带隙基准学习笔记

带隙基准学习笔记
带隙基准学习笔记

带隙基准设计

A.指标设定

该带隙基准将用于给LDO提供基准电压,LDO的电源电压

变化范围为1.4V到3.3V,所以带隙基准的电源电压变化范围与

LDO的相同。LDO的PSR要受到带隙基准PSR的影响,故设计

的带隙基准要有高的PSR。由于LDO是用于给数字电路提供电源,所以对噪声要求不是很高。下表该带隙基准的指标。

电源电压1.4V~3.3V

输出电压0.4V

温度系数35ppm/℃

PSR@DC,@1MHz-80dB,-20dB

积分噪声电压(1Hz~100kHz)<1mV

功耗<25uA

线性调整率<0.01%

B.拓扑结构的选择

上图是传统结构的带隙基准,假设M

1~M尺寸相同,那么输

3

出电压为

R

2

V REF VlnNV BE

T3

R

1

V是负温度系数,对温度求导数,得到公式(Razavi,

BE

Page313):

V BE3BE3(4)Tg/

VmVE

TT

q

其中,

3

m。如果输出电压为零温度系数,那么:

2

V REF V BE

3

TT

k

q

lnN

R

2

R

1

得到:

kV BE(4m)V T E g/

R

3

2

lnN

qRT

1

q

带入:

R

2

V REF VlnNV BE

T3

R

1 得到:

E

g

V REF(4m)V

T

q

在27°温度下,输出电压等于1.185V,小于电源电压1.4V,可这个电路并不能工作在1.4V电源电压下,因为对于带隙基准

里的运放来说,共模输入范围会受到电源电压限制,电源电压的最小值为:

VDD

min V BE VV

2GS_input_differential_pairover

_drive_of_current_source

其中,V是三极管Q2的导通电压,V GS_input_differential_pair是运放差

BE2

分输入管对的栅源电压,V____是运放差分输入管对尾

overdriveofcurrentsource 电流源的过驱动电压。

对于微安级别的电流,可以认为:

V GS V

TH 这里将差分输入对的体和源级短接以减小失配,同时阈值电

压不会受到体效应的影响。假设差分对尾电流源的过驱动电压为

100mV,那么,电源电压的最小值为:

VDD min V BE2V TH_input_differential_pair100mV

下表列出了smic.13工艺P33晶体管阈值电压和三极管的导通电压随Corner角和温度变化的情况:

V-40°27°80°

TH

slow-826mV-755mV-699mV

typical-730mV-660mV-604mV

fast-637mV-567mV-510mV

BJT的V-40°27°80°

BE

slow830mV720mV630mV

typical840mV730mV640mV

fast860mV750mV660mV

可以计算出在不同温度的Corner角下电源电压的最小值:

VDD-40°27°80°

min

slow1.756V1.575V1.429V

typical1.67V1.49V1.344V

fast1.597V1.417V1.27V

可以看出,对于大部分情况,1.4V电源电压无法保证带隙基

准中运放的正常工作,所以必须改进电路结构,使其可以工作在

1.4V电源电压下。

上图是一种实用的低压带隙基准的结构,假设

M 1~M 尺寸相

3

同,同样假设:

R 2A R A R B R B R

12221222

那么,输出电压为:

V REF VlnNV

TBE2 ()R

3

RR 12

如果输出电压为零温度系数,那么:

V REF V BE 2 TT

R 3 R 2 k q lnN

R 3 R 1

0 得到:

3V(4m)VE/

kRBETg 2

lnN qRT

1

q R

3 R 2

带入:

V REF VlnNV

TBE2 ()R

3

RR 12

得到:

E g

V[(4m)V T REF q

] R

3 R 2

可以通过设置

R 与R 2的比值,将输出电压设定在任意值。 3

误差放大器输入端在N和N

2处,通过将R2A1/R2A2设置为1,将

1

这两点电压设定为BJT导通电压的二分之一,计算出在不同温度

和Corner角下电源电压的最小值:

VDD-40°27°80°

min

slow1.341V1.215V1.114V

typical1.25V1.125V1.024V

fast1.167V1.042V0.94V

可以看到,最坏情况出现在SlowCorner角低温下,电源电压

最小值仍然小于1.4V,意味着这种结构可以满足本次低压设计

的要求。

R2A/R A越大,电源电压的最小值越低,不过带隙基准环路增

122

益也变低了。

将R设置为1,输出电压可以为1.2V,但是这时候带隙基

3/RR设置为1,输出电压可以为1.2V,但是这时候带隙基

2

准的低频PSR会变差,为了提高低频PSR,运放的增益要很高,

但是在这种电路中,PSR不仅与运放增益有关,还与输出级

PMOS晶体管的输出电阻有关,如下图所示:

当PMOS晶体管M输出电阻足够小的时候,M

3的栅源电压微

3

小变化引起的电流变化与流过M小信号输出阻抗的电流相比可

3

以忽略不计,那么此时可以近似认为M的栅源电压交流短路,

3

那么,有:

PSR V R

REF3

V

DD

r o

其中ro为PMOS晶体管M的小信号输出阻抗,这个输出阻抗

3

与漏源电压有关系,将PMOS晶体管偏置电流设为5uA,宽长

比分三组,各为10um/1um,20um/2um,40um/4um,电源电压

设为1.4V,漏端加一可变电压V1,V1从0V扫描到1.4V,如下

图所示:

测量PMOS晶体管M、M

1、M4的小信号输出阻抗随V1的变

化关系,得到如下数据:

可以看到,晶体管的输出阻抗随漏源电压的增加而增加,随

沟道长度的增加也变大,当V1升高到1.2V时,三种沟道长度

的晶体管的输出阻抗减小到大约660k的数值,一般来说,R的

3 数量级在100k左右,如果在电源电压为1.4V时,带隙基准输出

1.2V,那么,此时的PSR是:

PSR V R100k

REF316

dB Vro660k

DD

为了提高低频PSR,就必须在尽可能提高运放增益的情况下,增加PMOS晶体管的小信号输出阻抗ro,这一措施首先是通过

减小带隙基准输出电压来实现,带隙基准输出电压要接在LDO

的误差放大器输入端,如果误差放大器使用NMOS管作为输入

差分对,那么其共模输入电压至少为NMOS管的栅源电压加上

尾电流源的过驱动电压:

V

cmVV

GSDSSAT 用下图可以仿真出误差放大器最低共模输入电压的数值:

用5uA的电流偏置二极管连接的宽长比为20um/1um的NMOS管,将其源级用100mV的电压偏置,模拟尾电流源的过

驱动电压,将体接到地上,测量晶体管栅极电压,这个电压大致等于误差放大器的最低共模输入电压,结果如下表:

V-40°27°80°

cm

slow945mV876mV830mV

typical822mV753mV704mV

fast700mV630mV580mV

最坏情况发生在SlowCorner角低温情况,此时误差放大器共模输入电压为0.945V,这就意味着如果用NMOS管作为误差放

大器输入管,那么带隙基准输出电压不能低于0.945V。但是这

时候输出级PMOS晶体管的小信号输出阻抗已经变的很小,比

如当L=2um时,由上面的图可以看到,输出阻抗为大约为7M

欧姆,此时PSR不是很高。所以误差放大器的输入管采用PMOS 比较合适,为了提高匹配,降低噪声,PMOS管的体和源级可以

短接,进一步提高了最高共模输入电压。共模输入电压最多为电

源电压减去PMOS管的栅源电压再减去尾电流源的过驱动电压:

V

cmVVV

DDGSDSSAT

假设过驱动电压为100mV,用同样的手段(宽长比20um/1um,偏置电流5uA)可以得到最高共模输入电压值:

V-40°27°80°

cm

slow383mV445mV492mV

typical484mV548mV595mV

fast585mV650mV699mV

可以看到,最坏情况发生在SlowCorner角低温下,带隙基准输出电压必须低于383mV才能使所有Corner角都能满足误差放

大器共模输入范围的要求。但是带隙基准输出电压越低,LDO

的噪声性能越差,故将带隙基准输出电压设置在400mV,实际上,可以增加PMOS晶体管的宽长比,使在SlowCorner角低温下,最高共模输入电压大于400mV即可。

把带隙基准输出电压降低到0.4V左右,使PMOS晶体管漏源电压有较大的提高,提高了输出阻抗,,如当L=2um时,由上

面的图可以看到,输出阻抗为大约为23M欧姆,从而提高了PSR:

PSR V R100k

REF347

dB Vro23M

DD

这个数值还是不够高,必须寻找其它结构来提高PSR。实际

上,低频时,PMOS晶体管栅极电压并不是与电源电压同步变化

的,如果运放低频增益很高,那么,在低频时,可以认为晶体管

M、M2的漏端电压不随电源电压变化,等效为接地,如下图所

1

示:

ΔV

ΔV1ΔV1

gmgm

gm

ro1

M1M2M3

ro

ro

RL

假设M、M

2、M3尺寸一样,当电源电压变化V时,PMOS

1

晶体管M、M

2、M3栅极电压变化了V1,对于M2,由基尔霍夫

1

电流定律,可以得到:

gm(VV1)V/ro0

那么,如果输出级PMOS晶体管的ro1等于M和M

2的输出阻

1

抗ro,那么流过R的电流将约等于零,PSR会有很大的提高,但

L

是对于M、M

2,它们的漏极电压为BJT导通电压,大约为0.7V,

1

对于M,由于输出电压为0.4V,它的漏极电压与3 M、M2显然不1

同,所以:

ro1ro

为了使它们相等,在晶体管M、M

2、M3漏极加入一层cascode

1

管,如下图所示:

ΔV

ΔV1ΔV1

gmgm

gm

ro1

M1M2M3

ro

ro

RL

这层cascode管强制使晶体管M、

1 M、M3的漏极电压相等,2

从而保证ro1与ro相等,提高了PSR,由于输出电压为0.4V,Cascode管的栅极电压直接接地即可,省去了偏置电路,降低了额外的功耗。

当然,这个结论是在运放增益足够大保证运放输入端电压的变化足够小,可以近似认为接地的条件下得出的,那么运放的设计要保证这个条件的成立。

为了使运放输入端对地电压基本不变,必须提高环路增益,由于电源电压变化范围在1.4V到3.3V内,当电源电压降至1.4V 时,折叠式共源共栅放大器将不适用,可以采用两级运放,加Miller电容补偿,也可以采用如下形式的误差放大器结构:

这种结构中,在Vbias处有一个二极管连接形式的晶体管,它为带隙基准主电路和运放尾电流源提供偏置电压,当电源电压变

化时,这个二极管栅极电压和电源电压同时变化,这样一来低频PSR会减小很多,该运放为单级运放,主级点在第一级输出端,

非主级点在Vbias处而且在高频,只需在主级点处加电容即可保证稳定性。

带隙基准结构(不包括启动电路)如下图所示:

C.零温度系数设计

假设M、

9 M、

10

M尺寸相同,且:

11

R 2A R A R B R B R

12221222

那么,输出电压的表达式为:

V REF VlnNV

TBE2 ()R

3

RR 12

若要得到零温度系数,那么根据前面推导过公式,有:

3V(4)V/

mE

kRBETg 2

lnN qRT

1

q R

3 R 2

带入输出电压的表达式,得到:

E g

V[(4m)V T REF

q

]

R 31.2

V

R 2

R 3 R 2 要得到400mV 的输出电压,那么,得到:

R 3 1

R 2 3 考虑版图布局的对称性,将N 设为8。 现在仿真正温度系数电压特性,理论值为:

k q lnN 1.38 1.6 10

10

23 19 4

ln81.793510

用smic.13um 的PNP33管,发射结面积用5×5的,Q2和Q4

的N=8,Q1和Q2的N=1,Q1和Q2的偏置电流设在1uA ,Q3 和Q4的偏置电流设在10uA ,如下图所示:

温度从-40°扫描到80°,测量VQ1-VQ2与VQ3-VQ4随温 度变化的曲线,得到下图:

实测值为:

slpoe 21.34mV

120C

1.7783 10

4

附上两个Corner角的数据:

Cornerslpoe

fast

4

1.794210

4

slow

1.763310

可以看出,正温度系数斜率几乎与偏置电流无关,与Corner 角也无关,实测值与理论值基本吻合。

现在仿真V的负温度系数,理论值为:

BE

V BE2V BE2(4)Tg/

mVE

TT

q

其中,

3

m,假设V BE为0.7V,在300K时,可以计算出斜2

率为1.6mV/K。在所关心温度范围(-40°~80°)内求平均值,用smic.13um的PNP33管,发射结面积用5×5的,Q1和Q2的N=1,偏置电流分别为1uA和10uA,如下图所示:

测量VQ1和VQ2随温度变化的曲线,结果如下:

得到负温度系数为: V BE2

T I1uA

1.89mV/K

V BE2 T

I10uA 1.69mV/K

附上两个Corner 角的数据:

Corner1uA10uA slow1.9mV/K1.7mV/K typical1.89mV/K1.69mV/K

fast1.87mV/K1.67mV/K

可以看出,BJT的负温度系数电压几乎不随Corner角变化,会随偏置电流变化,将带隙基准BJT的静态电流设在10uA以内,那么近似认为负温度系数为:

V BE

2 T 1.89mV/ K1.69mV/

2

K

1.8mV/K

由公式:

3V(4m)VE/ kRBETg

2 lnN

qRT

1 q R

3

R

2

得到:

1.778310

R

431.810

R

1

3R

3

R

2

可以得到:

R 2 R 1

-3

1.8

10

1.7783

-

4

10

10.12210

至此,我们得到了产生输出400mV、具有零温度系数电压的带隙基准的电阻比例:

R

23R10R

31

VlnNV10V

TBE2BE2

V REF()RVln8400mV

3T

RR33

12

电阻比例确定后,下一步是确定电阻的绝对数值,这涉及到功耗,噪声,面积的折衷,下面附上带隙基准电路图。

从上图中看出,带隙基准的偏置电流正比于流过晶体管M、

9

M的电流,而流过它们的电流等于:

10

V2VlnN1V120mV BETBE2

I(V T ln8) M 9R

RRR10 2111

减小 R ,可以减小带隙基准的面积,带来的坏处是功耗的增

1

加,然而高的功耗可以减小带隙基准的噪声。

D.PSRR 的设计

上图是小信号电路图,在分析PSRR 时,假设电源电压变化 了V ,可以计算出 M 栅极电压的变化量V 1和输出电压变化量 6

V ,那么: REF PSRR

V REF V

由于晶体管

M 、 12

M 、 13

M 不决定各支路电流大小,故在计算 14

PSRR 时忽略这三个晶体管,同时另: R 2 || R Q 2 R A R 2 ||( R 1 R ) Q1 R B

当电源电压变化后,晶体管

M 栅极电压将发生变化,这个变 5

化是由两条信号通路同时叠加引起,一条通路是:电源电压变化 后,有小信号电流流入Vin 和Vin 节点,信号被运放放大后在

M

5

栅极产生一个电压 V M 5,这个电压为:

a

V M 5a

[(V V) 1 g m9 (1 V r o9 R B

r ] )(1 (R B R) A

2 R

r A

g(r m2o2 || r 04

)

带隙基准电压源的设计

哈尔滨理工大学 软件学院 课程设计报告 课程大三学年设计 题目带隙基准电压源设计 专业集成电路设计与集成系统班级集成10-2 班 学生唐贝贝 学号1014020227 指导老师董长春 2013年6月28日

目录 一.课程设计题目描述和要求………………………………………… 二.课程设计报告内容………………………………………………… 2.1课程设计的计算过程…………………………………………. 2.2带隙电压基准的基本原理……………………………………. 2.3指标的仿真验证结果…………………………………………. 2.4 网表文件……………………………………………………… 三.心得体会……………………………………………………………四.参考书目………………………………………………………….

一.课程设计题目描述和要求1.1电路原理图: (1).带隙基准电路 (2).放大器电路

1.2设计指标 放大器:开环增益:大于70dB 相位裕量:大于60度 失调电压:小于1mV 带隙基准电路:温度系数小于10ppm/C ? 1.3要求 1>手工计算出每个晶体管的宽长比。通过仿真验证设计是否正确,是否满足指标的要求,保证每个晶体管的正常工作状态。 2>使用Hspice 工具得到电路相关参数仿真结果,包括:幅频和相频特性(低频增益,相位裕度,失调电压)等。 3>每个学生应该独立完成电路设计,设计指标比较开放,如果出现雷同按不及格处理。 4>完成课程设计报告的同时需要提交仿真文件,包括所有仿真电路的网表,仿真结果。 5>相关问题参考教材第六章,仿真问题请查看HSPICE 手册。 二. 课程设计报告内容 由于原电路中增加了两个BJT 管,所以Vref 需要再加上一个Vbe ,导致最后结果为(ln )8.6M n β??≈,最后Vref 大概为1.2V ,且电路具有较大的电流,可以驱动较大的负载。 2.1课程设计的计算过程 1> M8,M9,M10,M11,M12,M13宽长比的计算 设Im8=Im9=20uA (W/L)8=(W/L)9=20uA 为了满足调零电阻的匹配要求,必须有Vgs13=Vgs6 ->因此还必须满足(W/L)13=(Im8/I6)*(W/L)6 即(W/L)13/(W/L)6=(W/L)9/(W/L)7 取(W/L)13=27 取(W/L)10=(W/L)11=(W/L)13=27 因为偏置电路存在整反馈,环路增益经计算可得为1/(gm13*Rb),若使环路

带隙基准电路设计要点

帯隙基准电路设计 (东南大学集成电路学院) 一.基准电压源概述 基准电压源(Reference V oltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源,它是模拟和数字电路中的核心模块之一,在DC/DC ,ADC ,DAC 以及DRAM 等集成电路设计中有广泛的应用。它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。模拟电路使用基准源,是为了得到与电源无关的偏置,或是为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定。在CMOS 技术中基准产生的设计,着重于公认的“帯隙”技术,它可以实现高电源抑制比和低温度系数,因此成为目前各种基准电压源电路中性能最佳、应用最广泛的电路。 基于CMOS 的帯隙基准电路的设计可以有多种电路结构实现。常用的包括Banba 和Leung 结构带薪基准电压源电路。在综合考虑各方面性能需求后,本文采用的是Banba 结构进行设计,该结构具有功耗低、温度系数小、PSRR 高的特点,最后使用Candence 软件进行仿真调试。 二.帯隙基准电路原理与结构 1.工作原理 带隙基准电压源的设计原理是根据硅材料的带隙电压与电源电压和温度无关的特性,通过将两个具有相反温度系数的电压进行线性组合来得到零温度系数的电压。用数学方法表示可以为:2211V V V REF αα+=,且02211 =??+??T V T V αα。 1).负温度系数的实现 根据双极性晶体管的器件特性可知,双极型晶体管的基极-发射极电压BE V 具有负温度系数。推导如下: 对于一个双极性器件,其集电极电流)/(exp T BE S C V V I I =,其中q kT V T /=,

稳压电源实验报告

可调数显稳压电源 一实验目的 1学习直流稳压电源方面的基础知识; 2完成可调数显稳压电源的方案选择; 3完成可调数显稳压电源的软硬件设计、开发及调试。 二实验仪器与设备 1.数字示波器 2数字万用表 3仿真软件Multisim 4模拟电子技术实验箱 5 数字电子技术实验箱 三实验原理与实现方案 1 小功率直流稳压电源的基本原理 稳压电源的输出电压,是相对稳定而并非绝对不变的,它只是变化很小,小到可以允许的范围之内。产生这些变化的原因:一是因电网输入电压不稳定所导致。二是因为供电对象而引起的,即出负载变化形成的。三是由稳压电源本身条件促成的。第四,元器件因受温度、湿度等环境影响而改变性能也会影响稳压电源输出不稳。一般地,稳压电源电路的设计首先要考虑前两种因素,并针对这两种因素设计稳压电源中放大器的放大倍数等。在选择元器件时,就要重点考虑第三个因素。在设计高精度稳压电源时,必须要高度重视第四个因素。因为在高稳定度电源中,温度系数和漂移这两个关键的技术指标的好坏都是由这个因素所决定的。 一般直流稳压电源是由电源变压器、整流电路、滤波电路和稳压电路四个部分组成如图1所示: 图1直流稳压电源的基本组成 电源变压器是将交流电网220V的电压变为所需要的交流电压值。整流电路的作用是将交流电压变成单方向脉动的直流电压;滤波电路将脉动直流中的高次谐波成分滤除,减少谐波成分,增加直流成分;稳压电路采用负反馈技术,进一步稳定整流后的直流电压。 2 可调数显稳压电源的实现方案 (1)整体方案 经过系统地分析与比较,我们采用以下方案来实现可调数显稳压电源系统的设计:该系统主要由变压器、整流电路、滤波电路、可调稳压模块和数显模块等组成,其中在数显模块上分别采用由ADC0809与数字芯片搭建的数字电路来实现。对于各个模块的设计与分析,我们将在以下的报告中给出详细的说明。 (2)整流电路 整流电路利用二极管的单向导电作用将交流电压变成单方向脉动的直流电压,本实验采用单向桥式整流电路。单向桥式整流是四个二极管接成的电桥,其输出电压脉动较小,正负半周均有电流流过,电源利用率高,输出的直流电压比较高。所以桥式整流电路中变压器的效率较高,在同等功率容量条件下,体积可以小一些,其总体性能优于单相半波和单相全波

带隙基准设计实例

带隙基准设计实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

带隙基准电路的设计 基准电压源是集成电路中一个重要的单元模块。目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。因此,设计一个高性能的基准电压源具有十分重要的意义。自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。 带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。 一 设计指标: 1、 温度系数:ref F V TC V T ?=? 2、 电压系数:ref F dd V VC V V ?=? 二 带隙基准电路结构:

三 性能指标分析 如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。 V REF = a 1V BE + a 2V T ㏑(n) 其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ??≈-,然而/0.087m /T V T V K ??≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是2ln 17.2n α≈,表明零温度系数的基准为: 17.2 1.25REF BE T V V V V ≈+≈ 对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。 1、瞬态分析 电源电压Vdd=5v 时,Vref ≈,下图为瞬态分析图。 2.电压系数的计算: 下图为基准电压Vref 随电源电压Vdd 变化dc 分析扫描。 扫描电压范围为:3到6v ,基准电压Vref 为,保持基本不变。

带隙基准学习笔记

带隙基准设计 A.指标设定 该带隙基准将用于给LDO提供基准电压,LDO的电源电压 变化范围为1.4V到3.3V,所以带隙基准的电源电压变化范围与 LDO的相同。LDO的PSR要受到带隙基准PSR的影响,故设计 的带隙基准要有高的PSR。由于LDO是用于给数字电路提供电源,所以对噪声要求不是很高。下表该带隙基准的指标。 电源电压1.4V~3.3V 输出电压0.4V 温度系数35ppm/℃ PSR@DC,@1MHz-80dB,-20dB 积分噪声电压(1Hz~100kHz)<1mV 功耗<25uA 线性调整率<0.01%

B.拓扑结构的选择 上图是传统结构的带隙基准,假设M 1~M尺寸相同,那么输 3 出电压为 R 2 V REF VlnNV BE T3 R 1 V是负温度系数,对温度求导数,得到公式(Razavi, BE Page313): V BE3BE3(4)Tg/ VmVE TT q 其中, 3 m。如果输出电压为零温度系数,那么: 2 V REF V BE 3 TT k q lnN R 2 R 1 得到: kV BE(4m)V T E g/ R 3 2 lnN qRT 1 q 带入: R

2 V REF VlnNV BE T3 R 1 得到:

E g V REF(4m)V T q 在27°温度下,输出电压等于1.185V,小于电源电压1.4V,可这个电路并不能工作在1.4V电源电压下,因为对于带隙基准 里的运放来说,共模输入范围会受到电源电压限制,电源电压的最小值为: VDD min V BE VV 2GS_input_differential_pairover _drive_of_current_source 其中,V是三极管Q2的导通电压,V GS_input_differential_pair是运放差 BE2 分输入管对的栅源电压,V____是运放差分输入管对尾 overdriveofcurrentsource 电流源的过驱动电压。 对于微安级别的电流,可以认为: V GS V TH 这里将差分输入对的体和源级短接以减小失配,同时阈值电 压不会受到体效应的影响。假设差分对尾电流源的过驱动电压为 100mV,那么,电源电压的最小值为: VDD min V BE2V TH_input_differential_pair100mV 下表列出了smic.13工艺P33晶体管阈值电压和三极管的导通电压随Corner角和温度变化的情况: V-40°27°80° TH slow-826mV-755mV-699mV typical-730mV-660mV-604mV fast-637mV-567mV-510mV BJT的V-40°27°80° BE slow830mV720mV630mV typical840mV730mV640mV fast860mV750mV660mV 可以计算出在不同温度的Corner角下电源电压的最小值: VDD-40°27°80° min slow1.756V1.575V1.429V typical1.67V1.49V1.344V fast1.597V1.417V1.27V 可以看出,对于大部分情况,1.4V电源电压无法保证带隙基 准中运放的正常工作,所以必须改进电路结构,使其可以工作在 1.4V电源电压下。

带隙基准电压源设计解析

0 引言 基准电压是集成电路设计中的一个重要部分,特别是在高精度电压比较器、数据采集系统以及A/D和 D/A转换器等中,基准电压随温度和电源电压波动而产生的变化将直接影响到整个系统的性能。因此,在高精度的应用场合,拥有一个具有低温度系数、高电源电压抑制的基准电压是整个系统设计的前提。传统带隙基准由于仅对晶体管基一射极电压进行一阶的温度补偿,忽略了曲率系数的影响,产生的基准电压和温度仍然有较大的相干性,所以输出电压温度特性一般在20 ppm/℃以上,无法满足高精度的需要。 基于以上的要求,在此设计一种适合高精度应用场合的基准电压源。在传统带隙基准的基础上利用工作在亚阈值区MOS管电流的指数特性,提出一种新型二阶曲率补偿方法。同时,为了尽可能减少电源电压波动对基准电压的影响,在设计中除了对带隙电路的镜相电流源采用cascode结构外还增加了高增益反馈回路。在此,对电路原理进行了详细的阐述,并针对版图设计中应该的注意问题进行了说明,最后给出了后仿真结果。 l 电路设计 1.1 传统带隙基准分析 通常带隙基准电压是通过PTAT电压和CTAT电压相加来获得的。由于双极型晶体管的基一射极电压Vbe呈负温度系数,而偏置在相同电流下不同面积的双极型晶体管的基一射极电压之差呈正温度系数,在两者温度系数相同的情况下将二者相加就得到一个与温度无关的基准电压。 传统带隙电路结构如图1所示,其中Q2的发射极面积为Q1和Q3的m倍,流过Q1~Q3的电流相等,运算放大器工作在反馈状态,以A,B两点为输入,驱动Q1和Q2的电流源,使A,B两点稳定在近似相等的电压上。

假设流过Q1的电流为J,有: 由于式(5)中的第一项具有负温度系数,第二项具有正温度系数,通过调整m值使两项具有大小相同而方向相反的温度系数,从而得到一个与温度无关的电压。理想情况下,输出电压与电源无关。 然而,标准工艺下晶体管基一射极电压Vbe随温度的变化并非是纯线性的,而且由于器件的非理想性,输出电压也会受到电源电压波动的影响。其中,曲线随温度的变化主要取决于Vbe自身特性、集电极电流和电路中运放的失调电压,Vbe

最新mx带隙基准源电路与版图设计

m x带隙基准源电路与 版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图 仅供学习与交流,如有侵权请联系网站删除谢谢47

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____ Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. Keywords: BiCMOS,band gap , temperature coefficient, layout 目录 1 绪论 0 1.1 背景介绍及发展趋势 0 1.2 研究意义 (2) 仅供学习与交流,如有侵权请联系网站删除谢谢47

低电压带隙基准电压源设计

低电压带隙基准电压源设计 基准电压是数模混合电路设计中一个不可缺少的参数,而带隙基准电压源又是产生这个电压的最广泛的解决方案。在大量手持设备应用的今天,低功耗的设计已成为现今电路设计的一大趋势。随着CMOS 工艺尺寸的下降,数字电路的功耗和面积会显著下降,但电源电压的下降对模拟电路的设计提出新的挑战。传统的带隙基准电压源结构不再适应电源电压的要求,所以,新的低电压设计方案应运而生。本文采用一种低电压带隙基准结构。在TSMC0.13μmCMOS工艺条件下完成,包括核心电路、运算放大器、偏置及启动电路的设计,并用Cadence Spectre对电路进行了仿真验证。 1 传统带隙基准电压源的工作原理 传统带隙基准电压源的工作原理是利用两个温度系数相抵消来产生一个零温度系数的直流电压。图1所示是传统的带隙基准电压源的核心部分的结构。其中双极型晶体管Q2的面积是Q1的n倍。 假设运算放大器的增益足够高,在忽略电路失调的情况下,其输入端的电平近似相等,则有: VBE1=VBE2+IR1 (1)

其中,VBE具有负温度系数,VT具有正温度系数,这样,通过调节n和R2/R1,就可以使Vref得到一个零温度系数的值。一般在室温下,有: 但在0.13μm的CMOS工艺下,低电压MOS管的供电电压在1.2 V左右,因此,传统的带隙基准电压源结构已不再适用。 2 低电源带隙基准电压源的工作原理 低电源电压下的带隙基准电压源的核心思想与传统结构的带隙基准相同,也是借助工艺参数随温度变化的特性来产生正负两种温度系数的电压,从而达到零温度系数的目的。图2所示是低电压下带隙基准电压源的核心部分电路,包括基准电压产生部分和启动电路部分。

带隙基准源的设计

《模拟CMOS集成电路设计》---与电源无关的电流源课程设计 院系:电子与信息工程学院 专业:电子09-2 姓名:王艳强 学号:0906040221 指导教师:李书艳

摘要 模拟电路广泛的包含电压基准和电流基准。这种基准是直流量,它与电源和工艺参数的关系很小,但与温度的关系是确定的。而与温度关系很小的电压基准被证实在许多模拟电路中是必不可少的。值得注意的是,因为大多数工艺参数是随温度变化的,所以如果一个基准是与温度无关的,那么通常它也是与工艺无关的。采用Hspice软件进行仿真,仿真结果证明了基准源具有低温度系数和高电源抑制比。 关键词:CMOS集成电路;带隙基准;偏置;温度系数;仿真;工艺 综述 我们所使用的偏置电流和电流镜都隐含地假设可以得到一个“理想的”基准电流,如果忽略一些管子的沟道长度调制效应时电流就可以保持与电源电压无关。电压基准源是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定的参考电压源。它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。 随着电路系统结构的进一步复杂化,对模拟电路基本模块,如A/D、D/A转换器、滤波器以及锁相环等电路提出了更高的精度和速度要求,这样也意味着系统对其中的电压基准源模块提出了更高的要求。另外,电压基准源是电压稳压器中的一个关键电路单元,它也是DC-DC转换器中不可缺少的组成部分;在各种要求较高精度的电压表、欧姆表、电流表等仪器中都需要电压基准源。 微电子技术不断发展,目前常用的集成电路工艺大体上可分为双极型/HBT、MESFET/HEMT、CMOS和BiCMOS四大类型。其中,双极型工艺是集成电路中最早成熟的工艺,CMOS工艺技术是在PMOS与NMOS工艺基础上发展起来的,已经逐渐发展成为当代VLSI(超大规模集成电路)工艺的主流工艺技术。双极型集成电路具有较快的器件速度,适合高速电路设计,但相对来说,器件功耗较大;而CMOS电路具有功耗低、器件面积小、集成密度大的优点,但是器件速度较低。BiCMOS技术增强了在CMOS技术提供的双极型晶体管的性能,这使其在模拟电路设计中具有潜力。由于CMOS工艺中“按比例缩小理论”的不断发展,器件尺寸按比例缩小使得CMOS电路的工作速度得到不断地提高,在模拟集成电路的设计中CMOS技术逐渐可以与双极型技术抗衡。近年来,模拟集成电路设计技术随着CMOS工艺技术以其得到飞速的发展,片上系统已经受到学术界及工业界广泛关注。由于SOC要求很高的集成度,而CMOS工艺的特点正好符合了这种需求,因此,用CMOS技术来设计电路越来越成为集成电路的发展趋势。 设计过程 1 电路结构设计 1.1 启动电路设计 为了避免基准源工作在不必要的零点上,我们设计了启动电路

带隙基准源电路和版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图 I

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. Keywords: BiCMOS,band gap , temperature coefficient, layout II

带隙基准实验报告

基本带隙基准电压源设计 一、实验要求 1、设计出基本的带隙基准 2、设计出低压带隙基准 二、实验目的 1、掌握PSPICE的仿真 2、熟悉带隙基准电压设计的原理 三、实验原理 模拟电路广泛的包含电压基准和电流基准。这种基准是直流量,它与电源和工艺参数的关系很小,但与温度的关系是确定的。产生基准的目的是建立一个与电源和工艺无关,具有确定温度特性的直流电压或电流。要实现基准电压源所需解决的主要问题是如何提高其温度抑制与电源抑制,即如何实现与温度有确定关系且与电源基本无关的结构。由于在现实中半导体几乎没有与温度无关的参数,因此只有找到一些具有正温度系数和负温度系数的参数,通过合适的组合,可以得到与温度无关的量,且这些参数与电源无关。 负温度系数电压:双极性晶体管的基极-发射极电压,或者更一般的说,p-n 结二极管的正向电压,具有负的温度系数。 正温度系数电压:如果两个双极晶体管工作在不相等的电流密度下,那么它们的基极-发射极电压的差值与绝对温度成正比,且正温度系数与温度或集电极电流的特性无关。 利用上面得到的正、负温度系数的电压,通过合适的组合,我们就可以设计出一个零温度系数的基准。由于这个基准电压与硅的带隙电压差不多,因而称为带隙基准。 1、基本带隙基准 1.1基本的原理图如图1所示:

图1 基本带隙基准原理图 其中,MOS 管M1-M3的宽长比相同,Q1由n 个与Q2相同的晶体管并联而成。运放起嵌位作用,使得X 点和Y 点稳定在近似相等的电压。 1.2带隙电压公式推导: 对于一个双极性晶体管,我们可以写出其集电极电流公式为:BE T V V C S I I e =,其中 T kT V q = ,S I 为饱和电流,则可以推导出: ln C EB T S I V V I =。 假设运算放大器的增益足够高,在忽略电路失调的情况下有: 21 122 EB EB R R V V I I R -== 2 ln ln C C T T S S I I V V I nI R -= 2 ln T V n R = 则带隙基准电压为: (1) (2)

带隙基准源电路与版图设计

带隙基准源电路与版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 °C ~ ~ 85 °C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. I

带隙基准源

带隙基准源 基本指标:共模抑制比(高);开环增益();失调电压(低);压摆率();随温度变化率/系数(低);温漂(低);功耗(低);相位裕度,理想相位裕度60°; 温度系数TC(temperature coefficient):指温度变化引起的输出电压的变化,一般用ppm/℃来表示。温度系数反映基准源在整个工作温度范围内输出电压最大值与最小值相对正常输出时的变化,对于一阶补偿的带隙基准源电路而言,温度系数一般在几十ppm/℃,经过二阶或高阶的非线性补偿的电路,温度系数可以达到几个ppm/℃以下。目前常用的高阶温度补偿技术包括:二阶曲线补偿技术[10],指数曲线补偿技术,线形化V BE的技术[11],基于电阻比值的温度系数的曲线补偿方法等。 线性调整率:用来描述直流情况下电源电压波动对基准电压的影响程度。调整率越小,基准输出电压越稳定。它是基准电压的直流特性参数,与瞬时状态无关。 电源抑制比:表示电源电压在小信号情况下的变化量与基准的变化量之比。亦即等于差分放大倍数与由于Vdd变化引起的放大倍数之比,表达式为A V (Vdd=0)/A V dd(Vin=0),它是基准电压的交流特性参数。 噪声:基准输出电压中的噪声通常包括宽带热噪声和窄带l / f 噪声。宽带噪声可以应用RC滤波器等电路有效的过滤清除。而l / f 噪声是基准源内在固有的噪声,不能被滤除,一般在0.1到10Hz范围内发挥作用。对高精度系统,低频的l / f 噪声的影响是一个重要的参数。 建立时间:指电源上电后,基准源输出达到正常值所需的时间。

表4-1电压基准源设计指标 设计指标描述最小值典型值最大值单位工作温度-40 27 85 ℃工作电压 4.5 5 5.5 V 输出电压 1.24/2.48 1.25/2.50 1.26/2.52 V 输出电流 2 mA 温度系数30 ppm/℃电源纹波抑制比(2MHz) -20 -30 -50 dB 采用自举输入还有以下优点:1)消除了Q1和Q2管的厄尔利效应不对称对K CMR的影响,同时,Q1,2的基极电压和Q5,6的基极电压将随输入共模电压变化,形成共模反馈,所以,K CMR得以大大提高;2)V CB1,2≈0,能有效地消除集-基反向漏电流I CBO对I B的有害干扰;3)由于基极电流很小,所以,该电路有很高的输入阻抗。

带隙基准

带隙基准实验报告 班级:0220803 姓名:青旭东 学号:08040320 班级:0220803 姓名:吴唱 学号:08040302 上交日期:2011.6.11 一、实验要求 1.设计出基本的带隙基准 2.设计出低压带隙基准 二、实验目的 1.掌握P SP IC E的仿真 2.熟悉带隙基准电压设计的原理 三、实验步骤 1.基本配置一(如图一)

图一 基本配置中,最左边的部分增加了由MP8、MN2、MN6组成的启动电路。在电路未启动之前,MN6的栅极电压为低电位,及MN6截止。而MP8为二极管连接,因此MN2的栅极电压为高电位。这样MN2导通,从而MN2的漏极电压下降,致使整个电路启动。启动后,MN6的栅极电压为升高变为高电位,从而使MN6导通,导致MN2的栅极电压下降变为低电位,使MN2截止。 把电源V C C换成矩形脉冲V P U L SE,得到图二波形: 2.基准电压随温度的变化,温度变化范围-55度—125度,如图三

图三 由于我们普通认为流过MP1和MP2的电流完全相同,即忽略了沟道长度调制效应。基准电压的温度特性曲线一般是上凸的。温度特性曲线之所以会出现下凸的现象,是因为MP1和MP2的沟道长度调制效应的系数的影响。此时的温度系数=??= 7.73/(180 1.154)100037.2ppm 3 此基本配置是在上述的基础上,为放大器加了共栅放大器,即使输入的虚短特性更加好一点。所以MP1和MP2的源漏两端电压更接近,即流过它们的电流也更接近,使温度特性曲线上凸。 3.1基本配置二(如图四) 图四 3.2基准电压随温度的变化,温度变化范围-55度—125度,如图五

带隙电压基准源的设计与分析

带隙电压基准源的设计与分析 摘要介绍了基准源的发展和基本工作原理以及目前较常用的带隙基准源电路结构。设计了一种基于Banba结构的基准源电路,重点对自启动电路及放大电路部分进行了分析,得到并分析了输出电压与温度的关系。文中对带隙电压基准源的设计与分析,可以为电压基准源相关的设计人员提供参考。可以为串联型稳压电路、A/D和D/A转化器提供基准电压,也是大多数传感器的稳压供电电源或激励源。 基准源广泛应用于各种模拟集成电路、数模混合信号集成电路和系统集成芯片中,其精度和稳定性直接决定整个系统的精度。在模/数转换器(ADC)、数/模转换器(DAC)、动态存储器(DRAM)等集成电路设计中,低温度系数、高电源抑制比(PSRR)的基准源设计十分关键。 在集成电路工艺发展早期,基准源主要采用齐纳基准源实现,如图1(a)所示。它利用了齐纳二极管被反向击穿时两端的电压。由于半导体表面的沾污等封装原因,齐纳二极管噪声严重且不稳定。之后人们把齐纳结移动到表面以下,支撑掩埋型齐纳基准源,噪声和稳定性有较大改观,如图1(b)所示。其缺点:首先齐纳二极管正常工作电压在6~8 V,不能应用于低电压电路;并且高精度的齐纳二极管对工艺要求严格、造价相对较高。 1971年,Widlar首次提出带隙基准结构。它利用VBE的正温度系数和△VBE的负温度系数特性,两者相加可得零温度系数。相比齐纳基准源,Widlar型带隙基准源具有更低的输出电压,更小的噪声,更好的稳定性。接下来的1973年和1974年,Kujik和Brokaw分别提出了改进带隙基准结构。新的结构中将运算放大器用于电压钳位,提高了基准输出电压的精度。 以上经典结构奠定了带隙基准理论的基础。文中介绍带隙基准源的基本原理及其基本结构,设计了一种基于Banba结构的带隙基准源,相对于Banba结构,增加了自启动电路模块及放大电路模块,使其可以自动进入正常工作状态并增加其稳定性。 1 带隙基准源工作原理 由于带隙电压基准源能够实现高电源抑制比和低温度系数,是目前各种基准电压源电路中性能最佳的基准源电路。 为得到与温度无关的电压源,其基本思路是将具有负温度系数的双极晶体管的基极-发射极电压VBE与具有正温度系数的双极晶体管VBE的差值△VBE以不同权重相加,使△VBE 的温度系数刚好抵消VBE的温度系数,得到一个与温度无关的基准电压。图2为一个基本的CMOS带隙基准源结构电路。

相关文档
最新文档