100吨交流电弧炉炼钢车间设计

100吨交流电弧炉炼钢车间设计
100吨交流电弧炉炼钢车间设计

毕业设计说明书

设计题目:100吨交流电弧炉炼钢车间设计

学 号:_________________________ 姓 名:_________________________ 专 业 班 级:_________________________

李龙 冶金技术2班 0929302245 2012 年 05月20号

毕业设计说明书................................................................................................................... - 1 -文献综述. (2)

1.3现代电弧炉炼钢技术 (5)

1.4电弧炉炼钢的发展趋势 (6)

1.5电弧炉装备技术未来的创新发展 (6)

1.5.2我国正进人电炉炼钢高速发展时期 (7)

3.4.1、炉料入炉 (13)

第四章建设所选电弧炉炼钢工程的必要性和可行性分析 (13)

电弧炉车间设计 (18)

1.1电炉车间计算 (18)

11..1电炉容量和座数的确定 (18)

1.1.2电炉车间生产技术指标 (18)

参考文献.................................................................................................................................................. 致谢..........................................................................................................................................................

摘要

错过了工业革命,我国的钢铁实业一直落后。每一个学子都应该了解钢铁的形成,发展,前景,以及趋势。上个世纪,电弧炉炼钢是如何进入钢铁行业,是谁造就了其建立的伟大之举。相信经融危机的影响早已波及到钢铁行业,如何才能高效,合理,环保,绿色的进行生产,这是我们应该关心的话题。电弧炉炼钢技术已有100年的历史,第二次世界大战后电炉炼钢才有较大发展,在最近的20年,电弧炉炼钢技术发展尤为迅速,电弧炉的应用带来了炼钢技术的革命。尽管全球粗钢年产总量的增长速度很缓慢,但以废钢为主要原料的电弧炉炼钢的产量所占的比重却在逐年上升。2001年,电弧炉炼钢占世界钢产量的40%,成为最重要的炼钢方法之一。与高炉铁水炼钢相比,其竞争优势在于投资费用和运行成本。自60年代中期提出电弧炉超高功率概念以来,电弧炉建造趋于大型化、高功率化,出现现了多种新型式的电弧炉。在发展大型电弧炉的过所以,就必须了解交流电弧炉的特点,工作原理,车间布置,未来的必要性,发展大容量电炉和提高电炉自动化水平,采用大功率静止式动态补偿技术,用水冷构件代替耐火材料,炉盖第四孔直接排烟与电炉周围密封罩相连接的烟尘净化系统,炉盖第五孔机械化自动化加料系统,电炉使用还原铁比例逐渐扩大,炉外废钢预热,炉内燃料助燃,强化熔池用氧,开发底气搅拌系统和泡沫渣覆盖下的冶炼工艺,从冷却水和废气中回收热能,采用全连铸,发展纤维石墨电极和采用优质高效碱性镁碳炉衬等。

文献综述

第一章国内外电弧炉炼钢技术的发展概况:

1.1电弧炉发展史:

电炉是在电发明之后的1899年,由法国的海劳尔特(Heroult)在La Praz发明的。

它被建在阿尔卑斯山(Alps)的峡谷中,原因是在距它不远处有一个火力发电

厂。

电炉的出现,开发了煤的替代能源,使得废钢开始了经济回收,这最好使得钢铁成为世界上最易于回收的材料,也为可持续发展做出巨大贡献。1995年以前,电炉钢比例保持在20%左右,但多数炉型较小,且以模铸为主。1996年以后,在有关部门的引导和支持下,一大批现代化的电炉投产、达产,电炉发展进入新的历史时期,但电炉钢比例一直在16%左右徘徊。2004年以后,电炉钢比例出现新低。电炉炼钢原料以废钢和生铁为主,能量供给以电能为主。我国电力紧缺,短时期内仍难满足国内电炉钢生产用电需求,缺电和限电导致电炉间歇式生产,生产成本更趋升高。

目前转炉与电炉冶炼钢种几乎相同,钢质量差距不大。然而在电弧作用下,电弧区钢液易于吸氮,影响钢水质量,不利于生产氮含量较低的钢种。此外,电炉加热钢水会使熔池少量增碳,也不利于生产碳含量要求低的钢种。同时,废钢中残余元素(Cr、Ni、Cu等)的循环富集,也影响电炉生产高纯净度的钢种。废钢—电炉—钢水与高炉—转炉—钢水两种工艺相比,短流程总能耗仅为长流程的50%。

据预测,我国将在2008~2009年结束工业化中期阶段,钢铁生产和消费将出现拐点,之后钢铁增长速度必将迅速明显减缓。当2020年左右实现工业化后钢铁消费将达到峰值,此后废钢资源将越来越多,而以废钢为主的电炉钢资源的成本优势也将日益凸显。1978 ~1998年20年间转炉钢与

电炉钢产量的变化如下:

德国转炉钢增2%,电炉钢增102%;

法国转炉钢减32%,电炉钢增138%;

西班牙转炉钢减27%,电炉钢增119%;

意大利转炉钢不变,电炉钢增24%

1.2.1交流电弧炉

现在国外最大容量的交流电弧炉,美国为350t,日本为250t,英国和苏联各为

200t,西德为175t。直流电弧炉方面,以日本的130t单电极和法国82, 5t三电极的为最大。在我们国内,迄今为止还没有一台自制的交流超高功率电弧炉,合作生产的百吨级的电弧炉正在进行。江苏省张家港市中外合资的永新钢铁公司自英国引进的二手货70t 超高功率交流电弧炉才于1991年6月初以高功率试运行。直流电弧炉方面,自从太原重型机器厂双电极的投产后,西安电磁机械厂在设备上作了改进,增设了磁镜线圈,已

制成W TD 系列、容量为40t 以下的双电极直流电弧炉产品,株洲电炉厂也有类似产品,至于有底电极的直流电弧炉,迄未投入工业性生产。由此可以说在国外交流超高功率电弧炉已趋成熟,并向直流电弧炉方向发展。而在国内,交流超高功率电弧炉还刚起步,直流电弧炉也处在初创阶段,相比之下,差距甚大。

电弧炉发展史

1993~2004 年我国电炉钢产量及电炉钢比例的变化

12.2近年来电弧炉钢产量

1.2.3

综上可见,电弧炉炼钢自问世以来,呈不断增长的发展势头,迄今为止占世界总钢产量达31%以上,且保持着继续上升的态势。我国电弧炉钢产量近几年也在不断攀升,2007年,我国电弧炉炼钢产量达到5843万吨,己超过电弧炉钢生产大国一美国,比德国、韩国全年钡产量还要多,但我国相对焦煤资源较多、人力成本较低、废钢资源积累有限,电力资源价格仍较高,所以电弧炉钢产量增幅远低于转炉钢产量的增长速度,比例呈下降趋势。3国内外电弧炉炼钢技术及装备技术的发展特点

全球电弧炉钢产量呈不断上升的趋势很大一部分也是得益于电弧炉炼钢技术和装备技术的不断创新和进步。

1.3现代电弧炉炼钢技术

1.3.1近年来,电弧炉短流程钢厂的生产技术有了众多新发展,主要表现在以下几个方面。

(1)形成了电弧炉冶炼—连铸“三位一体”或电路冶炼—连铸一连轧“四位一体”的现代化电弧炉流程。(2)电弧炉功能逐渐变为初炼炉技术的不断进步,改变和结束了原电弧炉的熔时长((3个多小时)、老三期操作(熔化期、氧化期、还原期)以及产量低、渣量大、炉容小、成本高的状况。

(3)生产品种的增加,从起初的长材、扁平材到如今的高附加值产品进入21世纪以来,电弧炉短流程钢厂开始生产高附加值产品。如美国新建Severcorr钢厂以生产汽车板为主;俄罗斯联合冶金公司Vyksa厂主要生产用于北极及其他高寒地区的管线钢。我国天津无缝钢管公司、衡阳钢管公司、舞阳钢铁公司在无缝钢管和高质量特厚钢板生产方面也表现突出。

(4)短流程钢厂规模不断扩大化俄罗斯马格尼托哥尔斯克钢铁公司和土耳其Atlas合资建设的Atlas公司,配置一台300t超高功率交流电弧炉,年钢产量240万t。土耳其Colakoglu钢厂已建成一台装有特大功率变压器(240MVA+200}),出钢量约320t的电弧炉,年产钢能力200万t/a(现已达到月产21万t钢)。

(5)原料多样化

1.3.2电弧炉原料供给的新发展表现在以下几方面:

1)采用CORER/DR装置供给CORER铁水及直接还原铁作为电弧炉原料例如,南非萨尔达尼亚厂设置C-2000COREX及Midrex炉,和印度埃萨公司Hazira厂在原有的Midrex装置基础上新建两台CORER-2000装置,用以生产热轧带钢。

2)近年来,SMS公司和Midrex技术公司联合推出从铁矿石到热轧带的电弧炉短流程钢厂据介绍,该工艺流程较传统高炉转炉流程,有更高的能源利用效率,且C02排放量能减少一半。阿曼Shadeed钢铁公司近日向Midrex技术公司订购直接还原炼铁装置,可提供700℃热直接还原铁。

3)在缺乏天然气资源的地区,最近已开发出用煤制气,作为直接还原炼铁装置的还原气体,建设联合小钢厂。印度Jindal公司建设一座年产DRI200万t的Danarex装置,用煤制气为还原剂,反应器直径7m,用60%一100%球团矿和0^40%块矿为原料,产品金属化率93%以上。

1.4电弧炉炼钢的发展趋势

电弧炉炼钢工艺技术的发展可以从电弧炉炼钢技术和电弧炉装备技术两大方面进行推进

电弧炉炼钢技术的创新发展将来电弧炉炼钢技术的创新发展主要体现在以下四个方面:

1)继续加强电弧炉的高效化生产操作

为缩短冶炼周期,形成系统综合控制,采用先进技术保证钢质量最优、综合消耗最低的前提下,最大限度的缩短冶炼周期,包括:电弧炉以氮代氢全程底吹技术、低氮电弧炉钢生产技术、终点控制技术、优化供电技术、炉料结构优化和不延长冶炼周期的DRI, HBI加入工艺技术等。2)优化生产工艺,降低生产成本

在钢铁生产中,成本是决定性因素,必须降低成本以促进电弧炉钢的发展。优化生产工艺,加强精细管理与操作,从优化炉料结构、降低钢铁料消耗、添加合金精矿和还原剂实现直接合金化、废钢渣的回收利用等方面入手,以追求工序成本和保障系统成本最低。

3)优化电弧炉炼钢流程

要实现电弧炉的高效化生产,缩短冶炼周期是核心,而前提则是流程优化。例如我国安钢采用了高炉铁水一铁水罐扒渣一100t电弧炉脱磷一无渣出钢一转炉少渣吹炼一LF炉精炼一连铸接高线、型棒和2800mm中厚板轧机的流程,把车间现有超高功率电弧炉变成了铁水预处理炉。

4)优化品种结构,生产高附加值产品

对于电弧炉冶炼钢种的品种结构,目前主要的优化方向应着眼于:转炉流程不适合生产的高合金钢、高温合金和大锻件等;转炉流程能够生产目前在国内产量还不高的一些合金钢种;过去仅能用转炉流程生产的现代电弧炉亦能生产的一些品种,如高附加值的板材(薄板、中板、厚板);优质高碳钢(如预应力钢绞线、钢帘线)和低合金钢(如合金冷徽钢)等。

1.5电弧炉装备技术未来的创新发展

1.5.1 手段:

首先,开发大容量的电弧炉变压器,进一步提升电弧炉超高功率水平和高阻抗技术。

第二,继续加强清洁环保型电弧炉烟气余热回收装备技术的研发。

第三,开发简单实用的电弧炉装备。第四,我国还需进一步完善和提高电弧炉操作控制系统。电弧炉炼钢工艺技术的发展应着眼于降低吨钢冶炼的综合能耗为中冶京诚营口中试基地100t国产化高阻抗超高功率电弧炉全冷料吨钢能量平衡图。

电弧炉使用废钢为原料与使用高炉铁水的转炉相比,总能耗是高炉一转炉工艺的

1/2}-1/3。从两种工艺排放出的COz气体污染源的数量看,电弧炉为641kg/t钢,高炉一转炉工艺为1922kg/t钢,是高炉一转炉工艺的1/3。同时电炉以废钢为原料也直接体现了金属材料的循环利用。从整个钢铁工业系统看,对一定规模的年产钢量,提高电弧炉钢比例,显然有利于循环经济。

1.5.2我国正进人电炉炼钢高速发展时期

随着超高功率电炉装备和配套技术的不断发展和完善,使电炉生产更具有原料适应广、生产效率高、产品质量好、消耗少、成本低、能灵活适应市场变化的明显优势。所以,世界各国从80年代兴起了“电炉小钢厂”的建设。日、美等西方工业国家,电炉钢所占的份额已近40 0o,美国计划从1996年至2000年增加电炉钢生产能力1370万t,为1995年生产能力的130. 9%,其时电炉钢生产能力将占总产钢能力的约4500。

我国1995年的电炉钢产量是1810万t,占总钢产量的18. 99%。与1991年比较,在钢产量中所占的比率却下降了2. 我国1995年的电炉钢产量是1810万t,占总钢产量的18. 99%。与1991年比较,在钢产量中所占的比率却下降了2. 14 0 o。分析原因,主要是我国电炉炼钢装备与工艺技术长期处于落后状态。首先是炉容量过小、单位功率水平过低,现有电炉338。座,大约98%为30 t以下的小炉子,变压器单位功率绝大部分小于350 kV " A/t。由于容量小,无法配备炉外精炼设施,至今大多数还停留在熔化一氧化一还原的老三段模式中,因此导致冶炼时间长、生产能力低、消耗高、质量差、缺少市场竞争能力。

当前许多地区正在建设新的电炉钢厂和改造原有工艺、更新装备、扩大规模等等,使我国从80年代后期开始加快了超高功率电炉炼钢车间的建设步伐。至1996年已建成投产炉容量40150 t的超高功率电炉炼钢车间11个,设计生产能力460万ti年。目前还有15个超高功率电炉炼钢车间正在进行建设或设计,设计总生产能力约770万t/年。这些新建的超高功率电炉炉容量多数在70^"100 t,单位功率水平在600^1000 kV·A/t。电弧炉后步都配备有LF炉,或LF+VD等精炼装置,钢水全部连铸成坯,即几乎全部采用超高功率电弧炉一炉外精炼一连铸三位一体的优化工艺路线。因而在装备上、生产工艺上,都能达到国际上当代电炉的水平。

产品方案是工程建设的出发点和归宿,包炉工程也不例外。立项之初就需确定生产汁么品种。但电炉工程有一个特殊情况,即高线已经建成再上电炉,而且电炉主要是跟高浅配套的,因此在确定电炉品种方案时不得不将满足高线需要放在突出位置加以考虑,在某种意义上可以说高线的品种就是电炉要生产的品种。根据这一原则,我们确定了三分之一低碳钢,三分之一低合金钢,三分之一高碳钢的品种方案,见表

【5】

(1)电弧温度分布

电弧温度及其分布对电弧的辐射能影响最大。电弧炉冶炼过程中,虽然电弧辐射传热的比例不大(应在电弧传热总量的10%左右,不会超过20%),但仍不可忽视。将电弧区作了人为的放大,为了保证辐射总量的不变,电弧的总体温度应有所下降,通过对电弧区当量导热系数的调整即可做到这一点。电弧区温度呈现中心温度高、边缘温度低的趋势:但总体温度相对较低,中心最高温达到13000K,而Szekely对SOKA直流电弧的计算结果表明最高可达17000K以上,在保证扩大的电弧区辐射总量保持不变的前提下,本模型的计算结果是合理的。

显示了体系温分布的动态变化过程。横坐标为电弧炉沿径向的位置,纵坐标轴为电弧炉的中心线,纵坐标表示电炉的高度,图中选取炉底耐材表面为高度的参照位置,高度设为0。各图对应的自通电起始的时间见表4-60图中1525℃等温线为近似的废钢液相线温度,该温度线内部的废钢区域为己熔化的钢液部分,外部为未熔废钢区或固液混合区。因为此时的模型尚未考虑钢液成分变化对液相线温度的影响,故不能对固液混合区的钢液量作理论上的准确计算,但从传热角度分析对整体的温度分布计算影响不大,因此基于1525等温线即可以直的

第二章关于电弧炉

。2.1电弧炉工作原理:

电弧炉(electric arc furnace)利用电极电弧产生的高温熔炼矿石和金属的电炉。气体放

电形成电弧时能量很集中,弧区温度在3000℃以上。对于熔炼金属,电弧炉比其他炼

钢炉工艺灵活性大,能有效地除去硫、磷等杂质,炉温容易控制,设备占地面积小,适于优质合金钢的熔炼。电弧炉按电弧形式可分为三相电弧炉、自耗电弧炉、单相电弧炉和电阻电弧炉等类型。

电弧炉炼钢是通过石墨电极向电弧炼钢炉内输入电能,以电极端部和炉料之间发生

的电弧为热源进行炼钢。电弧炉以电能为热源,可调整炉内气氛,对熔炼含有易氧

化元素较多的钢种极为有利。电弧炉炼钢发明后不久,就用于冶炼合金钢,并得

到较大的发展。

随着电弧炉设备的改进以及冶炼技术的提高,电力工业的发展,电弧炉炼钢的成本不断下降,现在电弧炉炼钢不但用于生产合金钢,而且大量用来生产普通碳素钢,其产量在主要工业国家钢总产量中的比重,不断上升.

电弧炉由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2- 7次的谐波,平均可达基波的8% 20%,最大可达45%。严重影响电网的电能质量。

2.2电炉流程与转炉流程比较,具有以下特点:

①电炉流程投资省,占地面积小,建设周期短;

②资源问题:随着国民经济的发展,铁矿石、焦煤等资源将日益匮乏,而废钢资源则会不断积累,因此从长远看电炉流程具有优势;

③环保问题:电炉流程产生的CO2、NOx、SOx有害气等体量较高炉-转炉流程少;

2.3电弧炉工艺流程:

电弧炉炼钢从整体可分为原材料的收集、冶炼前的准备工作、熔化期、氧化期和还原期五大阶段。

2.3.1原材料的收集

废钢是电弧炉炼钢的主要材料,废钢质量的好坏直接影响钢的质量、成本和电炉生产率,因此,对废钢有如下几点要求:

(1)废钢表面应清洁少锈,因废钢中沾有的泥沙等杂物会降低炉料的导电性能,延

长熔化时间,还会影响氧化期去磷效果以及侵蚀炉衬。废钢锈蚀严重或沾有油污时会降低钢和合金元素的收得率,增加钢中的含氢量。

(2)废钢中不得混有铅、锡、砷、锌、铜等有色金属。铅的密度大,熔点低,不溶

于钢液,易沉积在炉底缝隙中造成漏钢事故。锡、砷和铜,易引起钢的热脆。

(3)废钢中不得混有密封容器,易燃、易爆物和有毒物,以保证安全生产。

(4)废钢化学成分应明确,硫、磷含量不宜过高。

(5)废钢外形尺寸不能过大(截面积不宜超过150mm×150mm,最大长度不宜超过

350mm)。生铁在电弧炉炼钢中,一般被用来提高炉料的配碳量,通常配入量不超过炉料的30%。

2.3.2 冶炼前的准备工作

配料是电炉炼钢工艺中不可缺少的组成部分,配料是否合理关系到炼钢工能否按照工艺要求正常地进行冶炼操作。合理的配料能缩短冶炼时间。配料时应注意:一是必须正确地进行配料计算和准确地称量炉料装入量。二是炉料的大小要按比例搭配,以达到好装、快化的目的。三是各类炉料应根据钢的质量要求和冶炼方法搭配使用。四是配料成分必须符合工艺要求。

一般冶炼方法对炉料中的主要元素含量要求如下:

(1)碳含量。炉料中含碳量应保证氧化期有足够量的碳进行碳氧反应,达到去气、去夹杂物的目的。配碳量根据熔化期碳的烧损、氧化期的脱碳量和还原期增碳量这3个因素来确定,要求炉料熔清时,钢中碳量高出成品规格下限0.3%~0.4%;但配碳量也不能过高,否则会延长氧化时间并使钢液过热。

(2)硅含量。含硅量一般不大于炉料的0.8%,过高会延缓钢液的沸腾。

(3)锰含量。一般钢种配料时对锰可不考虑,通常熔清后锰含量小于0.3%,否则也会延缓熔池沸腾。

磷和硫含量原则上是越低越好。通常熔清后,磷的含量应小于0.05%。

为使炉内炉料密实,装料时必须把大、中、小料合理搭配,一般小料占15%~20%,中料占40%~50%,大料占40%。

进料前炉底应先铺占料重1.5%左右的石灰,以便提前造好熔化渣,有利于早期去磷,减少钢液的吸气和加速升温。

装料时应将小料的一半放入底部,小料的上部、炉子中心区放入全部大料、低碳废钢和难熔炉料,大料之间放入小料,中型料装在大料的上面及四周,大料的最上面放入小料。凡在配料中使用的电极块,应砸成50mm~100mm左右,装在炉料下层。

总之,布料应做到:下致密、上疏松,中间高,四周低,炉门口无大料;使得穿井快,不搭桥。

熔化期

在电弧炉炼钢工艺中,从通电开始到炉料全部熔清为止称为熔化期。熔化期约占整个冶炼时间的一半左右,耗电量占电耗总数的2/3左右。

熔化期的任务是在保证炉体寿命的前提下,用最少的电耗快速地将炉料熔化升温,并造好烧化期的炉渣,以便稳定电弧,防止吸气和提前去磷。

(1)启弧阶段。通电启弧时炉膛内充满炉料,电弧与炉顶距离很近,如果输入功率过大,电压过高炉顶容易被烧坏,所以一般选用中级电压和输入变压器额定功率的2/3左右。

(2)穿井阶段。这个阶段电弧完全被炉料包围起来,热量几乎全部被炉料所吸收,不会烧坏炉衬,所以使用最大功率,一般穿井时间为20min左右,约占总熔化时间的

1/4。

(3)电极上升阶段。电极“穿井”到底后,炉底已形成熔池,炉底石灰及部分元素氧化,使得在钢液面上形成一层熔渣,四周的炉料继续受辐射热而熔化,钢液增加使液面升高,电极逐渐上升。这阶段仍采用最大功率输送电能,所占时间为总熔化时间的

1/2左右。

(4)熔化末了阶级。炉料被熔化3/4以上后,电弧已不能被炉料遮蔽,3个电极下的高温区已连成一片,此时如长时间采用最大功率供电,电弧会强烈损坏炉盖和炉墙。

熔化期的主要任务是熔化炉料,但是在熔化期既是造好炉渣,也是熔化期的重要操作内容,如果仅为满足覆盖钢液及稳定电弧的要求,只需1%~1.5%的渣量就已足够

了,但从脱磷的要求考虑,熔化渣必须具有一定的氧化性、碱度和渣量。

氧化期

1 氧化期的主要任务

氧化期的主要任务如下:

(1)继续氧化钢液中的磷。一般钢种要求氧化期结束时钢中磷含量不高于0.015%~0.010%,炼高锰钢时由于锰铁中磷含量较高,应控制得更低些。

(2)去除气体及夹杂物。氧化期结束时,钢中氮气量降低到0.004%~0.01%,钢中氢含量降到0.00035%左右,夹杂总量不高于0.001%。

(3)使钢液均匀加热升温,氧化末期达到高于出钢温度10℃~20℃。

矿石氧化法是利用铁矿石中含有80%~90%的高价氧化铁加入到熔池中后,转变成低价氧化铁(Fe2O3 Fe=3FeO,Fe3O4 Fe=4FeO或Fe3O4=Fe2O3 FeO)。低价氧化铁一部分留在渣中,大部分用于钢液中碳和磷的氧化。

为达到良好的去磷效果:炉渣中FeO含量为12%~20%,R为2~3,流动性良好;适当偏低的温度,加强钢渣的搅拌。

碳的氧化:炼钢过程中碳的氧化反应是一个非常重要的反应,并有利于整个熔池的迅速加热,有利于钢液成分的均匀化。具体步骤如下:

FeO=Fe O,O C=CO,

总的反应FeO C=Fe CO。

所以矿石法的氧化过程为:矿石加入炉内,在渣中转变为FeO,然后扩散到钢液中去,并分布于整个熔池中。碳和氧在气泡容易生成的地方进行反应,生成CO气泡,CO脱离反应区上浮,在上升过程中逐渐长大,并进入炉气,造成熔池的激烈沸腾。为加快脱碳速度,氧化期加矿温度应大于1550℃。

总之,矿石脱碳操作应该是:高温、薄渣、分批加矿、均匀激烈的沸腾。

2 氧化期操作要点

(1)熔清后取样及测温(温度不低于1550℃)。

(2)氧化、测温符合要求,渣况良好即可分批加矿,每批加矿石量不得超过料重的1.0%~2.0%,每批间隔时间需大于5min。

(3)脱碳速度(V)每小时大于或等于0.06%;脱碳量为ΔC≥0.30%。

(4)调整渣况。当氧化沸腾开始,采用流渣要求炉渣R=2~3,炉内渣量控制在3%~4%。氧化期后阶段,应使炉渣流动性好,渣层要薄、渣量控制在2%~3%左右。

(5)期中取样分析及控制终点碳。为了掌握磷、碳氧化程度,在沸腾开始流渣两批后,应及时取样分析碳和磷的含量,以便决定下步操作。

(6)温度控制。氧化期总的来讲是一个升温阶段,升温速度的快慢根据钢液磷的情况而定。到氧化期时必须使钢液温度升高到大于该钢种出钢温度的10℃~20℃。

(7)净沸腾。当温度、化学成分合适,就停止加矿,调整好炉渣,让熔池进入自然沸腾(5min~10min),使钢液中的残余含氧量降低,并使气体及夹杂物充分上浮,以利于还原期的顺利进行。

(8)扒渣。氧化期,炉渣中FeO含量很高,又含有P2O5为了还原期脱氧及防止回磷必须扒渣,扒渣的条件是扒渣温度高于出钢温度10℃~20℃;扒渣前碳、磷及其他限制性成分应符合要求。

(9)增碳。如果氧化末期碳含量过低需增碳,可在扒渣后裸露的钢液面上撒加纯净、干燥的碳粉,进行增碳。

还原期

氧化期扒渣完毕到出钢这段时间称为还原期。主要任务是脱氧、脱硫、控制化学成

分、调整温度。还原期的操作工艺如下:

(1)扒渣后迅速加入薄渣料以覆盖钢液,防止吸气和降温。造稀薄渣m(CaO)∶

m(CaF2)=3∶1。

(2)薄渣形成后进行预脱氧,往渣面上加入碳粉2.5kg/t~4kg/t,加入后紧闭炉门,输入较大功率,使碳粉在电弧区同氧化钙反应生成碳化钙。

(3)电石渣形成后保持20min~30min,渣子变白,同时注意钢液的增碳。

第三章电弧炉炼钢车布置方式

3.1电炉车间设计方案

电炉炼钢车间设计与建设的基础材料

3.1.1建厂条件

1)各种原料的供应条件,特别是钢铁材料来源;

2)产品销售对象及其对产品质量的要求;

3)水电资源情况,所在地区的产品加工,配件制作的协作条件;

4)交通运输条件,水路运输及地区公铁路的现状与发展计划;

5)当地气象,地质条件;

6)环境保护的要求;

在上述各项主要建厂条件之中,原材料条件对于工艺设计的关系尤为密切重要。

3.1.2工艺制度

确定工艺制度是整个工艺设计的基本方案,是设备选择,工艺布置等一系列问题的设计基础。确定工艺制度的主要依据是产品大纲所规定的钢种,生产规模,原材料条件以及后步工序的设计方案。

1)冶炼方法:利用超高功率电弧炉进行单渣冶炼,然后进行炉外精炼;

2)浇注方法:采用全连铸;

3)连铸坯的冷却处理与精整:铸坯在冷床上冷却并精整;

4)在技术或产量方面应留有一定的余地。

3.2电炉炼钢车间的组成

炼钢车间是刚出整个生产系统的一个组成部分。而炼钢车间本身除工艺流程上主要工序——配料、熔炼、浇注之外,尚要有与之配合的必不可少的辅助设施,诸如原料准备、储存与供应、动力设施等,共同组成一个生产部门,但它们的设置与领导关系可能依生产厂家的管理体制而不同。车间各个组成部分应根据生产规模、工艺流程、厂区条件、厂内外协作与原料供应情况确定合理的电炉炼钢车间组成。应视具体情况在下列一般组成中兼并取舍,以满足生产需要为准,可适当简化各种设施的是指与管理系统。完整的车间组成应包括:

(1)炼钢主厂房,包括原料跨、炉子跨、精炼跨及钢水连铸跨;

(2)废钢料堆场及配料间包括废钢处理设施(预热、烘烤等);

(3)铁合金及散状材料间;

(4)钢锭、坯检验与精整跨间;

(5)钢锭、坯存放场地;

(6)中间渣场;

(7)机电修间及快速分析室;

(8)炉衬制作与各种备件修理场地;

(9)耐材库、备件备品库、车间变、配电室;

(10)水处理、烟气净化设施及车间管理、生活服务设施。

3.3电炉各车间的布置情况

由于时一台超高功率电弧炉,且是全连铸,考虑到物料顺行、劳动安全条件和未来发展,采用横向高架式布置。

1)原料跨:此跨主要是为各种废钢,耐火材料,散装料等提供场地。废钢坑可按其块度大小分几个不同的坑;另外还有金属料库,合金料和散装料的烘烤区;另外设有两台高架行车,以备装料使用。

2)炉子跨:配以一台100吨的超高功率的偏心底出钢电弧炉;炉体砌修区,炉盖修理区,耐火材料干燥室;电炉装料配置,电炉变压器房,供氧系统,粉尘处理系统;高架行车进行跨间的整体运输工作。另外,设有LF精炼炉。还有钢包烘烤区,修理区,中间包修理区及烘烤区,结晶器修理区;若干钢包车负责钢水的供应工作;由于运输量大,设有两台行车进行钢包的调运工作。

3)过渡跨:此跨主要作用是实现炉子跨河连铸跨的过渡,使炉子跨冶炼的钢水能够顺利浇注,并且为事故模铸的场地。

4)连铸跨:此跨主要是进行钢坯的凝固工作。连铸机是精炼跨和连铸跨的联系纽带,两跨间相同。还设有连铸机备件,备品检修区,良锭存放区,缓冷去,铸坯精整等。

3.4 炉料入炉与送电

3.4.1、炉料入炉

3.4.2送水:炉料入炉后,在送电前应对炉盖、电极、水冷系统、机械传动系统、电气设备等进行检查,如发现故障要及时处理,以免在冶炼过程中造成停工;还应检查炉料与炉门或水冷系统是否接触,如有接触要立即排除,以免送电后被击穿。如电极不够长时,最好在送电前更换,如接头位置松动,应先拧紧,以利于一次穿井成功,减少冶炼过程中造成停工现象。为维护玩具商品的安全卫生,保障儿童生命健康安全,国家有关部门根据有关法律法规规定,决定自2006年3月1日起,对童车、电玩具、塑胶玩具、金属玩具、弹射玩具、娃娃玩具实施强制性产品认证。自2007年6月1日起,这六类产品凡未获得强制性产品认证证书和未加贴中国强制性认证标志的,不得出厂、销售、进口或在其他经营活动中使用。

第四章建设所选电弧炉炼钢工程的必要性和可行性分析

现代大型超高功率炼钢电弧炉,由于其容量大,是用电大户,对电网的影响具有举足轻重的作用。它具有功率因数低,无功波动负荷大且急剧变动,产生有害的高次谐波电流,三相负荷严重不平衡产生负序电流等对电网不利的因素,使得电网电能质量恶化,危及发配电和大量用户,也影响电炉自身的产量、质量,使电耗、电极消耗增大,从而成为电网的主要公害之一。现在有关大型电炉对电网公害抑制

的研究也正在深入开展,有必要对其不利影响和抑制对策作一概述性的分析。

4.1 现代大型电炉对电网的影响

4.1.1引起电网电压急剧波动

大型电炉在打孔期和熔化期电弧长度急剧变化,引起无功负荷急剧波动,其工作短路功率为电炉变压器额定功率的两倍左右,其最大波动无功为电炉变压器额定功率的1.5倍左右(具体倍数取决于短网阻抗、电炉变压器阻抗、供电系统阻抗之和的大小,总阻抗大则工作短路倍数小,反之则大)。无功的急剧波动,引起电网电压的急剧波动,其波动频率一般为1~15Hz,使灯光和电视机屏幕产生闪烁,使人视觉疲劳而感到烦躁,此外还影响到晶闸管设备和精密仪表等的稳定运行,甚至产生质量事故。国标GB12326-2000《电能质量电压允许波动和闪变》规定了电力系统公共供电点各级电压等级的电压波动和闪变允许值。

4.1.2使电网电压波形产生畸变

电炉在熔化和打孔期,电弧电流是不规则的,且急剧变化,其电流波形不是正弦波,可分解为2次和2次以上的各次谐波电流,主要为2~7次,其中2次和3次最大,其平均值可达基波分量的5%~10%,最大可达15%~30%;4~7次平均值为2%~6%,最大值可达6%~15%。而电网中的铁磁元件也产生高次谐波,以3次和5次谐波电流较大,其中3次分量最大,而电炉刚好也是3次谐波电流很大,这对电网是极为不利的。谐波电流流入电网,使其电压波形发生畸变,引起电气设备发热、振动,增加损耗,干扰通信,使电力电缆局部放电绝缘损坏,电容器过载损坏等,国家标准GB/T14549-1993《电能质量公用电网谐波》规定了电压波形畸变率限值。

4.1.3使电网电压产生负序分量

电炉在熔化期,特别是打孔期,各相电弧电压是独立变化的,三相电弧各自发生急剧无规则变化,故其三相电流是不对称的。在正常生产情况下,产生的负序电流约为电炉变压器额定电流的25%左右;在不正常情况下,如一相断弧时,可达56%左右,如两相短路的同时,第三相又断弧,此时可达86%左右。负序电流流入电网,使电网电压产生负序分量,影响发电机和用电设备使用效果,严重时可能造成损坏,还会使继电保护误动作,其严重程度一般用不平衡度(即负序电压与正序电压分量之比的百分数)表示,国标GB/T15543-1995《电能质量三相电压允许不平衡度》对于对称三相电网规定:负序电压不大于2%,短时不超过4%。一般来讲,在电网公共连接点上的短路容量为电炉变压器额定容量的30~40倍以上时,电网是允许的,否则应采取使三相达到平衡对称的补偿措施。

4.1.4 引起电网电压水平降低

电炉在熔化期功率因数低于0.7,在发生工作短路时甚至低到0.1,在精炼期大型电炉功率因数也不高,一般为0.8左右。由于功率因数低,感性无功功率大,从而引起电压水平降低,影响用电设备出力,增加电能损耗,按供用电规则的规定,必须采用无功补偿措施在高峰负荷时把功率因数提高到0.9以上,但又不得超前。

上述电炉对电网影响的四个方面,有时是单独作用的,有时是综合的。

4.2 大型电弧炉对自身及电气设备的影响

4.2.1对接在电炉供电电源电压等级上的小型发电机的影响

以具有代表性和典型意义的某钢厂超高功率电炉为例。该电炉是由一座220/110kV变电站的110kV电压供电,在110kV系统中接有某一小电厂,在电厂中装有3台1500kW水轮发电机。在电炉进行正常生产时,电厂发电机出现频繁振动,每次振动连续时间短的几十秒,长的达几分钟,一天振动最多达20多次。作发电运

行时(惯性大)振动小,作调相运行时(惯性小)振动大。在振动时发电机定子三相电流幅值不平衡且波动很大,同一相电流相对波动达20%,三相电流之间相位偏差也在波动(约3°~ 4°),三相电流电压幅值包络线的波动频率为0.33~0.4Hz,电压和电流包络线正好反相位。机架上有一机械振动信号与电压波动频率相同(即共振)。上述情况说明发电机的低频振动是由电炉的无功波动、三相负荷不平衡、波形畸变综合作用形成的,而起主导作用的是无功波动。这是由于110kV系统该小电厂与电炉的电气距离最近,因此电炉对其有显著影响,不仅引起发电机振动,而且三相负荷不平衡还引起转子轴系产生曲扭,对轴产生不利影响,谐波电流使转子绕组铁心产生附加损耗,引起局部过热。

4.2.2对负序继电保护的影响

该电炉投产后,SVC装置尚未投入运行,变电站110kV系统距离保护装置的负序继电保护部分产生误动作,不得已只能退出运行。

功率因数低,降低输送功率,增加网损

电炉熔化期功率因数只有0.7,冶炼周期平均功率因数只有0.79。在熔化期如果功率因数提高到规定值0.9,则网络可多输送11.6MW有功功率。而功率因数为0.7,就相当于使网络降低了11.6MW的有功输送能力,按平均网损8%计算,多送无功造成的网损为928kW,年电能损耗达372MWh,电费为81.6万元。

影响冶炼质量和效益

电炉变压器的直接用电电压为35kV,在电炉熔化期、打孔期,当SVC未投入时,母线上的电压波动为8%~14%,取10%计算,电炉出力降低19%,即使取8%计算,电炉出力也降低15.4%,熔化时间就要延长,至少要降低8%的产量。

电压波动再加上35kV母线上电压畸变率(3.3%~5.9%)的影响,炉况不稳定电极升降调节频繁,使电极消耗增加,电力单耗增加,影响电炉自身的电能质量,从而对冶炼质量不利,经济效益会降低。另外,电炉投入运行后,由于功率因数低,在SVC装置未投入前,每月罚款6万元,一年就达72万元。

4 抑制途径

抑制大型电弧炉对电网及其自身的影响的途径有:①提高供电电源的电压等级,以提高与电网公共连接点的短路容量,使其对电网和自身的影响在允许范围内;②采用SVC装置,使其对电网和自身的影响在允许范围内。这两种途径相比,途径①是治标的办法,因为电炉对电网和自身的影响的各种量值并未消除,而是送到更高电压等级的电网去扩散,随着电炉不断建设发展,这些量值在电网中增加积累,泛滥成灾,将会达到电网不能接受的程度,反而增加了对广大用户的影响,因此,使用范围越来越小;而途径②是治本的办法,它使电炉对电网和自身的影响的各种量值大部分就地消除了,其应用前景广阔。

近年来发展起来的SVC装置是一种快速调节无功功率的装置,已成功地用于电力、冶金、采矿和电气化铁道等冲击性负荷的补偿上,它可使所需无功功率作随机调整,从而保持电弧炉等冲击性负荷连接点的系统电压水平的恒定[2]。即

Qi=QD+QL-QC (1)

式中 Qi为系统公共连接点的无功功率;QD为负荷所需的无功功率;QL为可调(可控)电抗器吸收的无功功率;QC为电容器补偿装置发出的无功功率,单位均为kvar。

当负荷产生冲击无功DQD时,将引起

其中DQC =0,欲保持Qi不变,即DQi =0,则DQD = -DQL,即SVC装置中感性无功

功率随冲击负荷无功功率作随机调整,此时电压水平能保持恒定不变。

SVC由可控支路和固定(或可变)电容器支路并联而成,主要有四种型式,其基本结构如图1所示。

近几年来,用于电炉的SVC静补系统逐步得到改善,实践证明行之有效的有以下4种型式。

(1)晶闸管控制空芯电抗器型

即TCR型,见图1(a),该类型SVC具有反应时间快(5~20ms),运行可靠、无级补偿、分相调节、能平衡有功、使用范围广、价格便宜等优点。因此工业发达国家的主要电气设备制造公司都生产和积极推广这种装置,应用最广,使用例子是大量的,是发展的主流,正如专家撰文所总结的“尤其在控制电弧炉负荷产生的闪烁时几乎都采用这种型式”。但是这种装置由于采用了先进的电子和光导纤维技术,对维护人员要专门培训以提高维护水平。并且设计时要预留一定的过载能力。

(2)晶闸管阀控制高阻抗变压器型

即TCT型,见图1(b),该类型SVC优点与TCR型差不多,但高阻抗变压器制造复杂,谐波分量也略大一些(因阻抗最大只能做到85%,起始控制角较TCR型大,不能达到谐波量较小的起始控制角),并约有50dB左右的噪声,由于有油,要求一级防火,只宜布置在一层房子内或户外,容量在30Mvar以上时价格较贵,而不能得到广泛应用,故最早研究推广应用TCT型的国外电气商现在也不推荐TCT型了。

(3)晶闸管开关控制电容器型

即TSC型,见图1(c),这种类型SVC的特点是反应时间快(10~20ms),能分相调节、直接补偿、装置本身不产生谐波、损耗小,但是它是有级调节,综合价格较高,因而也未得到广泛应用。在380V低压配电系统中应用较多。

(4)自饱和电抗器型

即SSR型,见图1(d),SSR型SVC装置由于原材料消耗大,噪声大,补偿不对称电炉负荷自身产生较多谐波电流,不具备平衡有功负荷的能力,加上制造复杂等因素,在近阶段的应用日趋减少。

5 滤波装置

该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次及以上次谐波形成低阻抗通路,达到抑制高次谐波的作用。由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响[3]。

国际上用于大型炼钢电弧炉的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽频带与三阶宽频带高通滤波器等。

(1)单调谐滤波器

一阶单调谐滤波器见图2(a),优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。二阶单调谐滤波器见图2(b),当品质因数在50以下时,基波损耗可减少20%~50%,属节能型,滤波效果与二阶单调谐滤波器等效。三阶单调谐滤波器见图2(c),是损耗最小的滤波器,但组成复杂,投资也高,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。

(2)高通(宽频带)滤波器

一般用于某次及以上次的谐波抑制,见图2(b)。当在电弧炉系统中采用,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波形成低阻抗通路。

用于大型电炉的滤波器组合最基本的有两类:①用3~5组单调谐滤波器组成;②由2~4组单调谐滤波器和一组二阶宽频带滤波器组成。第①类组合对高次谐波滤波效果要差一些,但电能损耗低些;第②类组合对高次数滤波效果好,分工也明确,设计也简单容易些。两者组合各有优缺点,总的发展趋势是在滤波效果好的前提下减少组数以节省占地和投资,又要尽可能优化组合以节省电能损耗。

除了在扰动严重的场合必须采取以上外部抑制措施外,还可在闪变水平并不很高的许多情况下,通过改善电弧炉的运行条件即可对电压闪变进行有效控制,如优化电弧炉的电气参数;在关键时刻修订电力使用计划;在一定时期改变电弧长度;改善废钢装载作法;采取预热、吹氧、添加助燃物质等措施[4]。

6 结语

综上所知,TCR型SVC是在电弧炉上得到广泛应用的主流型式,是发展的主流。我国SVC在电弧炉的应用情况也是如此,如广州钢厂、韶关钢厂、珠江钢厂、天津大无缝钢管厂、福建马尾中钢厂、齐齐哈尔钢厂等的电弧炉全是不谋而合地引进了TCR型SVC,在电弧炉上采用国产SVC装置,且现已投入运行的有大冶钢厂双50t高功率电炉、辽宁东洋钢厂等。

电弧炉车间设计

1.1电炉车间计算 1.1.1电炉容量

在进行电炉炉型设计之前首先要确定电弧炉的容量和座数,它主要与车间的生产规模,冶炼周期,作业率有关。

在同一车间,所选电炉容量的类型一般认为不超过两种为宜。座数也不宜过多,一般设置一座或两座电炉。为了确定电炉的容量和座数,首先要估算每次出岗量q :

y

G q a ητ

8760=

式中 G a —车间产品方案中确定的年产量,100t ;

τ—冶炼周期,55min=0.917h ;

η—作业率,年日历天数

年作业天数

=η×100%

本设计取90%;

Y —良坯收得率,连铸一般95%~98%,本设计取98%; 带入数据计算得 q=120t 。

根据估算出的每次出钢量选取HX 2-100系列一座,以下是主要技术性能: 1.1.电炉车间生产技术指标

(1)产量指标年产量100t ; 小时出钢量: (2)质量指标钢坯合格率 98%; (3) 作业率指标作业率:90% (4)材料消耗指标 a 金属材料消耗

一般为废钢、返回废钢、合金料于脱氧合金。

b 炼钢扶住材料消耗石灰、以及其他造渣材料和脱氧粉剂。

c 耐火材料消耗;主要用于炉衬的各种耐火砖以及钢包的耐火材料。

d 其它原材料消耗:电极和工具材料。

e 动力热力消耗指标:主要为电能和各种气体和燃油等。车间设计产品大纲见下表: (5)连铸生产技术指标:连铸比铸,坯成坯率,连铸收得率

生产的钢种:主要生产Q215,年产量100吨,连铸坯尺寸选取200×200mm 方坯;

型号

额定容量/t

最大容量/t

变压器容量/(kVA) 熔池尺寸/mm 炉壳直径/mm 炉

膛直径/mm

二次电压/v HX 2

-100

100

110 32000 5300×1220 640

5400

440~180十三级以上

电弧炉炼钢车间的设计方案

1电弧炉炼钢车间的设计方案 1.1电炉车间生产能力计算 1.1.1电炉容量和座数的确定 在进行电炉炉型设计之前首先要确定电弧炉的容量和座数,它主要与车间的生产规模,冶炼周期,作业率有关。 在同一车间,所选电炉容量的类型一般认为不超过两种为宜。座数也不宜过多,一般设置一座或两座电炉。为了确定电炉的容量和座数,首先要估算每次出岗量q : y G q a ητ8760= 式中 G a —车间产品方案中确定的年产量,80万t ; τ—冶炼周期,55min=0.917h ; η—作业率,年日历天数 年作业天数=η×100% 本设计取90%; Y —良坯收得率,连铸一般95%~98%,本设计取98%; 带入数据计算得 q=95.0t 。 根据估算出的每次出钢量选取HX 2-100系列一座,以下是主要技术性能: 1.1.2电炉车间生产技术指标 (1)产量指标 年产量80万t ; 小时出钢量: (2)质量指标 钢坯合格率 98%; (3) 作业率指标

作业率:90% (4)材料消耗指标 a金属材料消耗 一般为废钢、返回废钢、合金料于脱氧合金。 b炼钢扶住材料消耗 石灰、以及其他造渣材料和脱氧粉剂。 c耐火材料消耗 主要用于炉衬的各种耐火砖以及钢包的耐火材料。 d其它原材料消耗 电极和工具材料。 e动力热力消耗指标 主要为电能和各种气体和燃油等。车间设计产品大纲见下表: (5)连铸生产技术指标 连铸比 铸坯成坯率 连铸收得率 (6)生产的钢种:主要生产Q215,年产量80万吨,连铸坯尺寸选取200×200mm方坯; 1.2 电炉车间设计方案 1.2.1电炉炼钢车间设计与建设的基础材料 (1)建厂条件 1)各种原料的供应条件,特别是钢铁材料来源; 2)产品销售对象及其对产品质量的要求; 3)水电资源情况,所在地区的产品加工,配件制作的协作条件; 4)交通运输条件,水路运输及地区公铁路的现状与发展计划; 5)当地气象,地质条件; 6)环境保护的要求; 在上述各项主要建厂条件之中,原材料条件对于工艺设计的关系尤为密切重要。 (2)工艺制度 确定工艺制度是整个工艺设计的基本方案,是设备选择,工艺布置等一系列问题的设计基础。确定工艺制度的主要依据是产品大纲所规定的钢种,生产规模,原材料条件以及后步工序的设计方案。 1)冶炼方法:利用超高功率电弧炉进行单渣冶炼,然后进行炉外精炼; 2)浇注方法:采用全连铸; 3)连铸坯的冷却处理与精整:铸坯在冷床上冷却并精整; 4)在技术或产量方面应留有一定的余地。 1.2.2电炉炼钢车间的组成

转炉炼钢设计-开题报告(终极版)

湖南工业大学 本科毕业设计(论文)开题报告 (2012届) 2011年12月19日

顶底复吹技术,工艺成熟,脱磷效果好,在后续的生产中采用多种精炼方法,其中LF、RH 、CAS—OB、VOD、VAD的应用可以很好的控制钢水的成分和温度,生产纯净钢,不锈钢等,连铸工艺能够实现连续浇铸,提高产量,降低成本,同时随着连铸技术的发展,近终型连铸,高效连铸等多种连铸技术得到应用,大大的提高了铸钢的质量,一定范围内降低了企业的成本。经现代技术和工艺生产出来的如板材,管线钢,不锈钢等的质量得到了很大的保障,市场的信誉度高,市场需求量大。 故设计建造年产310万t合格铸坯炼钢厂是可行的,也是必要的。 2.2 主要研究内容 研究内容包括设计说明书和图纸两个部分。 2.2.1 设计说明书 (1)中英文摘要、关键词 (2)绪论 (3)厂址的选择 (4)产品方案设计 (5)工艺流程设计 (6)转炉容量和座数的确定 (7)氧气转炉物料平衡和热平衡计算 (8)转炉炼钢厂主体设备设计计算(包括转炉炉型、供气及氧枪设计、精炼方法及设备、连铸设备) (9)转炉炼钢厂辅助设备设计计算(包括铁水供应系统、废钢供应系统、出钢出渣设备、烟气净化回收系统) (10)生产规模的确定及转炉车间主厂房的工艺布置和尺寸选择(包括车间主厂房的加料跨、炉子跨、精炼跨、浇注跨的布置形式及主要尺寸的设计确定)(11)劳动定员和成本核算 (12)应用专题研究 (13)结论、参考文献 2.2.2 设计图纸 (1)转炉炉型图 (2)转炉炼钢厂平面布置图 (3)转炉车间主厂房纵向剖面图 2.3 研究思路及方案 (1)根据设计内容,书写中英文摘要、关键词。 (2)查阅专业文献,结合毕业实习,收集当前转炉炼钢工艺技术、车间设

大型电炉炼钢毕业设计论文

摘要 摘要 当前电弧炉正朝着大型电弧炉、超高功率供电技术、采用各种炉外精炼、发展直接还原法炼钢、逐步扩大机械化自动化及用电子计算机进行过程控制等的发展,所以我们进行了电炉炼钢的设计,以适应潮流的发展。电炉的主要产品是钢材,而钢的质量取决于电炉冶炼技术和工艺,目前我国钢铁产业大量整合趋向于集中,整合资源优化升级。本设计根据指导老师的课题范围,查阅相关资料,结合重庆地区实际条件,优化设计年产为100万吨的电炉间。 本次设计查阅国内大型电炉车间设计的相关内容和文献资料,明确本次设计的目的、方法,并向老师请教可行性方案。结合《炼钢设备及车间设计.》、《炼钢厂设计原理》、《炉外处理》等资料进行设计提纲的书写。对电炉进行配料计算,计算出电炉炼钢的原料配比。对电炉电气设备、炉外精炼、连铸系统、车间烟气净化系统、炼钢车间布局,结合国内大型电炉进行设定并向田老师探讨可行的方法和数据。绘制电弧炉平面图和电炉炼钢车间平面布置图。 关键字:电弧炉车间设计连铸炉外精炼

ABSTRACT ABSTRACT The current is moving large electric arc furnace electric arc furnace, high-power power supply technology, using a variety of refining, the development of direct reduction steel making, and gradually expand the use of mechanization and automation and process control computer for the development, so we were EAF designed to fit the trend of development. The main products are steel furnace, and the quality of steel depends on the electric furnace smelting technology and techniques, present a large number of integrated steel industry in China tend to focus on integrating resources for optimization and upgrading. The design of the subject areas under the guidance of teachers, access to relevant information, combined with the actual conditions in Chongqing, optimal design capacity of 100 tons of furnace plant. The design of access to large domestic electric furnace workshop content and related design documents, specifically designed for this purpose, methods, feasibility of the program to the teacher for help. With "steel-making equipment and plant design.", "Steel design principles", " outside the furnace processing ", etc. to design the outline of the writing. Calculated on the EAF ingredients to calculate the ratio of electric steelmaking raw materials. Electrical equipment on the furnace, secondary refining, continuous casting system, the plant flue gas purification systems, steel plant layout, combined with the large EAF set to Tian to explore feasible approaches and data. Electric arc furnace steel-making plans and drawing workshop floor plan. Keyword:electric arc furnace, plant design, casting, refinin

偏心底出钢(EBT)电弧炉(EAF)冶炼工艺

1前言 传统电炉炼钢“老三期”工艺操作:装料熔化、氧化扒渣、造渣还原、带渣出钢,带入钢包中的是还原性炉渣,带渣出钢对进一步脱硫、脱氧、吸附夹杂等是有益无害的。而当电炉功能分化后,超高功率电炉与炉外精炼相配合,电炉出钢时的炉渣是氧化性炉渣。理论与实践证明,这种氧化性炉渣带入钢包精炼过程将会给精炼带来极为不利的影响。于是,围绕避免氧化渣进入钢包精炼过程,出现了一系列渣钢分离方法。其中,效果最好、应用最广泛的是EBT法(Eccentric Bottom Tapping) ,即偏心底出钢法,简称“EBT” 。 本文概述偏心底出钢电炉的结构特点及其优越性,重点介绍偏心底出钢电炉的冶炼工艺,以及偏心底出钢电炉的出钢口填料及其操作。 2EBT电弧炉的特点 EBT电炉结构是将传统电炉的出钢槽改成出钢箱,出钢口在出钢箱底部垂直向下。出钢口下部设有出钢口开闭机构,开闭出钢口,出钢箱顶部中央设有操作口,以便出钢口的填料操作与维护。 EBT电炉主要优越性在于,它实现了无渣出钢和增加了水冷炉壁使用面积。优点如下: (1)出钢倾动角度的减少。简化电炉倾动结构:降低短网阻抗:增加水冷炉壁使用面积,提高炉体寿命。 (2)留钢留渣操作。无渣出钢,改善钢质量,有利于精炼操作:留钢留渣,有利电炉冶炼、节约能源。 (3)炉底部出钢。降低出钢温度,节约电耗:减少二次氧化,提高钢的质量:提高钢包寿命。 由于EBT电炉诸多优点,在世界范围迅速得到普及。现在建设电炉,尤其与炉外精炼配合的电炉,一定要求无渣出钢,而EBT是首选。 EBT电炉的出钢操作。出钢时,向出钢侧倾动约5°后,开启出钢机构,出钢口填料在钢水静压力作用下自动下落,钢水流入钢包,实现自动开浇出钢。当钢水出至要求的约95%时迅速回倾以防止下渣,回倾过程还有约5%的钢水和少许炉渣流入钢包中,炉摇正后(炉中留钢10%~15%,留渣≥95%)检杳维护出钢口,关闭出钢口,加填料,装废钢,重新起弧熔炼。3EBT电炉的冶炼工艺 3.1冶炼工艺操作 EBT电炉冶炼己从过去包括熔化、氧化、还原精炼、温度、成分控制和质量控制的炼钢设备,变成仅保留熔化、升温和必要精炼功能(脱磷、脱碳)的化钢设备。而把那些只需要较低功率的工艺操作转移到钢包精炼炉内进行。钢包精炼炉完全可以为初炼钢液提供各种最佳精炼条件,可对钢液进行成分、温度、夹杂物、气体含量等的严格控制,以满足用户对钢材质量越来越严格的要求。尽可能把脱磷,甚至部分脱碳提前到熔化期进行,而熔化后的氧化精炼和升温期只进行碳的控制和不适宜在加料期加入的较易氧化而加入量又较大的铁合金的熔化,对缩短冶炼周期,降低消耗,提高生产率特别有利。 EBT电炉采用留钢留渣操作,熔化一开始就有现成的熔池,辅之以强化吹氧和底吹搅拌,为提前进行冶金反应提供良好的条件。从提高生产率和降低消耗方面考虑,要求电炉具有最短的熔化时间和最快的升温速度以及最少的辅助时间(如补炉、加料、更换电极、出钢等),以期达到最佳经济效益。 (1)快速熔化与升温操作 快速熔化和升温是当今电弧炉最重要的功能,将第一篮废钢加入炉内后,这一过程即开始进行。为了在尽可能短的时间内把废钢熔化并使钢液温度达到出钢温度,在EBT电炉中一般采用以下操作来完成:以最大可能的功率供电,氧一燃烧嘴助熔,吹氧助熔和搅拌,底吹搅拌,泡沫渣以及其它强化冶炼和升温等技术。这些都是为了实现最终冶金目标,即为炉外精炼提供成分、温度都符合要求的初炼钢液为前提,因此还应有良好的冶金操作相配合。

设计一座公称容量为3215;200t吨的氧气转炉炼钢车间毕业设计

设计一座公称容量为3×200t吨的氧气转炉炼钢车间毕业设计 目录 摘要.............................................. 错误!未定义书签。ABSTRACT ............................................ 错误!未定义书签。引言. (1) 1 设计方案的选择即确定 (2) 1.1车间生产规模、转炉容量及座数的确定 (2) 1.2车间各主要系统所用方案的比较及确定 (2) 1.2.1 转炉冶炼工艺及控制 (2) 1.2.2 铁水供应系统 (2) 1.2.3 铁水预处理系统 (3) 1.2.4 废钢供应系统 (4) 1.2.5 散装料供应系统 (4) 1.2.6 转炉烟气净化及回收工艺流程 (6) 1.2.7 铁合金供应系统 (7) 1.2.8 炉外精炼系统 (7) 1.2.9 钢水浇注系统 (8) 1.2.10 炉渣处理系统 (10) 1.3炼钢车间工艺布置 (11) 1.3.1 车间跨数的确定 (11) 1.3.2 各跨的工艺布置 (12) 1.4车间工艺流程简介 (12) 1.5原材料供应 (15) 1.5.1 铁水供应 (15) 1.5.2 废钢供应 (15) 1.5.3 散装料和铁合金供应 (15) 2设备计算 (16) 2.1转炉计算 (16)

2.1.2 转炉空炉重心及倾动力矩 (22) 2.2氧抢设计 (24) 2.2.1 技术说明 (24) 2.2.2 喷头设计 (25) 2.2.3 枪身设计 (27) 2.3净化及回收系统设计与计算 (33) 2.3.1吹炼条件 (33) 2.3.2参数计算 (34) 2.3.3流程简介 (36) 2.3.4 主要设备的设计和选择 (36) 2.3.5 计算资料综合 (39) 2.4炉外精练设备的选取及主要参数 (39) 2.4.1主要设计及其特点 (39) 2.4.2 主要工艺设备技术性能 (40) 3车间计算 (50) 3.1原材料供应系统 (50) 3.1.1 铁水供应系统 (50) 3.1.2 废钢场和废钢斗计算 (51) 3.1.3 散状料供应系统 (52) 3.1.4 合金料供应系统 (54) 3.2浇铸系统设备计算 (55) 3.2.1钢包及钢包车 (55) 3.2.2连铸机 (56) 3.3渣包的确定 (64) 3.4车间尺寸计算 (67) 3.4.1 炉子跨 (67) 3.4.2 其余各跨跨度 (62) 3.5天车 (63) 4 新技术和先进工艺、设备的应用 (64) 4.1铁水预处理脱硫 (64)

钢铁行业生产工艺流程

钢铁行业生产工艺流程 钢铁生产工艺主要包括:炼铁、炼钢、铸钢、轧钢等流程。 1. 炼铁 铁矿石的品种分为磁铁矿Fe3O4、赤铁矿Fe2O3、褐铁矿2Fe2O3.3H2O、菱铁矿FeCO3。铁矿石中除铁的化合物外,还含有硅、锰、磷、硫等的化合物(统称为脉石)。铁矿石刚开采出来时无法直接用于冶炼,必须经过粉碎、选矿、洗矿等工序处理,变成铁精矿、粉矿,才能作为冶炼生铁的主要原料。 将铁精矿、粉矿,配加焦炭、熔剂,烧结后,放在100米高的高炉中,吹入1200摄氏度的热风。焦炭燃烧释放热量,6个小时后温度达到1500度,将铁矿融化成铁水,不完全燃烧产生的CO将氧从铁水(氧化铁)中分离出来,换句话说CO作为还原剂将铁从铁水(氧化铁)中还原出来。熔剂,包括石灰石CaCO3、荧石CaF2,其作用是与铁矿石中的脉石结合形成低熔点、密度小、流动性好的熔渣,使之与铁液分离,以便获得较纯净的铁水。铁水即生铁液,然后被送往炼钢厂作为炼钢的原料。 宝钢炼铁车间由两座4063立米大型高炉组成,预留有第三座高炉的建设场地。全车间年产生铁600万吨(最终产量可达650万吨)。向炼钢车间热送576.6万吨铁水,钢锭模铸造车间热送6.78万吨,其余16.62万吨铁水送铸铁机铸块。全车间分两期建设,1号高炉计划1982年4季度投产,2号高炉计划1984年投产。全车间约占地572,000平米,采用半岛式布置,1、2高炉中心距370米,原料、燃料均用胶带运输机分别由原料场,烧结车间,炼焦车间送入矿槽、焦槽。筛下粉矿、碎焦亦由胶带运输机运出,转送烧结车间。铁水输送采用320吨鱼雷式混铁车。高炉煤气灰、垃圾、废铁的… 2. 炼钢 炼钢就是把原料(铁水)里过多的碳及硫、磷等杂质去掉并加入适量的合金成分。 最早的炼钢方法出现在1740 年,将生铁装入坩锅中,用火焰加热溶化炉料,之后将溶化的炉料浇铸成钢锭。1856 年,英国人亨利-贝塞麦发明了酸性空气底吹转炉炼钢法,第一次解决了铁水直接冶炼钢水的难题,从而使钢的质量得到提高,但此法不能脱硫,目前己被淘汰。

设计一座年产150万吨良坯的转炉炼钢车间_毕业设计

江西理工大学应用科学学院毕业设计设计一座年产150万吨良坯的转炉炼钢车间 设计一座年产150万吨良坯的转炉炼钢车间 摘要 现代转炉炼钢要求采用大型、连续、高效设备先进生产工艺,布局合理、管理先进、节约能耗、减少污染、降低投资成本。 转炉是炼钢的主要设备。炼钢转炉是对于人类来说,最有用的生产工具之一,它提供了一种方法,使我们可以快速而有效的使废钢变废为宝,而生铁则是所有基础钢材生产的基本原料,它在所有国家的经济发展里,都是很重要的。钢产量的增加,甚至是工艺方法的一些改善,都可以带动一笔可观的利润。 本设计主要任务是设计一座年产150万吨良坯的转炉炼钢车间,建有三座60吨顶底复吹转炉,采用“三吹二”操作,为提高钢材质量和高效连铸的要求,车间建有CAS-OB 和RH真空处系统,本设计要求100%的连铸比。整个生产过程由计算机自动进行动态和静态控制。本设计主要内容包括:物料平衡和热平衡计算,转炉炉型及氧枪设计;主要经济技术指标的确定和生产流程的确定;车间设计及车间生产过程概述。 关键词:复吹转炉;氧枪;连铸;动态控制;静态控制

刘伟平:设计一座年产150万吨良坯的转炉炼钢车间 Design a an annual output of 1.5 million tons of good characterize the converter steelmaking workshop ABSTRACT With the rapid development of iron-steel industry now days, modern steel plants require adopting long-scale, continuous and high efficient equipment, advanced management. It should save energy, and make less pollution and reduce the investment cost. T he converter is the steelmaking equipment. Converter steel is one of the most useful for humans, one of the tools of production, it provides a way so that we can quickly and efficiently so that the scrap turning waste into wealth, while pig iron is the basic raw material of all basic steel production in all the country's economic development, it is very important. Increase in steel production, and even some improvement of the process method, can bring a substantial profit. This workshop is designed to produce 1,500 thousand tons qualities ingots. Three 60 tons BOF which are brown oxygen from their top adoption ―three blowing two‖. In the while, the refining equipment RH and CAS-OB are used for raising the steel quality and high efficient continuous casting of 100%. Computer being operated automatically control the technological process of whole plant dynamically and satirically .This design include: the balance of material and quantity of heat; the design of shape and equipment of the workshops. Key words: BOF of blowing air on the top and bottom; Equipment of blowing oxygen; Continuous casting;plant dynamically; plant satirically

100吨交流电弧炉炼钢车间设计

毕业设计说明书 设计题目:100吨交流电弧炉炼钢车间设计 学 号:_________________________ 姓 名:_________________________ 专 业 班 级:_________________________ 李龙 冶金技术2班 0929302245 2012 年 05月20号

毕业设计说明书................................................................................................................... - 1 -文献综述. (2) 1.3现代电弧炉炼钢技术 (5) 1.4电弧炉炼钢的发展趋势 (6) 1.5电弧炉装备技术未来的创新发展 (6) 1.5.2我国正进人电炉炼钢高速发展时期 (7) 3.4.1、炉料入炉 (13) 第四章建设所选电弧炉炼钢工程的必要性和可行性分析 (13) 电弧炉车间设计 (18) 1.1电炉车间计算 (18) 11..1电炉容量和座数的确定 (18) 1.1.2电炉车间生产技术指标 (18) 参考文献.................................................................................................................................................. 致谢..........................................................................................................................................................

电弧炉炼钢工艺

电弧炉炼钢工艺 2010级冶金1001班,3100701011,魏宏兴 摘要:回顾了电弧炉炼钢发展概况,详细介绍电弧炉炼钢工艺和生产情况,重点分析了短流程炼钢发展趋势。 关键词:电弧炉炼钢发展趋势 Abstract:The general situation of the EAF steelmaking development was reviewed in this article,production and electric arc furnace steelmaking process are introduced in detail, analyses the development trend of short flow steelmaking. Key word:electric arc furnace steelmaking The development trend 1电弧炉炼钢概述 电弧炉(EAF)炼钢是以电能作为热源,以废钢为主要原料的炼钢方法,它是靠电极和炉料间放电产生的电弧,使电能在弧光中转变为热能,并借助电弧辐射和电弧的直接作用加热并熔化金属炉料和炉渣,冶炼出各种成分合格的钢和合金一种炼钢方法。 1.1工艺过程 电弧炉炼钢以前的方法(老三期): 补炉→装料→熔化期(分为四个阶段:起弧期→穿井期→主熔化期→熔末升温期)→氧化期→还原期→出钢 装料:废钢;也可以装入少量铁水,叫热装铁水。 熔化期:主要是废钢等的熔化。 氧化期:通过矿石氧化或者吹氧等操作,去除钢水中的杂质、N、H等 还原期:造渣、配合今等。 现在常用:废钢预热→熔氧期→出钢→精炼 现在一般把还原期拿到LF来操作,这样可以缩短冶炼周期,操作也比较方便 1.2工艺特点 1)电能为热源,避免了燃烧燃料对钢液的污染,热效率高,可达65%以上。 2)冶炼熔池温度高且容易控制,满足冶炼不同钢种的要求。 3)电热转换时,输入熔池的功率容易调节,因而容易实现熔池加热制度自动化,操作方便。 4)电弧炉炼钢可以消化废钢,是一种铁资源回收再利用的过程,也是一项处理污染的环保技术,它相当于是钢铁工业和社会废钢的回收工具。

三吹二120吨顶吹转炉及炼钢车间设计毕业设计

太原科技大学毕业设计(论文)任务书 (由指导教师填写发给学生) 学院(直属系):材料科学与工程学院时间:2014年 3月 12日学生姓名指导教师 设计(论文)题目三吹二120T顶吹转炉及炼钢车间设计 主要研究内容1.物料平衡及热平衡计算 2.氧气顶吹转炉炉型设计及计算 3.氧枪设计及计算 4.转炉炼钢车间设计及计算 5.连铸设备的选型及计算 6.炉外精炼设备的选型与工艺布置 7.炼钢车间烟气净化系统的设计 研究方法 利用已学的冶金工艺和钢铁厂设计知识进行理论计算与设计; 利用机械设计基础知识,通过查阅相关资料与现有结构相结合对结构部件设计计算。鼓励采用新技术、新方法、新思路和创新设计。 主要技术指标(或研究目标) 毕业设计说明书一份(包括英文资料的中文翻译) 设计图纸三张 1)氧气顶吹转炉炉型图1# 2)年产260万吨良坯三吹二型氧气顶吹转炉炼钢车间工艺平面布置图1#3)年产260万吨良坯三吹二型氧气顶吹转炉炼钢车间剖视图1# 教研室 意见 教研室主任(专业负责人)签字:2014年03月12日说明:一式两份,一份装订入学生毕业设计(论文)内,一份交学院(直属系)。

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

钢铁冶金专业年产70万吨电弧炉炼钢车间设计

钢铁冶金专业年产70万吨电弧炉炼钢车间设计 目录 绪言 第一章设计方案 (1) 1.1 设计概述 (1) 1.2 产品方案 (2) 1.3 产量计算 (4) 1.4 新技术、新设备的选择说明…………………………………………… 14 1.5 工艺流程及车间的组成 (15) 第二章电弧炉设计 (17) 2.1 电弧炉炉型及其尺寸计算 (17) 2.2 炉子变压器功率和电参数的确定 (22)

第三章连铸设计 (26) 3.1 车间设备及参数的选定 (26) 3.2 连铸机基本参数的确定……………………………………………… 27 3.3 连铸车间的工艺布置 (31) 第四章车间布置及主要设备的选择 (33) 4.1 炉子跨 (35) 4.2 原料跨 (42) 4.3 浇铸跨 (45) 4.4 精炼跨间布置 (48) 第五章电炉炼钢的经济技术指标 (53) 5.1 产量方面 (53) 5.2 质量方面……………………………………………………………… 53 5.3 品种方面……………………………………………………………… 53 5.4 成本方面 (54)

第六章专题研究 (55) 6.1 开发背景………………………………………………………………… 55 6.2成形耐火涂料的特性和性能 (56) 6.3耐火涂料层的涂敷作业 (58) 6.4结束语 (58) 参考文献………………………………………………………………………… 59 绪言 本次设计是根据娄底地区条件设计年产量为70万吨电弧炉炼钢车间,该地区矿藏丰富,水源充沛,交通发达,设计炼钢车间条件比较合理。同时在该地区建厂不仅是本地区工业发展的需要,也为本地区重工业的发展提供拉可靠保证在本次设计中。考虑到我国的钢铁工业的发展现状,及未来钢铁行业发展的方向,更加为能够创造出最大的经济效益,在行业竞争中处于有利地位,同时根据市场需求,重点发展优质钢,合金钢等特钢品种, 本次设计中采用现在比较先进的炼钢技术。尽量做到经济上合理,技术上先进,减轻工人的劳动强度,改善工人的工作环境,建设一流的现代炼钢车间。如:在本次设计中。电炉中采用二次燃烧技术,吹氧自动系统。连铸车间中,采用全程保护浇注,电磁搅拌系统,结晶器液面控制仪,汽水喷雾冷却等先进技术,为企业的高产量,高质量发展创造拉条件,将为企

设计年产300万吨合格铸坯的转炉炼钢车间指导书

毕业设计指导书 指导教师孔辉学生姓名 ## 班级冶081 一、设计(论文)的题目: 设计一个年产300万吨合格铸坯的转炉炼钢车间 二、设计(论文)的目的: 进行钢铁厂设计需要花费大量精力和时间,且独立性强,因此对提高学生的综合能力(查阅文献能力、独立设计选型与计算能力、Autocad制图能力等)很有帮助。通过教师制定每一阶段的明确目标,在督促学生完成任务的同时,与学生共同商讨,共同学习有教学相长的作用。 三、设计(论文)的内容及要求: 1、文献调研及生产现场考察。 要求查阅近年相关文献20篇以上,其中外文资料不少于3篇,一篇外文译成中文。2、设计说明书内容: (1)设计原则和依据 (2)产品大纲的制定 (3)工艺流程的选择与论证 (4)物料平衡与热平衡计算 (5)车间主体设备的计算与选择 (6)车间工艺布置 (7)车间厂房的布置 (8)采用新工艺说明 3、工程制图: (1)车间工艺平面布置图一张 (2)车间横剖视图一张 (3)转炉炉体图一张,为CAD制图。 四、时间安排: 第1周:查阅设计资料及生产调研,了解不同钢种的成分、用处、生产要点;了解本单位的设备条件及工艺过程 第2-4周:设计方案的确定与论证 第5-6周:转炉冶炼典型钢种的物料平衡和热平衡计算 第7-9周:车间主体设备的设计

第10-11周:车间主厂房的设计 第12-14周:用计算机绘制车间平面布置图、剖面图及炉体本体图 第15-16周:编写设计说明书 第17周:准备答辩 五、推荐参考文献: [1] 冯聚合.艾立群,刘建华.铁水预处理和炉外精炼.冶金工业出版社,2006; [2] 张树勋.钢铁厂设计原理. 冶金工业出版社,2005年第一版; [3] 胡会军.田正宏. 宝钢分公司炼钢厂:上海,2009;

150T直流电弧炉炼钢工艺

摘要 改革开放以来,我国电弧炉炼钢技术紧跟世界电炉炼钢工业的发展趋势,得到了快速发展。特别是冶金工艺流程的革命性变换,如电炉从三期操作发展到只提供初炼钢水的两期操作,从模铸到连铸,从出钢槽到偏心底出钢,以及为了满足连铸生产的快节奏提高炉子生产率而采用多能源的综合利用等等,所有这些改变都是促使为冶金工艺服务的电炉装备也取得了突破性的发展。近十年,我国从国外先后引进了交流超高功率电弧炉、直流电弧炉、高阻抗电弧炉、双壳炉和竖炉。通过这些设备的调试、操作、维护以及备品的制造,提高了我国电炉制造的设计制造水平。在消化吸收与创新的基础上,我国大容量电弧炉的国产化奠定了基础。当前电弧炉正朝着大型电弧炉、超高功率供电技术、采用各种炉外精炼、发展直接还原法炼钢、逐步扩大机械化自动化及用电子计算机进行过程控制等的发展,所以我们进行了电炉炼钢的设计,以适应潮流的发展。 当前电弧炉正朝着大型电弧炉、超高功率供电技术、采用各种炉外精炼、发展直接还原法炼钢、逐步扩大机械化自动化及用电子计算机进行过程控制等的发展,所以我们进行了电炉炼钢的设计,以适应潮流的发展。电炉的主要产品是钢材,而钢的质量取决于电炉冶炼技术和工艺,目前我国钢铁产业大量整合趋向于集中,整合资源优化升级。本设计根据指导老师的课题范围,查阅相关资料,结合南京地区实际条件,优化设计150t直流电弧炉炼钢车间。 本次设计查阅国内大型电炉车间设计的相关内容和文献资料,明确本次设计的目的、方法,并向老师请教可行性方案。结合《炼钢设备及车间设计.》、《炼钢设计原理》、《炼钢设计原理》等资料进行设计提纲的书写。对电炉进行配料计算,计算出电炉炼钢的原料配比。对电炉电气设备、炉外精炼、连铸系统、车间烟气净化系统、炼钢车间布局,结合国内大型电炉进行设定并向苏老师探讨可行的方法和数据。绘制电炉炼钢车间平面布置图。 关键字:电弧炉,车间设计,连铸,炉外精炼

转炉工作原理及结构设计

攀枝花学院本科课程设计 转炉工作原理及结构设计 学生姓名: 学生学号: 院(系): 年级专业: 指导教师: 二〇一三年十二月

转炉工作原理及结构设计 1.1 前言 1964年,我国第一座30t氧气顶吹转炉炼钢车间在首钢建成投产。其后,上钢一厂三转炉车间、上钢三厂二转炉车间等相继将原侧吹转炉改为氧气顶吹转炉。20世纪60年代中后期,我国又自行设计、建设了攀枝花120t大型氧气顶吹转炉炼钢厂,并于1971年建成投产。进入20世纪80年代后,在改革开放方针策的指引下,我国氧气转炉炼钢进入大发展时期,由于氧气转炉炼钢和连铸的迅速发展,至1996年我国钢产量首次突破1亿t,成为世界第一产钢大国。 1.2 转炉概述 转炉(converter)炉体可转动,用于吹炼钢或吹炼锍的冶金炉。转炉炉体用钢板制成,呈圆筒形,内衬耐火材料,吹炼时靠化学反应热加热,不需外加热源,是最重要的炼钢设备,也可用于铜、镍冶炼。转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬)转炉;按气体吹入炉内的部位分为底吹、顶吹和侧吹转炉;按吹炼采用的气体,分为空气转炉和氧气转炉。转炉炼钢主要是以液态生铁为原料的炼钢方法。其主要特点是:靠转炉内液态生铁的物理热和生铁内各组分(如碳、锰、硅、磷等)与送入炉内的氧进行化学反应所产生的热量,使金属达到出钢要求的成分和温度。炉料主要为铁水和造渣料(如石灰、石英、萤石等),为调整温度,可加入废钢及少量的冷生铁块和矿石等。 1.2.1 转炉分类 1.2.1.1 炼钢转炉 早期的贝塞麦转炉炼钢法和托马斯转炉炼钢法都用空气通过底部风嘴鼓入钢水进行吹炼。侧吹转炉容量一般较小,从炉墙侧面吹入空气。炼钢转炉按不同需要用酸性或碱性耐火材料作炉衬。直立式圆筒形的炉体,通过托圈、耳轴架置于支座轴承上,操作时用机械倾动装置使炉体围绕横轴转动。 50年代发展起来的氧气转炉仍保持直立式圆筒形,随着技术改进,发展成顶吹喷氧枪供氧,因而得名氧气顶吹转炉,即L-D转炉(见氧气顶吹转炉炼钢);用带吹冷却剂的炉底喷嘴的,称为氧气底吹转炉(见氧气底吹转炉炼钢)。

50万吨电炉炼钢车间设计方案

50万吨电炉炼钢车间设计方案 1.1 钢铁工业现状 钢铁是使用最广泛的金属材料,人用金属,钢铁占90%以上。没有钢铁,人们不能活,生产或其他活动中使用的工具和设施也都是用钢制的。钢铁生产往往是衡量一个国家的工业化水平和生产能力的重要标志,钢铁产品的质量和品种,对国民经济和其他工业部门的产品质量,有很大的影响。 转炉炼钢转炉炼钢的主要原料是高炉冶炼,多数情况下,高炉的主要原料是铁矿石。锭坯或铸坯转炉生产的产品是,他们不是最终产品,必须由各种类型和规格的钢板、钢、管等最终产品的轧制生产,提供市场。因此,氧气转炉不能独立存在,它必须首先炼钢,轧制,和其他辅助原料生产和供应系统,钢铁生产的组合组成,我们称这种生产方式为钢铁企业。电弧炉炼钢是炼钢的主要原料,或直接还原铁及其制品,其产品仍为锭或坯,需要通过滚压机轧制成最终产品,为市场需求。在这种情况下,作为一个成品钢的生产单位,往往由钢和钢的2个部分,我们说这样的生产模式,电炉钢。随着电弧炉的高功率和超高功率,精炼,连铸连轧和一系列的技术开发和社会的废料资源充足的积累,显示了强劲的发展势头,由于资源和环境的影响“废电弧炉连铸-轧钢生产过程,与传统的钢铁企业相比,这种新型电弧炉钢米尔斯也被称为短流程。电炉炼钢产品主要有轴承钢、不锈钢等。 1.2 电弧炼钢厂 近年来,电弧炉炼钢在全球的不断发展,电弧炉钢在世界钢铁生产中所占的比重越来越。电弧炉炼钢厂的废料为原料,或直接还原铁的一部分,构成部分的冶炼通常是一个高功率或超高功率电弧炉和炉精炼设备,如炉和一个连续铸造机,钢坯热交付到下一个滚动汽车直接轧制生产。由此我们可以看出,电炉炼钢厂具有结构紧凑、投资的优势,建设周期短,节约能源消耗,改善环境污染,劳动生产率优势,具有年产钢可以从百万吨到数百万吨,品种种类繁多,从普通碳钢高质量合金钢。与传统的钢铁企业相比,规

120吨转炉炼钢车间设计

炼钢车间设计 氧气顶吹转炉炉型设计及各部分尺寸 1.1 转炉炉型及其选择 转炉由炉帽、炉身、炉底三部分组成、由于炉帽(截锥形)和炉身(圆柱形)的形状没有变化。把炉型分为筒球型、锥球型和截锥型等三种。 (a)(b)(c) (1)筒球型。熔池由球体和圆柱体两部分组成。炉型形状简单,砌砖方便,炉壳容易制造,被国内外大、中型转炉普遍使用。 (2)锥球型。熔池由球缺体和倒截锥体两部分组成。与相同容量的筒球型比较,锥球型熔池较深,有利于保护炉底。在同样的熔池深度的情况下,熔池直径可以比筒球型大,增加了熔池反应面积,有利于去磷、硫。我国中小型转炉普遍采用这种炉型。 (3)截锥型。熔池为一个倒截锥体。炉型构造较为简单,平的熔池较球型底容易砌筑。在装入量和熔池直径相同的情况下,其熔池最深,因此不适用于大型容量炉。我国30t 以下的转炉采用较多。 经过比较,由于筒球型转炉砌筑方便且炉壳容易制造以及考虑到本设计所需熔池容量为120t ,所以选择了筒球型。 1.2 转炉炉型各部分尺寸确定 1.2.1 熔池尺寸 (1)、熔池直径D 。熔池直径指转炉熔池在平静状态时金属液面的直径。它主要与金属装入量和吹氧时间有关。我国设计部门推荐的计算熔池直径的经验公式为: t G K D

式中 D ——熔池直径,m ; G ——新炉金属装入量,t ,可取公称容量; K ——系数,参见下表1-1; t ——平均每炉钢纯吹氧时间,min ,参见下表1-2。 熔池直径为: m t G K D 66.474.27.116120 7.1=?=?== (2)熔池深度h 。熔池深度指转炉熔池在平静状态时,从金属液面到炉底 的深度。对于一定容量的转炉,炉型和熔池直接确定后,可以用几何公式计算熔 池深度h 。 因为所取为筒球型转炉,所以通常球缺体的半径R 为熔池直径D 的1.1~1.25 倍。本设计去1.1,当R=1.1D 时,熔池体积V 池和熔池直接D 及熔池深度h 有 如下关系: V 池=0.79hD 2-0.046D 3 根据炉子容量与钢水密度可以确定V 池,钢水密度可以根据经验公式计算如 下:取钢水温度为1600。 )273(8358.08523+-=T ρ =8523-0.8358×(1600+273) =8523-1565 =6959㎏/m 3 V 池=1.2×105÷6959=17.24 m 3 因此232366.479.066.4046.024.1779.0046.0??+=+=D D V h 池 =21.89÷17.16=1.28m 1.2.2 炉身尺寸 转炉炉帽以下,熔池面以上的圆柱体部分成为炉身。其直径与熔池直接是 一致的,故须确定的尺寸是炉身高度H 身。 2224.6614.3)24.1706.22108(4)(44?--?=--== D V V Vt D V H ππ池帽身身 19.688 .274= =4.03m

年产100万吨连铸坯的电弧炉 炼钢车间工艺设计

目录 1 电弧炉炼钢技术现状及发展 (1) 1.1电弧炉炼钢发展概况 (1) 1.2国内外电炉炼钢技术的发展趋势 (1) 2 电弧炉炼钢车间的设计方案 (3) 2.1电炉车间生产能力计算 (3) 2.1.1电炉容量和台数的确定 (3) 2.1.2 电炉车间生产技术指标 (3) 2.2电炉车间设计方案 (4) 2.2.1 电炉炼钢车间设计与建设的基础材料 (4) 2.2.2 产品大纲 (4) 2.2.3 电炉炼钢车间的组成 (4) 2.2.4 电炉车间各跨的布置情况 (5) 3 电弧炉炉型设计 (6) 3.1电弧炉炉型 (6) 3.1.1 炉缸 (6) 3.1.2 熔化室 (7) 3.1.3 电极分布 (8) 3.1.4 工作门和出钢口 (8) 3.1.5 炉衬厚度 (8) 3.2电弧炉变压器容量选择 (9) 3.3水冷炉壁与水冷炉盖 (9)

3.3.1 水冷炉盖的设计 (9) 3.3.2 水冷炉盖的安装 (10) 3.4偏心底出钢的设计 (11) 3.4.1 EBT电炉的炉壳 (11) 3.4.2 EBT电炉的炉底 (12) 3.4.3 出钢口 (12) 3.4.4 机械装置 (13) 3.4.5 偏心底出钢箱的设计 (13) 3.5水冷挂渣炉壁的设计 (14) 3.5.1 电弧炉炉壁的热流 (14) 3.5.2 冷却水流量 (14) 3.5.3 水冷炉壁水速的确定 (15) 3.5.4 管径的确定 (15) 3.5.5 平衡挂渣厚度 (15) 3.5.6 综合传热系数 (16) 3.5.7 临界热流量与最大热流量 (16) 4 电弧炉炼钢过程中的物料平衡与热平衡计算 (17) 4.1物料平衡计算 (17) 4.1.1熔化期计算 (19) 4.1.2 氧化期计算 (23) 4.2热平衡的计算 (27) 4.2.1 计算热收入Qs 。 (27) 4.2.2 计算热支出Qz 。 (29) 5 电弧炉炼钢车间工艺设计 (33)

相关文档
最新文档