伺服电机的应用

伺服电机的应用
伺服电机的应用

伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。日常生活中我们很少会接触到这种机器装置,但是它们一直为我们的正常生活提供助力。下面小编就给大家讲讲伺服电机一般用在什么设备上。

伺服电机一般用在数控机床,或机械臂,(人们叫机械手,机器人)或一些专用精密设备上。现在数控机床发展很快,很先进,已普遍进入高分辨率精密数控系统。数控机床是用电子计算机数字化信号控制的机床,以通用工业控制微机为基础的开放式数控系统的技术,发展到普通通用机床到多轴联动数控系统,五轴数控加工技术是加工连续,平滑,复杂曲面的常用手段。

五轴联动数控技术是难度最大,应用范围最广的技术,它集计算机控制,高性阽伺服驱动和精密加工于一体,应用于复朵曲面的高,精,尖自动化加工。国际上把这一技术视为一个国家生产设备自动化水平的标志。特别是对于航空,航

天,国防军事工业的作用很大,欧美西方发达国家把此作为战略物质进行封锁,技术垄断,如日本东芝公司将这技术,设备于20世纪末转让苏联速美国制裁一场大风波。当时数控机床,镗铣床,加工中心靠进口,如德国为先进,现在我们也能制造了,并出口。比如机械臂,机器人的动作就由伺服电机控制,控制多个自由度,才会按要求动作。这些都是伺服电机的功劳。

以上就是由四川志方科技有限公司为大家提供的关于伺服电机应用的相关信息,为了保证伺服电机使用的稳定性,所有伺服电机都应该在使用前进行测试。因此,在需要用到伺服电机的企业有必要购进一台专业的伺服电机测试系统。采购伺服电机测试系统建议咨询专业厂家。

伺服电机控制技术的应用与发展 朱舒柏

伺服电机控制技术的应用与发展朱舒柏 发表时间:2019-11-26T09:27:03.093Z 来源:《中国西部科技》2019年第24期作者:朱舒柏 [导读] 近年来,经济的发展,促进我国科技水平的提升。科技的进步促进伺服电机控制技术被广泛应用,不仅能够有效提升数控系统计算性能,缩短时间,还能够有效提升系统运行性能,逐渐向更加科学化、智能化方向转变。本文就伺服电机控制技术的应用与发展趋势,展开探讨。 摘要:近年来,经济的发展,促进我国科技水平的提升。科技的进步促进伺服电机控制技术被广泛应用,不仅能够有效提升数控系统计算性能,缩短时间,还能够有效提升系统运行性能,逐渐向更加科学化、智能化方向转变。本文就伺服电机控制技术的应用与发展趋势,展开探讨。 伺服控制系统是一个整体,其主要组成元素包含了驱动、控制系统和保护系统还有电力的电子元件等,是从步进向直流进步,与数字脉宽调制技术、微电子技术等共同发展进步。同时,伺服控制技术又从直流发展到了交流,与特种电机材料技术和现代控制技术等同步发展。硬件服务控制系统为加工技术提供了推动力,实现了软件伺服控制系统的转变,提高了伺服系统运行的性能。同时,处理器和数字化伺服系统的协调发展,还提升了数控系统计算性能。 1.伺服控制系统 1.1开环伺服系统 开环伺服系统中并未设置检测反馈设备,因此也不存在运动反馈控制回路。一旦设备发出了脉冲指令,这时电动机便开始运行。虽然可能存在运动误差,但是不会做出任何信息错误反馈。期间,步进电动机在开环伺服中是最为关键的驱动部件。步进电机在步距角精度、机械传动精度等方面具有极大优势,直接关系到开环系统的精准度。通常,针对开环系统精准度没有过高要求。尽管步进电动机的转速不高,部件运行期间也存在限制,但其结构精简、可靠性高、制造成本低,所以为控制电路赋予了简单的特点。因此,开环控制系统内部没有对精度和速度提出严格要求的装置,一般会使用步进电动机。 1.2半闭环伺服系统 半闭环伺服系统,运行与调试步骤内容相对简捷,主要应用于对位置与速度的检测。测量位置无刷旋转变压器与测度的发电机构成半闭环伺服系统的两个主要部分。其中,脉冲编码器是无刷旋转变压器内部中最为重要的一个器件,抗干扰能力较强,不易受某些非线性因素影响,系统能够正常运行,实现对机械传动的控制。将系统内全部反馈信号装在电机轴中,能够有效对速度和位置两个重要信号量进行检测,并且为系统提供机械传动保障。在数控机床应用领域中半闭环伺服系统应用最广泛,由于机械传动装置精度与此系统定位精确度具有密切联系,所以即使机械传动装置精度不高,只需利用数控装置所具有的误差补偿与间隙补偿功能,也可以使其精确度有所提升。 1.3全闭环伺服系统 全闭环伺服系统是由各种装置组成,即:比较环节、伺服驱动放大器、机械传动装置、进给伺服电动机以及直线位移测量装置等。其中,全闭环伺服系统的驱动部件能够监测、反馈修正机床运动部件的移动量,即:直流伺服电动机或者交流伺服电动机。在测量机床部件时,能够构成一个较高精度的全闭环控制位置系统,可以直接利用安装在工作台的光棚或者感应同步器。在整个全闭环系统中,可以在移动的部件上,安装直线位移检测器,也就是说,这个位移检测器的精度和灵敏度就是移动部件测量精度、灵敏度,同样加工精度也相对地得到了提升。但机械传动装置之间的一些非线性因素,会影响整体的稳定性,如:摩擦阻尼、装置刚度以及反响间隙等。并且在整个全闭环伺服电机系统中,安装和调试全闭环伺服系统过程非常复杂。 2.伺服电控技术的应用 2.1低频特性中的应用 在实际低速运转过程中,步进电机常会出现低频振动现象,可见电机控制系统自身负载能力、驱动器性能好坏与低频振动有着密切关联。一般来说,电机空载起跳频率的一半就是振动频率,若是步进电机由于工作原理而产生低频振动问题,就会对运行带来阻碍,不能进行日常的工作;步进电机进入低速运转状态时,一般可以使用阻尼技术对低频振动问题加以控制。例如可以将阻尼器或驱动器中的一种,设置在电机中,通过细分技术进行控制。通过对比发现,交流伺服电机运转时稳定性更高,即使处于低速运转状态中,低频振动问题也不会出现。在交流伺服电机中,由于系统自带共振功能,能够弥补机械刚性中存在的不足进行问题,同时系统中还带有频率解析功能,可对机械共振点进行有效测量监视,及时发现问题,避免发生共振现象。 2.2在控制精准度的应用 全数字交流伺服是以2000线编码器为标准,控制交流伺服则更能体现控制精准度,将旋转编码器安装在交流伺服电机电机轴后方。驱动器的安装使用四倍频技术,脉冲量为0.045o。在数字化伺服电机系统中,如果使用17编码器其脉冲量可以换算为1.8的步距角,为 0.0027466o,电动机旋转1圈接收一次131072个脉冲。两相混合式和五相混合式是步进电机的两种形式,两相混合式步进电机的脉冲量数据较小,脉冲量为1/655.相比之下。其中,两相混合式性能较高,步距角则主要以1.8o、0.9o为主经过细分之后,性能较高的二相混合式步进电机步距角更小,可以有效实现五相混合式、普通二相混合式步距角的兼容,五相混合式步距角是以0.72o、0.36o为主;诸如0.072o、0.18o、0.9o等二相混合式在设置步距角时,可以利用拨码开关的方式。 2.3过载能力方面应用 步进电机并没有过载性能,相反交流伺服电机则体现出极强的过载能力。例如,SANYO交流伺服电机本身就有非常高的速度过载能力和转矩过载能力。因为步进电机并不具备过载能力,因此在实践过程中为了克服启动时产生的惯性力矩,一般会选择大机型电机。但是,其中存在的问题在于,实际应用期间不需要过高的电机转矩,很容易导致力矩浪费。 3.伺服电机控制技术的发展前景 电机控制专用继承电路是企业设计伺服电机最普遍的形式,设计软件主要为复杂可编程逻辑器件和现场可编程逻辑阵列。并且在设计电机控制集成电路时,需要依据用户、电子系统要求。该电路能够实现操作边界的有效扫描,特点在于用户现场可操控编程。电机控制专用集成电路具有设计、生产时间短等特征,主要体现在制定用户要求、数量少等方面。与通用电路相比,集成电路电子技术和用户积淀系统生产出来的产品,重量轻、成本低、体积小、功耗低,质量高。并且在电机控制MCU设计、电机控制DSP设计等方面,伺服电机控制技术也有所体现。交流伺服电动机属于无刷结构,提升功率与转速快、维修几率少。20世纪80年代中,伺服电机控制技术已经融合催化加工

PLC控制伺服电机应用实例

PLC控制伺服电机应用实例,写出组成整个系统的PLC模块及外围器件,并附相关程序。 PLC品牌不限。 以松下FP1系列PLC和A4系列伺服驱动为例,编制控制伺服电机定长正、反旋转的PLC程序并设计外围接线图,此方案不采用松下的位置控制模块FPG--PP11\12\21\22等,而是用晶体管输出式的PLC,让其特定输出点给出位置指令脉冲串,直接发送到伺服输入端,此时松下A4伺服工作在位置模式。在PLC 程序中设定伺服电机旋转速度,单位为(rpm),设伺服电机设定为1000个脉冲转一圈。PLC输出脉冲频率=(速度设定值/6)*100(HZ)。假设该伺服系统的驱动直线定位精度为±0.1mm,伺服电机每转一圈滚珠丝杠副移动10mm,伺服电机转一圈需要的脉冲数为1000,故该系统的脉冲当量或者说驱动分辨率为0.01mm(一个丝);PLC输出脉冲数=长度设定值*10。 以上的结论是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致过程如下: 机械机构确定后,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的定位精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下FP1---40T 的PLC的CPU本体可以发脉冲频率为50KHz,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000 个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU输出点工作频率就不够了。需要位置控制专用模块等方式。 有了以上频率与脉冲数的算法就只需应用PLC的相应脉冲指令发出脉冲即可实现控制了。假设使用松下 A4伺服,其工作在位置模式,伺服电机参数设置与接线方式如下: 一、按照伺服电机驱动器说明书上的“位置控制模式控制信号接线图”接线: pin3(PULS1),pin4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。 pin5(SIGN1),pin6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制,pin7(com+)与外接24V直流电源的正极相连。pin29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

伺服电机的三种控制方式

选购要点:伺服电机的三种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。接下来,松文机电为大家带来伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要 求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。 如果上位控制器(在一个运动控制系统中“上位控制”和“执行机构”是系统中举足轻重的两个组成部分。“执行机构”部分一般不外乎:步进电机,伺服电机,以及直流电机等。它们作为执行机构,带动刀具或工件动作,我们称之为“四肢”;“上位控制”单元的四种方案:单片机系统,专业运动控制PLC,PC+运动控制卡,专用控制系统。“上位控制”是“指挥”执行机构动作的,我们也称之为“大脑”。 随着PC(Personal Computer)的发展和普及,采用PC+运动控制卡作为上位控制将是运动控制系统的一个主要发展趋势。这种方案可充分利用计算机资源,用于运动过程、运动轨迹都比较复杂,且柔性比较强的机器和设备。从用户使用的角度来看,基于PC机的运动控制卡主要是功能上的差别:硬件接口(输入/输出信号的种类、性能)和软件接口(运动控制函数库的功能函数)。按信号类型一般分为:数字卡和模拟卡。数字卡一般用于控制步进电机和伺服电机,模拟卡用于控制模拟式的伺服电机;数字卡可分为步进卡和伺服卡,步进卡的脉冲输出频率一般较低(几百K左右的频率),适用于控制步进电机;伺服卡的脉冲输出频率较高(可达几兆的频率),能够满足对伺服电机的控制。目前随着数字式伺服电机的发展和普及,数字卡逐渐成为运动控制卡的主流。)有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的

PLC控制伺服电机的方法

伺服电机的PLC控制方法 以松下Minas A4系列伺服驱动器为例,介绍PLC控制伺服电机的方法。伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本章简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置

控制模式控制信号接线图"连接导线 3(PULS1),4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC 的输出端子)。 5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。 7(com+)与外接24V直流电源的正极相连。 29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编

码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器。构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也

伺服电机驱动器的广泛应用

伺服电机驱动器的广泛应用 瑞默生智能伺服电机驱动器以其优越的性能可广泛的应用于对位置、速度和力矩的精度要求较高的场合,比如:数控设备、电动门、印刷机械、包装机、贴片机、点胶机、ATM取款机、自动化生产线、医疗设备。一、稳定可靠无 故障应用领域:移动机器人:应用专用驱动器,依照指定路线,自行调整设备运动。不必使用多轴控制模块,驱动器即可调整转向实现自动补偿。可应用在各种需要移动货物的环境,尤其适合于汽车、包装、航空航天和医疗领域。激光雷达、无线电侦测及目标跟踪:微型驱动器系列,可安装于设备中几乎任何位置;结构紧凑,要求布线少;具有支持通讯、精确运动控制回路、输入反馈与可编程性。适用温、湿度差异环境中,因为可广泛应用在对于环境需求较高的领域。机械手:同时使用不同类型驱动器,并与多轴运动控制器结合在一起,组成机械手。根据定义,实现快速、精准、平滑的组合运动;保证低故障率以及连续长时间工作。可广泛应用于高精度机械加工、生产制造的无人生产环境中。二、功能描述:瑞默生智能伺服电机驱动器不但具有伺服电机驱动器的所有功能而且具备完整的PLC运动控制的功能,通过简单的配置即可实现机器上电回原点、梯形(圆弧)曲线运动控制、PVT曲线运动控制、外部中断响应等功能;此外驱动器提供丰富的外部IO接口方便用户实现左右限位开关、伺服 使能、刹车、回零、开关输入输出、模拟量输入等机器功能。和一般的驱动器相比,瑞默生智能伺服电机驱动器具备以下四大突出特点:1、兼容性好:智 能伺服电机驱动器不仅可以实现对高精度的交流伺服电机的控制,同时可以支持:直流伺服、无刷伺服、步进伺服、直线电机、音圈电机、力矩电机等电机。电机的编码器可以选择旋变、增量式编码器、磁编码器、正余弦编码器、线性霍尔、光栅尺等类型,方便用户的伺服电机适应各种强震动、高低温等恶劣环

松下PLC控制伺服电机实例程序

松下PLC控制伺服电机实例程序 上位机设定伺服电机旋转速度单位为(转/分),伺服电机设定为1000个脉冲转一圈. PLC输出脉冲频率=(速度设定值/6)*100(HZ)。 上位机设定伺服电机行走长度单位为(0.1mm),伺服电机每转一圈的行走长度10mm,伺服电机转一圈需要的脉冲数为1000,故PLC发出一个脉冲的行走长度为0.01mm(一个丝)。 PLC输出脉冲数=长度设定值*10。 上面两点的计算都是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,必须先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致方法如下: 机械安装结束,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的行走精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下PLC的CPU本体可以发脉冲频率为100K,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU本体就不够了。需要加大成本,如增加脉冲输出专用模块等方式。 知道了频率与脉冲数的算法就简单了,只需应用PLC的相应脉冲指令发出脉冲即可,松下PLC的程序图如下:

松下伺服常见问题 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF-AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电)

伺服电机的PLC控制

伺服电机的PLC控制方法 以我司KSDG系列伺服驱动器为例,介绍PLC控制伺服电机的方法。 伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本文简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置控制模式控制信号接线图"连接导线3(PULS1), 4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。7(com+)与外接24V直流电源的正极相连。29(SRV-0N),伺服使能信号,此端子与外接24V 直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也可以满足基本的要求. 3、Pr40----指令脉冲输入选择,默认为光耦输入(设为0)即可。也就是选择3(PULS1),4(PULS2),5(SIGN1),6(SIGN2)这四个端子输入脉冲与方向信号。 4、Pr41,Pr42----简单地说就是控制伺服电机运转方向。Pr41设为0时,Pr42设为3,则5(SIGN1),6(SIGN2)导通时为正方向(CCW),反之为反方向(CW)。Pr41设为1时,Pr42设为3,则5(SIGN1),6(SIGN2)断开时为正方向(CCW),反之为反方向(CW)。(正、反方向是相对的,看您如何定义了,正确的说法应该为CCW,CW). 5、Pr46,Pr4A,Pr4B----电子齿轮比设定。此为重要参数,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。其公式为:伺服电机每转一圈所需的脉冲数=编码器分辨率×Pr4B/(Pr46×2^Pr4A)伺服电机所配编码器如果为:2500p/r5线制增量式编码器,则编码器分辨率为10000p/r如您连接伺服电机轴的丝杆间距为20mm,您要做到控制器发送一个脉冲伺服电机行走长度为一个丝(0.01mm)。 计算得知:伺服电机转一圈需要2000个脉冲。(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)三个参数可以设定为:Pr4A=0,Pr46=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr46=100,Pr4B=20。从上面的叙述可知:设定Pr46,Pr4A,Pr4B这三个参数是根据我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉冲频率确定后,工艺精度要求越高,则伺服电机能达到的最大速度越低。做好上面的工作,编制好PLC程序,我们就可以控制伺服运转了。

伺服电机计算选择应用实例

伺服电机计算选择应用实例 1.选择电机时的计算条件本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的W :运动部件(工作台及工件)的重量(kgf)=1000 kgf 机械规格μ:滑动表面的摩擦系数=0.05 π:驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf)=50 kgf Fc :由切削力引起的反推力(kgf)=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf) =30kgf Z1/Z2:变速比=1/1 例:进给丝杠的(滚珠Db :轴径=32 mm 丝杠)的规格Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格Ta :加速力矩(kgf.cm) Vm :快速移动时的电机速度(mm-1)=3000 mm-1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec2) Jl :负载惯量(kgf.cm.sec2) ks :伺服的位置回路增益(sec-1)=30 sec-1 1.1 负载力矩和惯量的计算 计算负载力矩加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

机器人应用技术分析

2014年12月(下) 机器人应用技术分析 石红梅 ( 北京信息职业技术学院专业部,北京市100070) [摘要]机器人的应用领域十分广泛,包括工业生产、海空探索、康复和军事等。此外,机器人已逐渐在医院、家庭和一些服务行业获得 应用,并且已经进入高校的课堂。根据其功能可分为工业机器人、服务机器人、探索机器人和军事机器人。机器人核心技术的应用围绕基本结构优化与技术参数的提高。本文先将机器人的技术参数进行简单描述,对其主要知识基础与技术要求做了简单的论述,其应用的核心技术是目前国际各大企业关注的问题。[关键词]机器人;控制器;伺服系统;核心 机器人是“一种装备有记忆装置和末端执行装置的、能够完成各种移动来代替人类劳动的通用机器”。它又分为以下两种情况来定义: 工业机器人是“一种能够执行与人的上肢类似动作的多功能机器”;如图1所示。 智能机器人是“一种具有感觉和识别能力,并能够控制自身行为的机器”。如图2所示。 1工业机器人基本结构及技术参数1.1工业机器人基本结构 从机械结构上,可以分为串联和并列机器人,目前广泛应用的是串联通用机器人。串联通用机器人一般由手臂、手腕组成。机器人手臂具有3个自由度(运动坐标轴),机器人作业空间由手臂运动范围决定。手腕是机器人工具(如焊枪、喷嘴、机加工刀具、夹爪)与主构架的连接机构,它具有3个自由度。如图1所示。 图1串联通用机器人 图2智能机器人 从机器人系统整体来看,分为控制器(包括示教器)、伺服驱动系统、机构、测量及传感器。其中控制器,用于控制机器人各运动部件的位置、速度和加速度,使机器人手爪或机器人工具的中心点以给定的速度沿着给定轨迹到达目标点。控制器是机器人的大脑,其性能和功能直接决定了机器人的整体能力。驱动系统,为机器人各运动部件提供力、力矩、速度、加速度。驱动系统是机器人的肌肉,其质量、驱动能力、响应速度、稳定性,直接决定了机器人的运动能力。 目前国产工业机器人,绝大多数使用日本品牌的伺服驱动系统,如松下、安川、三菱、三洋、富士等。测量系统,用于机器人运动部件的位移、速度和加速度的测量以及工作对象的测量,如工件及其位置的识别,障碍物的识别,抓举工件的重量是否过载等。通常机器人自身运动部件及工件重量的测量,使用伺服驱动系统提供的位置及电流信息,工件位置、障碍物识别等使用机器视觉等外接的测量设备。 1.2工业机器人技术参数1.2.1自由度数和类型 自由度(DOF)是指机器人所具有的独立坐标轴运动的数目。自 由度越多就越灵活,但结构也越复杂。机器人的自由度要根据其用途设计,一般在3 ̄6个之间。如果小于3个,不能称为机器人。大于6个的自由度称为冗余自由度(空间位姿只有6个参数)。冗余自由度能使机器人避开障碍物和改善机器人的动力性能。设计人类的手臂共有7个自由度。类型指的是所设计的关节属于转动关节还是移动关节。 1.2.2结构形式 结构形式指机器人运动链的形式,包括并联、串联、混合形式,决定了机器人适应的行业。串联结构优点是工作范围大,缺点是最大速度和刚度较差。并联结构优点是速度和刚度很好,但是工作范围小。 1.2.3运动范围 运动范围指机器人关节的运动范围,决定了工作空间的大小。由于末端执行器的形状和尺寸是多种多样的,为真实反映机器人的特征参数,故工作空间是指不安装末端执行器时的工作区域。工作空间的大小不仅与机器人各连杆的尺寸有关,而且与机器人的总体结构形式有关。工作空间的形状和大小是十分重要的,机器人在执行某作业时可能会因存在手部不能到达的盲区而不能完成任务。 1.2.4最大速度 最大速度指机器人关节或末端操作器的最高运动速度,决定了机器人的最大效率。 有的厂家指工业机器人主要自由度上最大的稳定速度,有的厂家 指手臂末端最大的合成速度,对此通常都会在技术参数中加以说明。最大工作速度愈高,其工作效率愈高。 1.2.5负载能力 负载能力指机器人在一定精度和运动条件下所能承担的最大负载,是决定机器人成本的主要参数。承载能力是指机器人在作业范围内的任何位姿上所能承受的最大质量。承载能力不仅取决于负载的质量,而且与机器人运行的速度和加速度的大小和方向有关。为保证安全,通常将承载能力这一技术指标确定为高速运行时的承载能力。 1.2.6重复定位精度 重复定位精度指机器人经过多次循环运动后,到达空间同一位置和姿态的最大误差范围。重复定位精度是指在同一环境、同一条件、同一目标动作、同一命令之下,机器人连续重复运动若干次时,其位置的分散情况,是关于精度的统计数据。因重复定位精度不受工作载荷变化的影响,故通常用重复定位精度这一指标作为衡量示教-再现工业机器人水平的重要指标。 1.2.7控制方式 控制方式指机器人运动控制的方式,如示教再现、点位控制、或轨迹控制,是机器人控制器的基本指标。 1.2.8驱动方式 驱动方式指机器人是采用液压、气动、交流电机或步进电机控制等,目前先进的工业机器人通常采用交流电机驱动。 2机器人技术涉及的基本知识 机器人技术所涉及的基本知识范围广,归纳起来包括以下几个学科:1)工程力学(理论力学、材料力学)。2)高等代数(线性代数、矩阵分析)。 14

伺服电机工作原理

伺服电机的工作原理图 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 1、永磁交流伺服系统具有以下等优点: (1)电动机无电刷和换向器,工作可靠,维护和保养简单; (2)定子绕组散热快; (3)惯量小,易提高系统的快速性; (4)适应于高速大力矩工作状态; (5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2、交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

伺服电机控制技术的应用与发展

龙源期刊网 https://www.360docs.net/doc/21163750.html, 伺服电机控制技术的应用与发展 作者:黄新宇 来源:《科学导报·科学工程与电力》2019年第07期 【摘要】现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。电机的 主要功能是将电能转变为机械能,应用领域非常广泛,涉及航空、机械运转以及运输等多个行业。电力电子技术水平的不断提升,使电机功能更加多样化,尤其是在信息时代下,更体现了智能化的特点。电机为电机控制技术发展提供推动力,使其可以更加多方位地满足安全需求。处理器和数字化伺服系统的协调发展,相应提高了数控系统计算性能,达到了缩减时间的目的。硬件伺服控制系统实现了向软件伺服控制系统的转变,提高了伺服系统运行性能。这些变革都为加工技术提供了推动力。 【关键词】伺服电机;控制技术;应用与发展 1 伺服控制系统 1.1 开环伺服系统 开环伺服系统中并未设置检测反馈设备,因此也不存在运动反馈控制回路。一旦设备发出了脉冲指令,这时电动机便开始运行。虽然可能存在运动误差,但是不会做出任何信息错误反馈。期间,步进电动机在开环伺服中是最为关键的驱动部件。步进电机在步距角精度、机械传动精度等方面具有极大优势,直接关系到开环系统的精准度。通常,针对开环系统精準度没有过高要求。尽管步进电动机的转速不高,部件运行期间也存在限制,但其结构精简、可靠性高、制造成本低,所以为控制电路赋予了简单的特点。因此,开环控制系统内部没有对精度和速度提出严格要求的装置,一般会使用步进电动机。 1.2 半闭环伺服系统 该系统中的主要装置为无刷旋转变压器,用以检测位置、速度,而最关键的部件是装载中放置的脉冲编码器。电机轴中装载了系统内全部反馈信号,此外也包括负责系统机械传动的装置。非线性因素不会对系统运行造成影响,相反还会为安装调试提供便利。机械传动装置精准度与半闭环伺服系统定位精准度有直接关系,即便是机械传动装置的精度低,但是通过数控装置中具备的误差补偿和间隙补偿两种功能,也会提升其精准度。所以,半闭环伺服系统更多被应用于数控机床。 图1所示是伺服电机控制系统,它以C8051F060为核心,同时还有显示电路、编码器、编码器处理电路、RS485通信电路、伺服电机驱动电路、伺服电机。 2 伺服电机控制技术的应用

伺服电机三环控制的原理

伺服电机三环控制的原理(位置环,运动换,电流环) 一、运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。 1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。 3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。位置环的反馈也来自于编码器。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。 二、谈谈PID各自对差值调节对系统的影响: 1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。 2、单独的I(积分)就是使调节器的输出信号的变化速度与差值信号成正比,大家不难理解,如果差值大,则积分环节的变化速度大,这个环节的正比常数的比例倒数我们在伺服系统里通常叫它为积分时间常数,积分时间常数越小意味着系统的变化速度越快,所以同样如果增大积分速度(也就是减小积分时间常数)将会降低控制系统的稳定程度,直到最后出现发散的震荡过程。这个环节最大的好处就是被调量最后是没有残差的。

电机的分类和应用

电机的分类和应用 众所周知,电机是传动以及控制系统中的重要组成部分,随着现代科学技术的发展,电机在实际应用中的重点已经开始从过去简单的传动向复杂的控制转移;尤其是对电机的速度、位置、转矩的精确控制。但电机根据不同的应用会有不同的设计和驱动方式,咋看下好像选型非常复杂,因此为了人们根据旋转电机的用途,进行了基本的分类。下面我们将逐步介绍电机中最有代表性、最常用、最基本的电机——控制电机和功率电机以及信号电机。 控制电机 控制电机主要是应用在精确的转速、位置控制上,在控制系统中作为“执行机构”。可分成伺服电机、步进电机、力矩电机、开关磁阻电机、直流无刷电机等几类。 1. 伺服电机 伺服电机广泛应用于各种控制系统中,能将输入的电压信号转换为电机轴上的机械输出量,拖动被控制元件,从而达到控制目的。一般地,伺服电机要求电机的转速要受所加电压信号的控制;转速能够随着所加电压信号的变化而连续变化;转矩能通过控制器输出的电流 进行控制;电机的反映要快、体积要小、控制功率要小。伺服电机主要应用在各种运动控制系统中,尤其是随动系统。

伺服电机有直流和交流之分,最早的伺服电机是一般的直流电机,在控制精度不高的情况下,才采用一般的直流电机做伺服电机。当前随着永磁同步电机技术的飞速发展,绝大部分的伺服电机是指交流永磁同步伺服电机或者直流无刷电机。 2. 步进电机 所谓步进电机就是一种将电脉冲转化为角位移的执行机构;更通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。我们可以通过控制脉冲的个数来控制电机的角位移量,从而达到精确定位的目的;同时还可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。目前,比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。

伺服电机和伺服驱动器的使用介绍

伺服电机和伺服驱动器的使用介绍 一、伺服电机? 伺服驱动器的控制原理 伺服电机和伺服驱动器是一个有机的整体,伺服电动机的运行性能是电动机及其驱动器二者配合所反映的综合效果。 1、永磁式同步伺服电动机的基本结构 图1为一台8极的永磁式同步伺服电动机结构截面图,其定子为硅钢片叠成的铁芯和三相绕组,转子是由高矫顽力稀土磁性材料(例如钕铁錋)制成的磁极。为了检测转子磁极的位置,在电动机非负载端的端盖外面还安装上光电编码器。驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 图1 永磁式同步伺服电动机的结构 图2 所示为一个两极的永磁式同步电机工作示意图,当定子绕组通上交流电源后,就产生一旋转磁场,在图中以一对旋转磁极N、S表示。当定子磁场以同步速n1逆时针方向旋转时,根据异性相吸的原理,定子旋转磁极就吸引转子磁极,带动转子一起旋转,转子的旋转速度与定子磁场的旋转速度(同步转速n1)相等。当电机转子上的负载转矩增大时,定、转子磁极轴线间的夹角θ就相应增大,导致穿过各定子绕组平面法线方向的磁通量减少,定子绕组感应电动势随之减小,而使定子电流增大,直到恢复电源电压与定子绕组感应电动势的平衡。这时电磁转矩也相应增大,最后达到新的稳定状态,定、转子磁极轴线间的夹角θ称为功率角。虽然夹角θ会随负载的变化而改变,但只要负载不超过某一极限,转子就始终跟着定子旋转磁场以同步转速n1转动,即转子的转速为: (1-1)

图 2 永磁同步电动机的工作原理 电磁转矩与定子电流大小的关系并不是一个线性关系。事实上,只有定子旋转磁极对转子磁极的切向吸力才能产生带动转子旋转的电磁力矩。因此,可把定子电流所产生的磁势分解为两个方向的分量,沿着转子磁极方向的为直轴(或称d轴)分量,与转子磁极方向正交的为交轴(或称q轴)分量。显然,只有q轴分量才能产生电磁转矩。 由此可见,不能简单地通过调节定子电流来控制电磁转矩,而是要根据定、转子磁极轴线间的夹角θ确定定子电流磁势的q轴和d轴分量的方向和幅值,进而分别对q 轴分量和d轴分量加以控制,才能实现电磁转矩的控制。这种按励磁磁场方向对定子电流磁势定向再行控制的方法称为“磁场定向”的矢量控制。 2、位置控制模式下的伺服系统是一个三闭环控制系统,两个内环分别是电流环和速度环。 图 3 ? 稳态误差接近为零; ? 动态:在偏差信号作用下驱动电机加速或减速。

相关文档
最新文档