不会变质,运行安全,使用寿命长。由于散热管道内置电磁泵,受电磁力作用而产生压力梯度,推动液体前进,不会产生噪音,让用户享受到静音散热器。 研究人员采用金属镓的合金作为散热器的导热剂,熔点低、无毒无害,吸热快,沸点很高。目前该产品已经申请了专利,让我国在散热器和“液态金属”应用方面取得巨大的突破。虽然从其稀有金属的使用以及复杂的制造可以判断其价格可能比较昂贵,但是物有所值,良好的性能和不一样的体验,绝对能让高端diy用户和狂热的超频玩家满意。下个月这款“液态金属”散热器就能正式发布了。 中国科学院院士周远研究员表示,液态金属散热技术不仅仅可以应用于cpu冷却,它的核心技术范围可以推广到更多方面,包括仪器工业、钢铁制造、太阳能捕获、国防军工等,前景不可限量。由于各类芯片及光电器件应用的广泛性,相应冷却技术的市场需求十分巨大。资料显示,以计算机cpu所需的散热组件,如风扇及鳍片等产品 为例,其制造业的世界市场每年约有50至100亿美元。而随着功耗的不断增加,芯片冷却解决方案的价格也随之剧增, 对应的市场需求也就随之增长。这无疑为液态金属散热技术提供了广阔的发展空间。 依米康表示,目前看到的样品还只是先期投放的“液态金属”散热产品中的一款,主要面向高端diy用户和狂热的超频玩家。普通玩家也可以利用其静音高效的特点组装个性化的电脑产品。相信通过实际使用,玩家会切身感受到“液态金属”散热器强大的魅力。未来依米康还将根据市场的需求推出更多款式的“液态金属”散热器。不过,依米康并没有在展会上透露价格方面的信息,可以肯定的是,“液态金属”的加工制造过程比较复杂,本身又使用了价格昂贵的稀有金属,因此成本较高,短时间内都将维持较高的价位,相信随着以后产量的增加,其售价会进一步降低。据介绍,第一代液态金属cpu散热器专门针对于顶级超频玩家和高端用户,能充分体现“液态金属”散热技术的高散热性能。后续会推出中高低端系列产品,来满足市场用户需要。 在可以预见的未来,“液态金属”散热器凭借其强劲的实力,将挺进高端diy领域,对水冷和热管散热器市场造成很大的冲击,毕竟从技术上说,“液态金属”的性能是普通导热剂所不能比拟的。篇二:液态金属散热静音高效 液态金属散热静音高效 电脑的应用改变了我们的工作方式和生活方式,伴随着人们对功能的不断需求,电脑也一直在不停地升级换代。但是,随着电脑芯片集成度的与日俱增,传统的电脑cpu散热方式渐渐遭遇瓶颈。如何解决高集成度芯片的热障问题成为全球it界亟待解决的重大难题。 早在20世纪80年代计算机刚刚兴起的时候,对散热的要求并不是很高。因为计算机的

相关文档
最新文档