溶解氧对发酵的影响及其控制

溶解氧对发酵的影响及其控制
溶解氧对发酵的影响及其控制

溶解氧对发酵的影响及其控制

1 溶解氧对发酵的影响

溶氧是需氧发酵控制最重要的参数之一。由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。

1.1 溶氧量在发酵的各个过程中对微生物的生长的影响是不同的

改变通气速率发酵前期菌丝体大量繁殖,需氧量大于供氧,溶氧出现一个低峰。在生长阶段,产物合成期,需氧量减少,溶氧稳定,但受补料、加油等条件大影响。补糖后,摄氧率就会增加,引起溶氧浓度的下降,经过一段时间以后又逐步回升并接近原来的溶解氧浓度。如继续补糖,又会继续下降,甚至引起生产受到限制。发酵后期,由于菌体衰老,呼吸减弱,溶氧浓度上升,一旦菌体自溶,溶氧浓度会明显上升。

1.2 溶氧对发酵产物的影响

对于好氧发酵来说,溶解氧通常既是营养因素,又是环境因素。特别是对于具有一定氧化还原性质的代谢产物的生产来说,DO的改变势必会影响到菌株培养体系的氧化还原电位,同时也会对细胞生长和产物的形成产生影响。

在黄原胶发酵中,虽然发酵液中的溶氧浓度对菌体生长速率影响不大,但是对菌体浓度达到最大之后的菌体的稳定期的长短及产品质量却有着明显的影响。

需氧微生物酶的活性对氧有着很强的依赖性。谷氨酸发酵中,高溶氧条件下乳酸脱氢酶(LDH)活性明显比低溶氧条件下的LDH酶活要低,产酸中后期谷氨酸脱氢酶(GDH)的酶活下降很快,这可能是由于在高溶氧条件下,剧烈的通气和搅拌加剧了菌体的死亡速度和发酵活性的衰减。

DO值的高低还会改变微生物代谢途径,以致改变发酵环境甚至使目标产物发生偏离。研究表明,L-异亮氨酸的代谢流量与溶氧浓度有密切关系,可以通过控制不同时期的溶氧来改变发酵过程中的代谢流分布,从而改变Ile等氨基酸合成的代谢流量。

2 溶氧量的控制

对溶解氧进行控制的目的是把溶解氧浓度值稳定控制在一定的期望值或范围内。在微生物发酵过程中,溶解氧浓度与其它过程参数的关系极为复杂,受到生物反应器中多种物理、化学和微生物因素的影响和制约。从氧的传递速率方程也可看出,对DO值的控制主要集中在氧的溶解和传递两个方面。

2.1 控制溶氧量(C*-CL)是氧溶解的推动力,控制溶氧量首要因素是控制氧分压(C*)。高密度培养往往采用通入纯氧的方式提高氧分压,而厌氧发酵则采用各种方式将氧分压控制在较低水平。如啤酒发酵,麦汁充氧和酵母接种阶段,一般要求氧含量达到8~10PPM;而啤酒发酵阶段,一般啤酒中的含氧量不得超过2PPM。

2.2控制氧传递速率氧传递速率主要考虑KLa的影响因素。从一定意义上讲,KLa愈大,好氧生物反应器的传质性能愈好。控制KLa的途径可分为操作变量、反应液的理化性质和反应器的

结构3个部分。操作变量包括温度、压力、通风量和转速(搅拌功率)等;发酵液的理化性质包括发酵液的黏度、表面张力、氧的溶解度、发酵液的组成成分、发酵液的流动状态、发酵类型等;反应器的结构指反应器的类型、反应器各部分尺寸的比例、空气分布器的形式等。当然有些因素是相互关联的。

3适当溶解氧的选择

在好氧微生物反应中,一般取 [DO]>[DO]cri以保证反应的正常进行。临界氧浓度是不影响菌的呼吸所允许的最低氧浓度。

3.1 合适溶解氧选择的原则如果要使菌体快速生长繁殖(如发酵前期),则应达到临界氧浓度;如果要促进产物的合成,则应根据生产的目的不同,使溶解氧控制在最适浓度(不同的满足度)例如:黄色短杆菌可生产多种氨基酸,但要求的氧浓度可能不同,但对于苯丙氨酸、缬氨酸和亮氨酸的生产,则在低于临界氧浓度时获得最大生产能力,它们的最佳氧浓度分别为临界氧浓度的 0.55、0.66、0.85。

3.2 供氧方面 1)增加空气中氧的含量,使氧分压增加,2)进行富氧通气,3)提高罐压,4)增加搅拌速度。

3.3 需氧方面 1)调整养料的浓度,2)调节控制温度:溶氧浓度必须与其它参数配合此外,氧饱和度还会受到温度、罐压、发酵液性质的影响。发酵过程的需氧受到菌体浓度、营养基质的种类浓度、培养条件等因素的影响。保持最佳的菌体浓度,最适菌体浓度的控制可以通过营养基质浓度来控制。还可以控制补料速度、调节发酵温度、液化培养基、中间补水、添加表面活性剂

等来控制。

4 结束语

发酵液中的氧含量对菌体生长和产物形成都有着重要的影响,溶氧量的控制主要从氧的溶解和传递两个方面考虑。随着计算机和自动化技术的发展,发酵工业中从DO的测量到分析控制都正逐步走向自动及控制一体化模式,研究利用DO作为补料的在线控制信号将大大提高了发酵调控的准确性和自动化性能。

水域溶解氧分布特征及影响因素研究综述

水域溶解氧分布特征及影响因素研究综述 摘要:基于水域溶解氧分布特征及影响因素的前期研究成果,本文对其进行系统分区整理,总结归纳影响溶解氧含量变化的主要因素,并对后续研究方向提出建议,望能够对同行业有一定的参考性价值。 关键词:溶解氧;影响因素;研究综述 随着海洋经济不断发展,海洋污染日益严重,富含N、P等营养物质的生活、工业废水大量排入海洋造成某些海域富营养化,直接导致某些海区海水缺氧现象日益严重。溶解氧(DO)代表溶解于海水内氧气的含量,绝大部分的海洋生物均需依赖溶解氧来维持生命。溶解氧水平不仅是衡量水体自净能力的一个重要指标,也反映了海洋生物的生长状况和海水的环境质量,对海洋渔业发展有重大影响。 然而,当前低氧已经成为世界范围内沿岸物理交换不良水域的一个主要环境问题,典型的例子当属长江口外的季节性大范围底层低氧现象[1]。Vaquer-Sunyer 等人研究发现,许多海洋生物在溶解氧3mg/L~4mg/L时就受到显著影响[2]。此外,溶解氧水平在很短时间内就会发生剧烈变化,因此海洋溶解氧一直是保持海洋生态平衡最重要的环境因素之一。 为及时有效应对溶解氧含量过低对海洋环境产生的恶劣影响,针对溶解氧含量的分布特征及影响因素研究,一直是海洋环境监测和海洋动力学、海洋化学研究的重要内容之一,国内外众多学者针对重点海域、湖泊及生物养殖区溶解氧的分布特征及影响因素给予大量关注,整理归纳,主要有以下几片海域。 长江口海域溶解氧分布特征及影响因素研究 张莹莹、张经等[3]对长江口及其毗邻海域某断面上的溶解氧的分布特征的研究结果表明,在6月的航次中,DO值随着离岸距离的增加逐渐增加,底层DO值低于表层;8月份调查海区底层明显出现低氧状态,形成原因主要是海水层状结构稳定水交换较弱和有机物分解耗氧;长江径流N、P污染物的不断输入为低氧区域表层浮游植物的生长提供了丰富的营养盐,从而加剧了氧亏损。石晓勇、陆茸等[4]对长江口邻近海域的秋季溶解氧分布特征及主要影响因素进行了研究,结果显示,溶解氧平面分布整体上呈近岸高、外海低,表层高、底层低的分布趋势,在约20m深度存在溶解氧跃层。调查海域溶解氧不饱和状态由表层至底层逐渐加剧。该海域秋季溶解氧分布主要受陆地径流和外海水等物理过程控制,生物活动仅在底层溶解氧低值区有较大的影响。 黄东海海域溶解氧分布特征及影响因素研究 胡小猛、陈美君等[5]分析了黄东海海域的DO分布和季节变化规律,结果表明:基于太阳辐射导致的海水温度时空差异,影响黄东海DO分布及其季节变化的主要因素是黄海暖流和大陆入海径流。杨庆霄、董娅婕等[6]描述了黄、东

好氧发酵过程中溶氧的影响因素和控制策略

好氧发酵过程中溶氧的影响因素和 控制策略 作者:刘伟 单位:河北天俱时自动化科技有限公司 2009年4月10日

好氧发酵过程中溶氧的影响因素和控制策略 刘伟 河北天俱时自动化科技有限公司 摘要:好氧发酵过程中溶氧检测值受多种参数的影响,包括生物代谢过程本身,也包括外部补料、通风量等,为了保证发酵过程中合适的溶解氧含量,对溶氧值进行控制,本文分析了溶氧检测值的影响因素,并指出溶氧控制的一般性控制策略。 关键词:好氧发酵,溶氧调节 一、引言 好氧发酵过程溶氧浓度(DO)是一个非常重要的发酵参数,它既影响细胞的生长,又影响产物的生成。控制发酵液溶氧值一方面可以改善微生物的生长代谢环境,有效促进发酵单位的提高,另一方面还可以起到节能降耗的作用,对企业生产意义重大。 二、影响因素 通常情况下,对发酵液溶氧参数影响较大的几个物理参数包括:通风量、搅拌转速、发酵罐温度、压力等。 通风量的影响 通风量的影响是最直观的,溶氧值大小的影响最主要的是进入发酵罐的氧的量,因为在好氧发酵过程中,如果截断进风的补给发酵液中的氧很快将被微生物消耗掉,通常在进风管道上安装调节阀门进行进风流量的调节。 搅拌的影响 由于溶氧电极在工作中存在明显的电流,自身消耗大量的氧。电

极的信号与氧向电极表面传递的速率成比例,而氧的传递速率则受氧跨膜扩散速率控制。这一速率与发酵液的浓度成比例,其比值(以及电极的校准)取决于总的传质过程。电极的一般工作条件是,氧向膜外表面的传递速率很快且不受限制。因此整个过程受跨膜传递的限制,比例常数(传质系数)较易维持恒定。发酵实验时搅拌操作可以获得满意的跨膜传递速率。需要指出,在对电极进行最初校准的过程中,必须对发酵罐进行搅拌。 温度的影响 溶氧电极的信号随温度的升高而显著增强,这主要是因为温度影响氧的扩散速率。发酵实验过程中需控制发酵罐的温度,因为即使0.5℃左右的温度变化,也会使电极信号发生显著变化(超过1%)。溶氧读数的周期性变化(每隔若干分钟观察1次)显示了温度波动的影响,而且较大的温度变化能引起校准的较大漂移。因此在实验过程中改变温度控制时要格外注意。在以发酵罐的操作温度进行控制以前,需对溶氧电极进行校准。考虑到上述影响的存在,一些溶氧电极带有温度传感器等仪表,以实现自动温度补偿。此外,对于具有计算机监控的发酵罐,可利用来自独立的温度传感器的信号,由相关软件实现温度补偿。 压力的影响 压力变化会影响溶氧电极的读数,尽管这实际上反映了溶氧的变化情况。电极的响应主要由溶液的平衡氧分压确定。读数通常表示为大气压下空气的饱和度(%),100%的溶氧张力(DOT)约相当于160mmHg (1mmHg≈133Pa)的氧分压。如果发酵液的平衡气体总压发生变化,

溶解氧影响因素

什么是水的溶解氧?受哪些因素的影响? 溶解于水中的游离氧称为溶解氧,常以mg/L、ml/l等单位来表示.天然水中氧的主要来源是大气溶于水中的氧,其溶解量与温度/压力有密切关系.温度升高氧的溶解度下降,压力升高溶解度增高.天然水中溶解氧含量约为8-14mg/l,敞开式循环冷却水中溶解氧一般约为5-8mg/L. 水体中的溶解氧含量的多少,也反映出水体遭受到污染的程度.当水体受到有机物污染时,由于氧化污染质需要消耗氧,使水中所含的溶解氧逐渐减少.污染严重时,溶解氧会接近于零,次数厌氧菌便滋长繁殖起来,并发生有机物污染的腐败而发臭.因此,溶解氧也是衡量水体污染程度的一个重要指标. 影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。 1. 温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a 的影响可以根据Henry 定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。 (1)氧的溶解度系数:由于溶解度系数a 不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a 的变化约为2%/ ℃。 (2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T 的关系为: C=KPo2·exp(-β/T),其中假定K、Po2 为常数,则可以计算出β在25℃时为2.3%/ ℃。当溶解度系数a 计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。 2. 大气压的影响根据Henry 定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。

溶解氧对发酵的影响及其控制

溶解氧对发酵的影响及其控制 1 溶解氧对发酵的影响 溶氧是需氧发酵控制最重要的参数之一。由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。 1.1 溶氧量在发酵的各个过程中对微生物的生长的影响是不同的 改变通气速率发酵前期菌丝体大量繁殖,需氧量大于供氧,溶氧出现一个低峰。在生长阶段,产物合成期,需氧量减少,溶氧稳定,但受补料、加油等条件大影响。补糖后,摄氧率就会增加,引起溶氧浓度的下降,经过一段时间以后又逐步回升并接近原来的溶解氧浓度。如继续补糖,又会继续下降,甚至引起生产受到限制。发酵后期,由于菌体衰老,呼吸减弱,溶氧浓度上升,一旦菌体自溶,溶氧浓度会明显上升。 1.2 溶氧对发酵产物的影响 对于好氧发酵来说,溶解氧通常既是营养因素,又是环境因素。特别是对于具有一定氧化还原性质的代谢产物的生产来说,DO的改变势必会影响到菌株培养体系的氧化还原电位,同时也会对细胞生长和产物的形成产生影响。 在黄原胶发酵中,虽然发酵液中的溶氧浓度对菌体生长速率影响不大,但是对菌体浓度达到最大之后的菌体的稳定期的长短及产品质量却有着明显的影响。

需氧微生物酶的活性对氧有着很强的依赖性。谷氨酸发酵中,高溶氧条件下乳酸脱氢酶(LDH)活性明显比低溶氧条件下的LDH酶活要低,产酸中后期谷氨酸脱氢酶(GDH)的酶活下降很快,这可能是由于在高溶氧条件下,剧烈的通气和搅拌加剧了菌体的死亡速度和发酵活性的衰减。 DO值的高低还会改变微生物代谢途径,以致改变发酵环境甚至使目标产物发生偏离。研究表明,L-异亮氨酸的代谢流量与溶氧浓度有密切关系,可以通过控制不同时期的溶氧来改变发酵过程中的代谢流分布,从而改变Ile等氨基酸合成的代谢流量。 2 溶氧量的控制 对溶解氧进行控制的目的是把溶解氧浓度值稳定控制在一定的期望值或范围内。在微生物发酵过程中,溶解氧浓度与其它过程参数的关系极为复杂,受到生物反应器中多种物理、化学和微生物因素的影响和制约。从氧的传递速率方程也可看出,对DO值的控制主要集中在氧的溶解和传递两个方面。 2.1 控制溶氧量(C*-CL)是氧溶解的推动力,控制溶氧量首要因素是控制氧分压(C*)。高密度培养往往采用通入纯氧的方式提高氧分压,而厌氧发酵则采用各种方式将氧分压控制在较低水平。如啤酒发酵,麦汁充氧和酵母接种阶段,一般要求氧含量达到8~10PPM;而啤酒发酵阶段,一般啤酒中的含氧量不得超过2PPM。 2.2控制氧传递速率氧传递速率主要考虑KLa的影响因素。从一定意义上讲,KLa愈大,好氧生物反应器的传质性能愈好。控制KLa的途径可分为操作变量、反应液的理化性质和反应器的

溶解氧和造成溶氧不足的原因

溶解氧和造成溶氧不足的原因 内容摘要:水质对养殖的水生动物起着至关重要的作用。正常的养殖水体(未被工业污染),影响水质的主要指标是pH值(酸碱度)、溶解氧、氨氮、亚硝酸盐、硫化氢等5项指标。重金属、农药、化工污水等污染的水源,如超出《渔业水质标准》,则不能用于水产养殖生产。对养殖用水,必须定期进行全面科学检测。如果片面检测或仅凭经验主观判断,可能招致灾难性的后果。 一、养鱼先养水,好水养好鱼 俗话说:“养鱼先养水,好水养好鱼”。水是鱼、虾、蟹、鳖、龟、蛙等水产养殖动物的生活环境,水质的好坏直接影响到水产养殖生物的生长和发育,从而影响到产量和经济效益。每一种水产动物都需要有适合其生存的水质条件,水质若能满足要求,养殖动物就能顺利生长发育。如果水质的一些基本指标超出生物的适应和忍耐范围,轻者养殖动物生长速度缓慢,成活率降低,饲料系数提高,经济效益下降。重者可能造成养殖动物的大批死亡,引起严重的经济损失。 恶化的水质不仅有害于动物机体的健康,甚至还危及它们的生命。众所周知水是一种优良的溶剂和悬浮剂,它可溶解各种气体,如氧气、二氧化碳、氨和硫化氢等,也可溶解各种盐类,如亚硝酸盐、磷酸盐、碳酸盐、硫酸盐等,还可悬浮尘埃、有机碎屑、细菌、藻类、小型的原生动物以及各种虫卵等。水体中溶解和悬浮的种种有形或无形的物质和成分,其中一部分对水产动物的生长、发育是必需的,有一些是无益的,而另一部分则是有害的,或者在含量较多时有害,同样,它们对水体中的其他生物,也有有利和不利的方面,特别是某些成分对养殖动物生长和健康不利,而对一些病原体(如病原菌、寄生原生动物)的繁殖、滋生以及产生毒力等是必需的,就容易导致疾病的发生。 水质对养殖的水生动物起着至关重要的作用。正常的养殖水体(未被工业污染),影响水质的主要指标是pH值(酸碱度)、溶解氧、氨氮、亚硝酸盐、硫化氢等5项指标。重金属、农药、化工污水等污染的水源,如超出《渔业水质标准》,则不能用于水产养殖生产。对养殖用水,必须定期进行全面科学检测。如果片面检测或仅凭经验主观判断,可能招致灾难性的后果。 科学的检测的可得出正确的数据。这些数据可以告诉养殖者水质的状况,从而判断水质是否满足水产动物生长的要求,以及是否会引起动物发病。水质检测的另一个作用是为改善水质、鱼病用药提供依据,减少因施肥、投饵、用药等日常管理造成的鱼类死亡损失。因此,水质检测是保证水质健康的必要,也是水产健康养殖的基础。 二、溶解氧——水产动物生命要素 同人一样,水产动物也必须在有氧的条件下生存,不同的是人呼吸空气中的氧气,而水产动物呼吸的是水体中的溶解氧。水体缺氧可使其浮头,严重时泛塘致死。 1. 养殖(育苗)水体溶氧要求 一般来说,养殖(育苗)水体的溶解氧应保持在5~8mg/l(ppm),至少应保持3mg/l 以上。各种鱼、虾类的需要溶解氧条件如表1。

1 溶解氧对发酵的影响

1 溶解氧对发酵的影响 溶氧是需氧发酵控制最重要的参数之一。由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。 1.1 溶氧量在发酵的各个过程中对微生物的生长的影响是不同的 改变通气速率发酵前期菌丝体大量繁殖,需氧量大于供氧,溶氧出现一个低峰。在生长阶段,产物合成期,需氧量减少,溶氧稳定,但受补料、加油等条件大影响。补糖后,摄氧率就会增加,引起溶氧浓度的下降,经过一段时间以后又逐步回升并接近原来的溶解氧浓度。如继续补糖,又会继续下降,甚至引起生产受到限制。发酵后期,由于菌体衰老,呼吸减弱,溶氧浓度上升,一旦菌体自溶,溶氧浓度会明显上升。 1.2 溶氧对发酵产物的影响 对于好氧发酵来说,溶解氧通常既是营养因素,又是环境因素。特别是对于具有一定氧化还原性质的代谢产物的生产来说,DO的改变势必会影响到菌株培养体系的氧化还原电位,同时也会对细胞生长和产物的形成产生影响。[1] 在黄原胶发酵中,虽然发酵液中的溶氧浓度对菌体生长速率影响不大,但是对菌体浓度达到最大之后的菌体的稳定期的长短及产品质量却有着明显的影响。 [2] 需氧微生物酶的活性对氧有着很强的依赖性。谷氨酸发酵中,高溶氧条件下乳酸脱氢酶(LDH)活性明显比低溶氧条件下的LDH酶活要低,产酸中后期谷氨酸脱氢酶(GDH)的酶活下降很快,这可能是由于在高溶氧条件下,剧烈的通气和搅拌加剧了菌体的死亡速度和发酵活性的衰减。[3] DO值的高低还会改变微生物代谢途径,以致改变发酵环境甚至使目标产物发生偏离。研究表明,L-异亮氨酸的代谢流量与溶氧浓度有密切关系,可以通过控制不同时期的溶氧来改变发酵过程中的代谢流分布,从而改变Ile等氨基酸合成的代谢流量。[4] 2 溶氧量的控制

溶氧对氨基酸发酵的影响及控制

溶氧对氨基酸发酵的影响及控制 【摘要】本文对溶解氧在氨基酸微生物工业发酵的影响及控制策略进行了系统分析和探讨。 【关键词】氨基酸发酵;DO;溶解氧控制 利用微生物发酵生产氨基酸的技术已历半个多世纪。氨基酸生物发酵是一个复杂的生化反应过程,溶解氧是氨基酸发酵生产工艺的一个非常重要的控制参数[1]。发酵液中溶氧的高低直接影响菌体的生长和代谢产物的积累,并最终决定着氨基酸产量的高低[2]。因此,研究溶解氧在氨基酸微生物工业发酵中对产物生产的影响及控制策略,对氨基酸发酵工艺管理的优化和工艺过程的放大具有重要意义。笔者对氨基酸发酵工艺的供氧问题进行了分析与探讨,对增加溶氧的主要方法进行了综述,以期对氨基酸工业生产提供一定的借鉴。 1 氧在氨基酸好氧发酵过程的作用 氨基酸发酵生产菌大多为需氧菌或兼性厌氧菌。发酵液中的氧(溶解氧)是菌体生长与代谢的必需品。氨基酸的发酵过程主要包括菌体生长和代谢产物积累2个阶段,溶解氧在氨基酸发酵中的主要作用有两点:①参与氨基酸生物合成所必须的ATP,以完成生物氧化作用,并使菌体能够充分生长;②只有在氧的存在下,氨基酸的生物合成过程中产生的NAD(P)H2才能被氧化生成NAD(P),确保反应向合成氨基酸产物的方向进行。因此在氨基酸发酵过程中要保持一定的溶氧量来满足菌体生长和产酸的耗氧需要;溶氧的高低,应该根据不同菌种,不同培养阶段和培养条件等具体情况决定,将溶解氧控制在一个最佳水平以实现糖和酸最大转化率。 1.1 溶解氧对菌体生长的影响 氨基酸发酵的前期是菌体生长的主要阶段,如果发酵液中溶解氧的浓度受到限制,就会影响菌体的生长与繁殖,进而影响到最终的氨基酸产量。如谷氨酸发酵过程中,在菌体生长期,溶解氧浓度过低,在产酸期则抑制谷氨酸合成,生成大量代谢副产物;反之,溶解氧浓度过高,菌体生长受到高氧抑制,生长慢,耗糖慢,造成后期菌体容易衰老,导致糖酸转化率偏低[3]。 1.2 溶解氧对发酵产物积累的影响 氨基酸发酵按照合成途径不同,需氧量的差异可分为三类,第一类,是合成期需供氧充分,产酸量才能达最大的谷氨酸系氨基酸;第二类,是合成期满足供氧,就能达到最高产量,一但供氧受限,产量会受影响但并不十分明显的是天冬氨酸系氨基酸;第三类,是只有在供氧受限、细胞呼吸受抑制时,才能获得最大量的氨基酸,如果供氧充足,产物形成反而受到抑制的亮氨酸、缬氨酸和苯丙氨酸等。因此,在实际生产应用中,应根据合成氨基酸种类及具体需要确定溶氧控

梅特勒-托利多_过程分析_【故障处理】溶氧电极发酵后期读数波动_任嘉麟

知识标题:发酵后期溶氧电极波动的故障处理方法 标签:氧,光学氧,电极,溶解氧,细胞培养,波动 知识来源:□原创;□官方 知识类型:□接线图;□安调指导;□故障处理;□校准说明;□维护保养;□证书;□专业理论;□其他__________ 专业分类:□PH;□DO;□GAS;□电导率;□TOC;□浊度;□CO2;□Si/Na;□Cl/S;□微生物;□Ozone;□其他__________ 设备类型:□传感器;□变送器;□护套;□线缆;□分析仪;□自清洗; □其他__________ 信号类型:□模拟;□智能ISM;□其他__________ 变送器:□M100;□M200;□M300;□M400;□M700;□M800;□M420;□X100;□便携式;□其他__________ 适用行业:□电力;□食品;□化工;□制药;□其他__________ 证书类型:□防暴;□通讯协议;□卫生;□材料材质;□生产标准;□出场证书; □其他__________ 摘要: 本文主要介绍了生物发酵罐,特别是研发小罐,在发酵后期读数波动的解决方法。

下图是细胞培养中常见的一种溶解氧测量读数波动现象,常常会发生在发酵后期。用户往往会发现在发酵后期读数会有不可控波动情况产生。以下介绍了一些故障排查办法。 发酵溶解波动趋势图 遇到类似问题以后,最常见的手段就是过程校准了。但是过程标定往往会更改斜率,影响测量的准确度。

产生这种故障现象的原因一般分为以下几类: 1.极谱氧电极的膜片和电解液没有定期更换或者校准错误导致 2.极谱氧电极内电极积液造成读数波动 3.气泡干扰 4.随着发酵进行,生物生长覆盖传感器膜的现象 5.消泡剂干扰 解决办法: 1.上罐标定前必须正确检测电极性能SOP。严格按照以下步骤操作可以最大程度 的避免上罐后电极异常和波动的产生。在检测电极前建议先更换溶氧膜片和电解液。并作极化(建议6小时) 检测内电极和电极杆的空载电流值:如图所示,将电极连接仪表,并取下溶氧膜把内电极擦干,置于空气中,同时观察电流值。 正常电极空载电流值<±0.03nA(一般使用的电极也应小于±0.5nA)如果大于±1nA则说明电极内有积液,需返厂维修。

影响水中化学需氧量检测的因素分析

影响水中化学需氧量检测的因素分析 水体污染的重要指标之一便是化学需氧量过高,文章从还原性物质、空白实验值及其他方面分析对化学需氧量测定结果的影响进行了分析,并提出相应的解决方法。希望能够为相关工作提供参考。 标签:化学需氧量;检测;因素分析 化学需氧量作为衡量水质标准的一项重要指标,其检测结果的准确性也受到了有关政府部门的高度重视。水中存在着很多还原性的物质,如氯离子、二价铁离子、硫离子等,这些物质会影响化学需氧量测定结果的准确性;此外,水样的取样过程、水样的保存、运输和实验过程中使用的试剂质量、实验用水、试剂加入量、回流时间,以及不同实验人员的操作等,都会对实验结果造成一定程度的影响。因此,作为实验室检测人员有必要对影响其检测结果的因素进行分析,并在检测过程中消除这些因素,保证结果的准确性。文章重点从以下几个方面对影响COD检测结果的准确性的因素进行了简单分析。 1 水中的还原性物质对化学需氧量检测的影响及其解决办法 1.1 氯离子对测定的影响及解决方法 氯离子能够降低催化剂的浓度,导致有机物在进行氧化时并不完全,是测定过程中主要的影响因素。银离子会与氯离子发生反应,使得测定的结果较标准值低;在酸性的条件下,氯离子会被重铬酸钾氧化,反应中产生氯气,氯气能够将水中其他的还原性离子氧化如硫离子和二价铁离子,并且自身为气态能够逸出,导致化学需氧量的测定值偏高。通常实验室采用加入硫酸汞的方法除去部分氯化物,经回流后,氯离子与硫酸汞结合成可溶性的氯汞络合物。 1.2 二价铁离子和硫离子对测定的影响及解决方法 一些水样当中含有二价铁离子和硫离子等干扰元素,在测定前要先测定原始的浓度,默认氧化量是固定的,在测定实验的计算中扣除二价铁离子和硫离子的耗氧量,从而得到实际的化学需氧量。但是这种方法只是理想环境下的方法,在实际应用中的可行性不大,因此可以在水样中提前通入空气,将二价铁离子和硫离子氧化形成沉淀进而除去。 1.3 氨分子或铵根离子对测定的影响及解决方法 当水中有氯离子存在时,氨根离子会发生这样的反应:6NH3+7Cr2O+56H+=6NO2+14Cr3++32H2O,对测定结果的影响更大。因此,可以对水中的氯离子进行消除或是利用重铬酸钾溶液进行测定。 2 空白实验的值对检测的影响及其解决办法

溶氧对发酵的影响及其控制

溶氧对发酵的影响及其控制 摘要:发酵液中的溶氧浓度(Dissolved Oxygen,简称DO)是影响发酵的关键因素,对微生物的生长和产物形成有重要的影响。要根据氧的溶解特性及微生物对氧的需求,分析溶氧对发酵的影响及对发酵产物的影响,进而确定溶氧量的控制及在发酵液中的传递,使生产效益最大化。 关键词:溶氧发酵代谢溶氧量控制传递 Abstrac t: The dissolved oxygen concentration in the fermentation broth (Dissolved Oxygen, referred to as DO) is the key factor to influence the fermentation, has an important influence on microbial growth and product formation. According to the demand of dissolution characteristics and microbial oxygen on oxygen, analysis of the effects of dissolved oxygen on the fermentation and the effect on fermentation, and then determine the control of dissolved oxygen in the fermentation broth and transfer, the maximum production efficiency. Key words: dissolved oxygen; fermentation; metabolism;Dissolved oxygen control transfer 溶氧浓度(DO)作为发酵控制中的一个关键参数,直接影响着发酵生产的稳定性和生产成本,受到工业生产和实验室研究的重视,无论是厌氧还是需氧发酵,研究发酵液中溶氧对发酵的影响都有重要意义。 一·氧的溶解特性 溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,用DO 表示。氧是一种难溶气体,在常压、25℃的条件下,空气中的氧在纯水中的溶解度仅约为0.25mmol/L,在发酵液中,由于各种溶解的营养成分、无机盐和微生物[3] 的代谢产物存在,会明显降低氧的溶解度。此外,溶氧浓度会随着温度、气压、盐分的变化而变化。一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。其中就提到一个临界溶氧浓度的确定。 临界溶氧浓度的确定,如右图:[2] 在发酵过程中停止供气,通过观察发酵体系 中DOT的变化可以大致确定细胞生长的临界

好氧发酵常见问题

好氧发酵常见问题答疑 好氧发酵温度高,厌氧发酵温度低;进入的空气越多,温度越高,反之温度越低;空气越多时,微生物繁殖越多,反之繁殖越少;菌体蛋白并非一定比植物蛋白好等等;由此再引申出以下结论: ① 以喂养动物为目的的发酵糟渣发酵中,应该尽量用厌氧发酵法(尽量压实压紧密封好),以避免产生高温高热的现象;以免损耗消化能代谢能,以及损失维生素等; ② 在发酵制作堆肥,以制作肥料为目的的发酵中,才需要采用好氧发酵,产生大量的热量和温度,来消耗掉物料中的能量,以免将来做肥料时,造成烧根; ③ 越是疏松的发酵物料如(啤酒糟、统糠、麦麸米糠、带壳的酒糟、秸秆……),越容易在物料内部藏有空气,越容易发酵产热,发酵温度也较高;对于这些物料,必须用力压实压紧(作有机肥除外); ④ 发酵床养猪中的垫料发酵目的是为了分解粪便,所以,是好氧发酵,必须注意让适当的空气进入垫料,才好充分分解粪便,但是夏天天气热,猪容易产生热应激,所以,夏天要注意少用点刨花、谷壳等粗料,多用点锯末等细料(但也不能全部用锯末),目的是适当控制进入垫料中的空气,避免发热量太大; ⑤ 微生物菌体蛋白不一定比植物蛋白好,因为菌体蛋白含有较难溶解的细胞壁,影响了菌体内部的细胞质蛋白的消化吸收,而植物细胞壁相对比较容易酶解,从而释放植物蛋白;所以,从这一点看,发酵糟渣应该以静悄悄的厌氧发酵和酶解反应为主,而不是追求大量繁殖微生物菌体,当然对鸡粪是例外; ⑥ 鸡粪本身含非蛋白氮比较多,真蛋白率比较少,所以,相对其他糟渣的发酵来讲,需要一定的好氧发酵,所以,可以实行二段发酵法,即先密封发酵几天后,再翻堆一次,进入一些空气,再密封继续进行发酵,目的是适当繁殖微生物菌体,让微生物来同化非蛋白氮,成为菌体蛋白,提高真蛋白率。 ⑦ 发酵糟渣的开头几天,会把糟渣里面藏有的空气消耗掉,所以,头几天可能温度高一些,但在消耗掉了物料里面的空气后,则进入完全的厌氧发酵过程,温度自然会降下来; ⑧ 含水量在30~40%时,由于物料不能充分吸水膨胀软化,反而是体积膨胀了,比干的时候更加疏松了,物料颗粒间隙藏有大量的空气,所以,这个含水量情况下发酵产热比较大,含水又较少,所以料温会很高;而在含水量50~60%的情况下,物料充分吸水膨胀和软化,相互间粘结,通过压实后,物料颗粒间基本不存在空气,所以,本身发热较小,加上含水量

汽轮机凝结水溶解氧量高的原因分析及对策

汽轮机凝结水溶解氧量高的原因分析及对策 【关键词】凝结水,溶解氧,空气漏入,过冷度 【论文摘要】本文提出空气的漏入和凝结水过冷是凝结水溶解氧的原因,凝结水溶解氧影响机组经济性和安全性,并且是缓慢的过程,对此提出了对策,供运行和有关部门参考。 大机组随着参数、自动化程度的提高,对热力循环的工作介质的品质要求也越来越高,对汽轮机凝结水的水质要求的标准逐步提高,凝结水溶解氧量是表征凝结水水质的重要指标之一,下面对凝结水溶解氧量的机理、因素及技术发展进行分析,提出了采取的措施,供设计和运行维护参考。 凝汽器内除氧技术的发展:早先的中低压汽轮机的凝汽器热水井无除氧淋水装置和凝汽器冷却水管束布置不合理,蒸汽直接加热热水井凝结水效果不好等,随着对凝结水水质的要求越来越高,高压机组、超高压机组、亚临界机组凝汽器开始设置有淋水装置和汽轮机排汽直接加热凝结水的设计,来减少凝结水过冷,前苏联和美国电站广泛采用凝汽器鼓泡装置,并且近几十年来,研制了凝汽器加热凝结水的除氧装置和扫气式除氧装置。凝汽器内鼓泡装置,在热水井的凝结水被蒸汽鼓泡搅动而混合加热,凝结水被加热到饱和温度时,释放出非凝结气体,这种装置在低负荷启动和非正常工况下投运。加热凝结水的除氧装置是1984年2月Katsumoto ohtake等人提出快速去除凝汽器内凝结水中氧气的除氧装置,凝汽器内设有用隔板分割成明渠和暗渠,明渠中设有加热装置,凝结水先进入明渠被蒸汽加热,对凝结水除氧后流向暗渠,这种设施对全部凝结水加热,使除氧效果更好,除氧时间更短。扫气式除氧装置是日本Keizo ishida等人于1983年2月提出热水井除氧效果好和阻止氧气重新溶于凝结水的除氧装置,此结构是热水井和冷却水管之间安装两块倾斜上下错开的隔板,隔板固定凝汽器前后壁,凝结水沿此隔板曲折流动,热水井底部引入辅助蒸汽与凝结水流向相反,这样改善凝汽器除氧性能,并且除氧时间短。 1凝结水溶解氧原因分析 凝结水溶解氧的机理:由于凝汽器内空气进入和凝结水存在过冷,使凝结水中溶解氧,这就是凝结水溶解氧的机理。空气漏入量增加,凝结水溶解氧量增加,凝结水过冷度增加,凝结水溶解氧量也随之增加,如果空气不进入和过冷度为零,氧气在液体里的溶解度趋于零,因此凝汽器被设计成象除氧器那样,并且在满负荷时效果最佳,这是理想状态,影响凝结水溶解氧的两个因素是凝结水存在过冷度和空气的进入。 1.1 过冷的原因 凝结水过冷度表征凝汽器热水井中凝结水的过冷却程度,凝结水热水井出口凝结水温度与凝汽器在排汽压力下对应的饱和温度之差称为过冷度。现代装置对凝汽器要求其过冷度不超过0.5—1℃。过冷度增加,凝结水溶解氧量也随之增加,因此过冷度不仅影响低压给水系统的腐蚀,而且也影响凝汽器空气漏入量的估算,机组的经济性和安全性。 过冷的原因:由于蒸汽从排汽口向下部流动时产生阻力,造成下部蒸汽压力低于上部压力,下部凝结水温度较上部低,从而产生过冷,此外蒸汽被冷却成液滴时,在凝汽器冷却水管间流动,因液滴的温度比冷却水管管壁温度高,凝结水降温从而低于其饱和温度,产生过冷,以及空气漏入,空气分压力增大,蒸汽的分压力相对降低,蒸汽仍在自己的分压力下凝结,使凝结水温度低于排汽温度,产生过冷,如果抽气器不能及时抽出,增大了传热阻力,

凝结水溶氧大原因分析

凝结水溶氧大原因分析及解决方案探讨 火电厂机组凝结水溶解氧是电厂化学监督的主要指标之一,凝结水溶氧高低将直接影响机组的安全、经济运行,根据电力技术监督的规定要求,300MW亚临界发电机组,凝结水溶氧含量应≤30μg/L。但国内投运的300MW机组,特别是国产机组,普遍存在凝结水溶解氧超标且长期不合格的问题,因此,掌握凝结水溶氧高的各方面因素,并能及时地查找消除对发电机组的健康经济运行显得尤为重要。 1凝结水溶氧超标对发电机组的危害 凝结水含氧量过大对机组造成的危害主要有以下几方面: 1.1 缩短设备的寿命凝结水溶解氧大幅度超标或者长期不合格,会加速凝结水管道设备腐蚀及炉前热力系统铁垢的产生。凝结水溶解氧严重超标时,还会导致除氧器后给水溶解氧超标,影响锅炉受热面传热效率,加速锅炉管道设备腐蚀结垢乃至发生锅炉爆管等事故,严重威胁机组的安全、经济运行。 1.2 降低回热设备的换热效率在汽轮机的回热系统中,采用的是表面式换热器,设备的腐蚀产物附着在换热面上,形成疏松的附着层,同时,凝结水中含氧过多,会使换热面上形成一层薄膜,均使换热热阻增大,降低循环的热效率。 1.3 影响机组的真空为了保证机组的稳定经济运行,凝汽器必须处于高度的 真空状态。过多的空气漏入凝汽器,会造成真空降低,一方面会影响机组的经济性,严重时将降低机组的出力;另一方面,也使得抽气系统的抽气负荷增加,增加了厂 用电量。 2影响凝结水溶氧的因素 由于凝汽器、空气系统及凝结水泵正常运行中处于负压状态,系统中的每个不严密处都有可能漏入空气而影响凝结水的溶氧含量。归结起来有如下几个方面: 2.1 化学制水设备及凝汽器补水方式特点对凝结水溶解氧的影响 凝汽器补水来源于化学制备的除盐水,除盐水溶氧指标合格与否将对凝结水溶氧产生最直接的影响,很多电厂在一定程度上忽视对除盐水溶氧指标的控制,大量的实验结果表明,除盐水溶氧≤100ug/l时,凝结水溶氧即能得到保障。现阶段大部分电厂化学制水除碳器不外乎真空除气器和鼓风式两种,在除二氧化碳的

发酵罐对发酵过程中溶氧控制

发酵罐对发酵过程中溶氧控制 在微生物/细胞发酵过程中,溶氧是需氧发酵控制中最重要的参数之一。溶氧的大小对发酵产物的形成及产量都会产生不同的影响,其结果直接影响整个发酵的效率。 现在市面上发酵罐对溶氧的控制,主流的方式是通过控制通入气体的量或者改变通入气体中氧气的比例来调节发酵液中溶氧%。更高一级的控制是将发酵液中溶氧%和通入气体的量、搅拌桨的转速、添加的补料及罐压进行关联,从而通过发酵系统自动控制这些参数来调节溶氧%。但是,直到今日,还没有任何一家发酵罐制造厂家的发酵罐能实现溶氧%与上述4个参数实现4级以上关联。现在市场上普遍能实现的是二级关联,及溶氧%与搅拌转速和通气量的关联,而其中做的最好的是赛多利斯(贝朗)发酵罐,由于其柜式集成化自动关联控制系统,能对发酵总体要求进行自动化多级(最多4级)参数关联调节。 2012年香港环球分析测试仪器有限公司引进了意大利Solaris发酵罐/生物反应器,其智能化的控制系统和全自动化的设计,实现了溶氧%与上述参数4级以上关联,准确说是在参数上下限限制条件内,能实现无限制关联,从而使发酵过程中溶氧%的控制更加方便和精确,并为高密度培养中需要更高的溶氧浓度提供了可能。 意大利Solaris发酵罐/生物反应器的这一特点,在不同程度上超越了赛多利斯(贝朗)等同类厂家,使其在全球的用户感受到实实在在的技术革新。 Solaris发酵罐/生物反应器实现溶氧%无限制关联界面图如下: 上图设置方式是先设定一个你需要的溶氧%,然后,将其与搅拌桨转速关联,如果当转速达到设定的上限的时候实现了你需要的溶氧%,就不进行下一级的关联;如果没有达到你需要的溶氧%,那么你就可以设置2级关联,如果达到设定参数的上限还未达到你需要的溶氧%,那么你就可以设置3级关联,如果达到设定参数的上限还未达到你需要的溶氧%,那么你就可以设置4级关联,如此循环下去,直至达到你需要的溶氧%。在此设置关联参数过程中,同一参数可重复多次设定。

氧气对发酵的影响

发酵工艺控制——氧对发酵的影响及控制 录入时间:2010-8-13 9:26:18 来源:青岛海博《微生物工程》 在好氧深层培养中,氧气的供应往往是发酵能否成功的重要限制因素之一。通气效率的改进可减少空气的使用量,从而减少泡沫的形成和杂菌污染的机会。 一、溶解氧对发酵的影响 溶氧是需氧发酵控制最重要的参数之一。由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。 需氧发酵并不是溶氧愈大愈好。溶氧高虽然有利于菌体生长和产物合成,但溶氧太大有时反而抑制产物的形成。因为,为避免发酵处于限氧条件下,需要考查每一种发酵产物的临界氧浓度和最适氧浓度,并使发酵过程保持在最适浓度。最适溶氧浓度的大小与菌体和产物合成代谢的特性有关,这是由实验来确定的。根据发酵需氧要求不同可分为三类:第一类有谷氨酸、谷氨酰胺、精氨酸和脯氨酸等谷氨酸系氨基酸,它们在菌体呼吸充足的条件下,产量才最大,如果供氧不足,氨基酸合成就会受到强烈的抑制,大量积累乳酸和琥珀酸;第二类,包括异亮氨酸、赖氨酸、苏氨酸和天冬氨酸,即天冬氨酸系氨基酸,供氧充足可得最高产量,但供氧受限,产量受影响并不明显;第三类,有亮氨酸、缬氨酸和苯丙氨酸,仅在供氧受限、细胞呼吸受抑制时,才能获得最大量的氨基酸,如果供氧充足,产物形成反而受到抑制。 氨基酸合成的需氧程度产生上述差别的原因,是由它们的生物合成途径不同所引起的,不同的代谢途径产生不同数量的NAD(P)H,当然再氧化所需要的溶氧量也不同。第一类氨基酸是经过乙醛酸循环和磷酸烯醇式丙酮酸羧化系统两个途径形成的,产生的NADH量最多。因此NADH氧化再生的需氧量为最多,供氧愈多,合成氨基酸当然亦愈顺利。第二类的合成途径是产生NADH的乙醛酸循环或消耗NADH的磷酸烯醇式丙酮酸羧化系统,产生的NADH量不多,因而与供氧量关系不明显。第三类,如苯丙氨酸的合成,并不经TCA循环,NADH产量很少,过量供氧,反而起到抑制作用。肌苷发酵也有类似的结果。由此可知,供氧大

浅谈影响水中化学需氧量监测的因素 马芳

浅谈影响水中化学需氧量监测的因素马芳 发表时间:2020-03-03T15:50:23.377Z 来源:《基层建设》2019年第29期作者:马芳 [导读] 摘要:化学需氧量是测量水样中需要被氧化的还原性物质的量,是我囯水质的常规监测项目。 山东省日照生态环境监测中心山东省日照市 276800 摘要:化学需氧量是测量水样中需要被氧化的还原性物质的量,是我囯水质的常规监测项目。化学需氧量过高,说明发生水体污染。文章主要对水中化学需氧量监测的影响因素进行分析。 关键词:水化学需氧量;监测;影响因素 化学需氧量是测量水样中需要被氧化的还原性物质的量,是我囯水质的常规监测项目。主要来源为生活污水、工业废水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量,反映了受还原性有机物水体的污染程度,是我囯实施排放总量控制的指标之一。在河流污染和工业废水性质的研究以及废水处理厂的运行管理中,它是一个重要的而且能较快测定的有机物污染参数。 1 测定化学需氧量原理及操作 化学需氧量是在一定条件下,用一定的强氧化剂处理水样时所消耗的氧化剂的量,以氧的毫克/升表示。它利用化学氧化剂,将水样中的还原物质加以氧化,然后从剩余的氧化剂的量计算出氧的消耗量。它的测定,可用重铬酸钾法,也可用高锰酸盐法。 1.1重铬酸钾法 化学需氧量指的是在强酸和加热的条件下以重铬酸钾为氧化剂处理待测水样所消耗的氧化剂的量。这可以很好的反映还原物质污染水体的严重程度并且是一个综合性的指标。我们国家测定化学需氧量的方法为重铬酸钾法,此法具有准确度高、重现性好的优点。测定水样的操作过程为:取混合均匀的待测水样10.00ml加入磨口回流锥形瓶中,再加入重铬酸钾标准液5.00ml及沸石,连接磨口回流冷凝管,从上口缓慢加入15ml硫酸-硫酸银溶液,混匀,加热回流120min;待冷却后用水冲洗冷凝管并取下锥形瓶;待溶液冷却到室温后滴加三滴亚铁灵指示剂,再用硫酸亚铁铵标准液进行滴定操作,当溶液颜色由黄色经蓝绿色至红褐色时即到达滴定终点,做好消耗硫酸亚铁铵的用量记录。 1.2高锰酸盐法 高锰酸盐指数是指在一定条件下,以高锰酸钾(KMnO4)为氧化剂,处理水样时所消耗的氧化剂的量。表示单位氧的毫克/升(O2,mg/l)。高锰酸盐指数在以往的水质监测分析中,亦有被称为化学需氧量的高锰酸钾法。但是,由于这种方法在规定条件下,水中有机物只能部分被氧化,并不是理论上的需氧量,也不是反映水体中总有机物含量的尺度,因此,用高锰酸盐指数这一术语作为水质的一项指标,以有别于重铬酸钾法的化学需氧量,更符合于客观实际。以高锰酸钾溶液为氧化剂测得的化学耗氧量,以前称为锰法化学耗氧量。我国新的环境水质标准中,已把该值改称高锰酸盐指数,而仅将酸性重铬酸钾法测得的值称为化学需氧量。国际标准化组织(ISO)建议高锰酸钾法仅限于测定地表水、饮用水和生活污水,不适用于工业废水。按测定溶液的介质不同,分为酸性高锰酸钾法和碱性高锰酸钾法。因为在碱性条件下高锰酸钾的氧化能力比酸性条件下稍弱,此时不能氧化水中的氯离子,故常用于测定含氯离子浓度较高的水样。 2 影响水中化学需氧量监测的因素 2.1实验用水 实验用水是化学需氧量监测实验是否成功的重要基本要求之一。监测化学需氧量这个实验的用水禁用含有机质的蒸馏水,在配制试剂时需要使用新鲜的蒸馏水,如果蒸馏水放置的时间太长,可能会受到污染发生变质影响实验。实验表明,如果在化学需氧量监测试验中使用去离子水,在水中常常监测出不能被交换的有机物质以及树脂溢出物。这是导致实验室测量结果中实验室空白的含量高于标准含量的主要原因。因此,在测定化学需氧量的实验中禁用去离子水。如果想要有效的使实验空白的含量降低,可以使用高纯水或者是超纯水进行实验。 2.2 试剂 实验用到的硫酸、硫酸银、硫酸亚铁铵等均为分析纯。需要基准或优级纯的重铬酸钾。配置重铬酸钾标准溶液的浓度应为0.250mol/L,应当称取基准或者优级纯的重铬酸钾12.258g,在120℃中提前加热2h后溶于水中,再移入1000ml容量瓶并稀释摇匀,待用。此重铬酸钾标准溶液为高标准溶液,对于重铬酸钾低标准溶液而言,取高标准重铬酸钾溶液稀释十倍即可。亚铁灵指示剂制备完成后需要用棕色瓶保存。硫酸亚铁铵高标准液的浓度为0.05mol/L左右,在临用前需要用高标准重铬酸钾标准溶液进行标定。硫酸盐铁铵也有低标准溶液,浓度为0.005mol/L左右,临用前也需要用低标准重铬酸钾标准溶液进行标定。硫酸-硫酸银溶液提前一到两天制备,不时摇动以免形成结晶。随着硫酸-硫酸银溶液的加入量的增加,化学需氧量的值逐渐增大,且当加入量大于30ml时,增大的速率特别明显。这是因为,在酸性条件下,重铬酸钾分解,与水中的银离子发生反应,生成铬酸银沉淀,从而消耗重铬酸钾,造成化学需氧量的值增大。 2.3 水中还原物质 (1)氯离子。氯离子是影响测定的重要因素,氯离子能够使催化剂即硫酸溶液的浓度降低,这会导致水样中有机物不能在反应过程中完全被氧化,对结果产生影响。在酸性的反应环境中,氯离子将会被氧化产生氯气,氯气又会氧化水样中其他还原性离子如二价铁离子,使得监测结果升高。在实验室中为消除氯离子主要采用的方法是加入硫酸汞。经回流后氯离子和硫酸汞合成可溶性氯汞络合物(2)硫离子和二价铁离子。若待测水样中存在硫离子和二价铁离子,会对测量产生影响,使化学需氧量值偏高。在理想环境中主要是先将水样中两种离子的最初浓度测量,假设氧化量固定不变,在最终测量出来的氧化量结果的基础上减去两种离子产生的耗氧量得到具有实际意义的化学需氧量,然而这种方法在实际操作中没有很好的可行性,采用更多的方法其实是提前往待测样品中通入足量空气,使两种离子被氧化后形成沉淀而通过过滤的方法去除。(3)含氮物质。影响化学需氧量测定结果的含氮还原性物质包括氧化亚氮离子、氨和铵根离子等。氧化亚氮离子主要通过消耗氧化剂重铬酸钾来干扰实验,消除氧化亚氮离子采用的方法一般是加入氨基磺酸,氨和铵根离子会对实验结果造成影响,如果溶液中还有氯离子存在,对氧化剂重铬酸钾造成消耗的影响会更大,一般通过去除氯离子来减少二者的影响。 2.4 取样方法和取样体积 用于监测的水样必须具有代表性才能获得准确可靠的测定结果。取样时应当注意不要混入悬浮物或颗粒物,否则会导致测量结果变大。因此取样时要充分摇匀并快速取样,避免悬浮物下沉的影响,取样时移液管吸口放置的位置应当为样品瓶的中间位置。如果样品是不均匀的,可以对水样进行均化预处理或取若干个平行样品进行分析,然后用统计的方法进行数据处理。如果水样中有大颗粒物质存在,需

相关文档
最新文档