乳化剂在食品中的应用

乳化剂在食品中的应用
乳化剂在食品中的应用

亲水性单甘酯在冰淇淋中的应用

亲水性单甘酯系列产品是一种复合乳化剂,以饱和脂肪酸单、双甘油酯作为原料,经特殊工艺添加亲水基团合成的,具有较强的热稳定性,在含水体系中具有优良的水解稳定性,具有很强的胶束形成能力,具有较高的HLB值(5~17),能够大大降低油/水界面体系的活性,无色,无味并具有良好生物降解性,无毒副作用,可以与其他乳化剂以任意比例配伍,对食品的色、香、味无任何影响,现已广泛应用在冰淇淋、乳制品、速冻食品等领域中。

冰淇淋属水包油(O/W)型乳液,应选用亲水性水包油型乳化剂,亲水性单甘酯在冰淇淋生产中的作用,主要表现在凝冻工序中脂肪粒子发生附聚而形成三维网络结构作为冰淇淋骨架,使气泡保持稳定,形成保型性和贮藏稳定性以及口融性均良好的组织,口感细腻。

因此选择亲水性单甘酯系列产品做乳化剂能通过控制冰淇淋料中脂肪球的附聚与凝聚而使冰淇淋具有较好的干性度、保型性、适宜的膨胀率、细腻的组织结构和口感、抗融化性好等特征。

此外,灌模产品中在适度提高膨胀率的情况下能很好地改善料液的流动性,利于灌模,同时也能改善口感。在水冰类产品中使产品口感更酥脆,透度提高。

亲水性单甘酯用量一般为脂肪百分含量的2~3%

脂肪含量% 亲水性单甘酯用量%

4~6 0.1~0.2

6~8 0.2~0.3

8~12 0.3~0.4

以上只是经验值,生产中通过高剪切或均质等适当手段,可减少乳化剂用量,最适宜用量须经试验来确定。

在冰淇淋生产中最为常用的乳化剂为蒸馏单甘酯,因为它价格低、乳化能力强、使用方便、有适宜的膨胀率(80~100%),但试验中我们发现若单纯使用蒸馏单甘酯作乳化剂做出的产品表面粗糙,口感不细腻,而当蒸馏单甘酯与亲水性单甘酯系列产品复配使用,乳化效果更好,料液粘稠度适中,搅打起泡性好,在相同膨胀率下表面光滑,光泽度好,组织细腻,有咬劲,口感好。

亲水性单甘酯在液态奶制品的应用

随着人们生活水

平的提高,牛乳作为营养全价食品倍受

消费者的青睐和喜爱,但牛奶在贮运过

程中常会出现脂肪上浮而影响产品质

量。这就需要加入乳化剂来改善这种情

况,减少脂肪上浮。

牛乳在均质过程

中,脂肪球破裂为小的脂肪球,脂肪球

表面积增大6-10倍,原奶中的乳化剂(磷

脂、酪蛋白)远不能满足脂肪界面膜的

需要,这就需要加入较多的乳化剂与脂

肪形成完整的界面膜,在水包油体系中,

乳化剂与水的相互作用主要取决于亲水

基团,当乳化剂的亲水基团大,亲油基

团小即HLB值高的乳化剂是水溶性的,

所以在均质过程中HLB值高的乳化剂迅

速扩展到脂肪-乳聚浆界面处,迅速将剥离的脂肪球包围,形成完整的界面膜。高HLB值的乳化剂能迅速修补不完整的界面膜,降低脂肪球在运动过程中附聚作用。因此,HLB值高的乳化剂效果较好,而HLB值较低的乳化剂分子的亲水基团较小,与水的亲和力较弱,在水包油体系中的溶解度较小,扩散到脂肪-乳浆界面处较慢。在均质过程中,剥离的脂肪颗粒不能及时被乳化剂包围形成完整的界面膜,对脂肪的乳化效果不好。

乳饮料是一种O/W 型乳状液,最适宜的HIB值为9~10,只有所选用的乳化剂的HLB与之相当,乳化效果和稳定效果都好,才能最大限度地减少脂肪上浮。当乳化剂的HLB值为9.0左右时,乳化效果和稳定效果才能最佳。亲水性单甘酯是一种复合乳化剂以饱和脂肪酸单、双甘油酯作为原料,经特殊工艺合成的具有较强的热稳定性(120℃下经过较长时间,其酸值增加较小),耐酸耐盐性好,具有较高的HLB

值(5~10),是最适宜的乳品乳化剂,在乳饮料中亲水性单甘酯可以使产品增香、增白、乳浊化,色泽更加洁白,从而能开发出多种品质优良、风味独特的饮品。

传统乳饮料中一

般使用蔗糖酯作乳化剂,但它是热不稳定化合物,加热时发生分子内和分子间的酰基化转化,致使酸值明显增加,同时导致不耐热的亲水部分蔗糖发生焦糖化而改变颜色。蔗糖酯的水溶液因酸或盐的作用会发生凝聚现象出现沉淀。而亲水性单甘酯完全避免了上述缺点,适用于纯奶、中性奶、花色奶(可可奶、花生奶、搅拌型酸奶、凝固型酸奶等)。

亲水性单甘酯添加量视乳饮料的脂肪含量而定,一般为脂肪含量的5%。

亲水性单甘酯在速冻汤圆中的应用

汤圆是深受我国

人民喜爱的传统食品,速冻汤圆以大商场为主要销售渠道。走进了千家万户,然而由于速冻汤圆的龟裂现象影响了该商品的品质。

汤圆开裂的基本

机理为冷冻过程产生的内部膨胀压力(内压)和蒸发失水。由于制作汤圆的湿米团缺乏延展性、米团水份分布不均匀及汤团皮的厚度不均匀等原因,在冷冻过程中由于热量的交换,汤圆皮温度不断下降,持水能力不断减少,水分不断挥发,导致水分散失最终产生开裂。若在汤圆皮调制中加入我厂生产的403,可完全解决这一问题。

首先由于糯米粉

缺少小麦所含的面筋蛋白,无法产生网状结构,其次糯米粉本身吸水性、保水性差在生产中易产生加水量大,粉团较软,在制作过程中容易偏心,速冻前及速冻过程中容易塌架,加水量小,则粉团松散,不易成型,汤圆表面干散,不细腻,在冻结过程中水分失散快而导致干裂。而403内含特殊成份能够使蛋白

质聚集与谷蛋白的酰基形成氢链,促进面筋网络形成。形成的分子间的网状结构,对淀粉起束缚作用从而抑制了直链淀粉的老化,使面皮中的水分均匀分布,提高了糯米粉的糊化率和最大粘度,增强粉团的结构强度,对加工过程中加水量的偏差有较好的调整作用,减轻汤圆制作过程中的偏心、塌架等现象。提高面团稳定性、机械加工性和耐震性,从而降低冻裂率。

添加DG—403制做的汤圆,冷冻不开裂、表面光滑、耐煮不浑烫,口感爽滑有咬劲。

加工工艺(仅作参考):

采用温水和面法,皮馅比:3.5:1 皮馅水份分别约为40%及4%.

配方(仅作参考):

水磨粉(过100目):100kg 水:75kg 速冻油:3kg

亲水性单甘酯:0.2~0.3kg 改良剂404:0.5 kg 胶之素:2 kg

冷冻条件:

① 冻结温度:≤-30℃ ,冷冻0.5h 后汤圆中心温度应低于-8℃。

② 速冻后中心温度在-18℃以下。

亲水性单甘酯在面粉及其制品中的应用

溴酸钾作为重要的面粉添加剂使用了大约70~80年,它能显著增加面团的面筋强度、良好的耐烤性能和更好的烘焙弹性,在面制品中发挥着极其重要的作用。然而1992年世界卫生组织(WHO)确认溴酸钾为一种致癌物质,不宜加在面粉和面包中。我国卫生部正式颁布自2005年7月1日起取消溴酸钾作为面粉处理剂在面粉中的使用。溴酸钾的禁用对我国的烘焙业、烘焙辅料供应商是一个挑战,面临着开发溴酸钾的代用品,弥补溴酸钾特殊作用的问题。目前世界上能完全替代溴酸钾的代用品的单体并不存在,业界一般采用复合制剂代替溴酸钾。

我公司的科验人员经过长时间大量的反复实验证实,我公司生产的亲水性单甘酯与抗坏血酸(Vc)、生物复合酶及其它填充物等复配使用完全可以达到溴酸钾在面制品中所起到的作用。

亲水性单甘酯系列产品是一种复合乳化剂,以饱和脂肪酸单、双甘油酯作为原料,经特殊工艺添加亲水基团合成的,具有较强的热稳定性,在含水体系中具有优良的水解稳定性,具有很强的胶束形成能力,具有较高的HLB值(5~17),能够大大降低油/水界面体系的活性,无色,无味并具有良好生物降解性,无毒副作用,可以与其他乳化剂以任意比例配伍,对食品的色、香、味无任何影响,在面制品加工中能与直链淀粉结合生成不溶于水的络合物,抑制淀粉的膨润,延迟其糊化的起始温度,减慢淀粉回生速度,有效

地防止淀粉老化,并缩短面团搅拌时间,

又能保持长时间新鲜及柔软性,此外,

亲水性单甘酯能与面粉中固有酯类及面

筋中的各种蛋白质形成氢键或偶联络合

物,强化了面团的网络结构,从而改进

面团的加工性能使烘焙品具有细密组织

结构,富有弹性,体积增大且不掉渣。

因此,亲水性单甘酯作为面团的柔软保

鲜剂和面团的强化剂应用于面粉及其制

品中。现已在国内众多知名企业得到良

好的应用,具有广泛的应用前景。

亲水性单甘酯用

于专用面粉的改良剂中,其添加量占改

良剂的20~30%,用于面制品添加剂中占

0.1%左右(以面粉计)。具体情况可根据

当地的面粉品质及产品要求做适当调

整。

非离子型食品乳化剂

性状:

白色粉末状或颗粒状,可溶于温水、热油脂、乙醇、丙二醇等有机溶剂。

安全性:

符合我国《食品添加剂使用卫生标准》(GB 2760-1996)

特性及应用:

具有乳化、保水、保油、保鲜等作用,可用于加工各式火腿肠、大红肠、午餐肠、粉肠和各类肉灌制品。

⑴ 乳化、保水、保油性强,能使配料充分乳化,防止脂肪离析,提高肥肉利用率20%以上;

⑵ 提高组织的匀质性,有利于表面被膜的形成,降低与包装物粘连;

⑶ 可使制品形态完整,富有弹性,切面光滑、细腻,肉质细嫩,口感舒适;

⑷ 抗氧化、保鲜及延缓产品酸败时间;使用方法及用量:

每百公斤原料肉加亲水性单甘酯0.5~

1.0kg。

先在斩拌机中斩拌猪碎肉,然后加入肥膘斩成肉泥,再加入亲水性单甘酯及各种小料继续斩拌共计6~8分钟结束,灌肠,蒸煮,烟熏,冷却,包装,成品。

参考配方:

猪碎肉:80kg

变性淀粉:20kg

肥膘:20kg

冰水:50kg

大豆蛋白:2.0kg

亲水性单甘酯:0.5~1.0kg

斩拌腌制剂:2.0kg

盐:2.5kg

糖:2.0kg

味精:0.5kg

香精:0.3kg

白胡:0.1kg

色素:适量

DG—亲水性单甘酯在化妆品、药品中的应用

DG—亲水性系列产品是以饱和单、双甘油酯为原料,经特殊工艺添加亲水基团合成的新型的非离子表面活性剂,其化学稳定性好,与其他表面活性剂有良好的配伍性,可以任意搭配使用,由于在其分子中引入了亲水基,大大增加了水溶性,亲水基的长度不同,其亲水性不同,其HLB值可高达17.0,可适应润湿、渗透、乳化、增溶等各种不同用途,因为其分子结构与人体皮肤的油脂成份相似,对人体无毒无害,安全性高,广泛地应用于食品加工工业,化妆品和制药等工业。

在外用药中使用表面活性剂的目的与化妆品中使用表面活性剂的目的相似,主要起乳化剂的

作用,作油、脂、蜡的乳化剂,以制备各种不同乳化性能的基质,能制成稳定细腻、耐高温的乳膏,有使药物增溶和促进吸收的作用。

在片剂中加入亲水性单甘酯能降低药物的表面张力,改变固—液体系的润湿性,使水更易透过孔隙,增大药物的溶出速度,片剂加快崩解,被吸收而产生疗效。一般用量:0.2%~0.5%。除此以外,亲水性单甘酯还可溶于丙酮,用于乳酸钙片等的润滑剂,具有抗静电和抗粘作用。

参考实例:

例1、滋润雪花膏

硬脂酸:16% 甘油:4.0%

硬脂酸单甘油酯:2.5% 丙二醇:1.0%

十六十八醇:2.0% DG—320:0.8%

羊毛酯:3.0% 氢氧化钠:0.05%

白矿油:5.0% 氢氧化钾:0.7%

尼泊金甲酯:0.1% 去离子水:余量

泊金丙酯:0.2%

此配方中硬脂酸皂作主乳化剂,硬脂酸单甘油酯作辅助乳化剂。DG—310与羊毛脂,矿油合用增强了油性成份的渗透性,提高了产品的滋润性、保湿性。

例4:一种透皮软膏配方

硬脂酸:20g 单甘油酯:20g

十六醇:20g 白凡士林:40g

303:50g 甘油:60g

320;12.5g 防腐剂::适量

蒸馏水:至1000g

可制备O/W型基质,然后药物一份,基质四份,研磨即可。

604在面制品中的应用

性状:

澄清透明液体,水

溶性好,可溶于冷水、热油脂和各种有

机溶剂中,气味清淡,口感略苦,HLB:

11~12。

安全性:

符合我国《食品添

加剂使用卫生标准》(GB 2760-1996)

规定。

特性及应用:

本品属于亲水性

单甘酯,具有较高的HLB值,较强的乳

化能力,较高的冻融稳定性和抗裂作用,

可应用于面条、方便面、水饺、汤圆等

面制品中,具有增筋、乳化、防老化、

保鲜等作用,性能优于单甘酯。

⑴ 可与直链淀粉

作用,延缓和防止食品老化,延长保鲜时间。

⑵ 增强面团的弹性、韧性和白度,改善组织结构。

⑶ 提高冷冻食品的质量,增强面团筋力,质地柔软,避免表面开裂,防止馅料漏出,耐煮不浑汤,口感爽滑有咬劲,无生面粉味。

⑷ 提高面条、方便面等的筋力强度,提高复水率,其表面更光滑,降低断条率,耐泡耐煮,更有嚼劲。

使用方法及用量:

将本品加于水中,搅拌溶解后使用,亦可将本品与油脂一起加热溶解后使用。

建议添加量:

0.2~0.5%(以面粉计)。

参考配方:

㈠速冻汤圆皮

水磨糯米粉:100 kg

乳化油:3kg

604:0.2 kg

改良剂:0.5 kg

胶之素:2 kg

水:85 kg

㈡面条、方便面

面粉:100 kg

变性淀粉:10 kg

水:50 kg

604:0.3 kg

改良剂:0.4 kg DG—605 在冷鲜肉中的应用

冷鲜肉在国外名

叫保鲜肉、冷却肉、是指严格执行检验检疫制度屠宰后的畜胴体迅速进行冷却处理,使胴体温度在24小时内降为0-4摄氏度,并在后续的加工、流通和销售过程中始终保持在这个温度范围内的鲜肉。

冷鲜肉从屠宰到销售大约要经过两天时间,肉制品可以在此期间完成尸僵、解僵、软化和成熟这一过程。同时,冷鲜肉在加工过程中还会有排酸处理,使肉质的口感得到保证。

与热鲜肉相比,冷鲜肉的保质期可达一周以上,经过冷却后肉表面会形成一层干油膜,能够减少水份蒸发,保证了肉质柔软多汁、滋味

鲜美的特点;同时,经过了加工处理,肉食的卫生和安全性得到保障。在消费者对食品安全日益担忧的今天,冷鲜肉的安全系数高,营养价值高,感官舒适性高等特点,它的发展前景尤其看好。

我公司的科研人员经过反复实验,开发出DG—605冷鲜肉复合保水剂。此保水剂效果明显:以一片新宰的畜胴体(白条)25kg计,不涂保水剂可损失0.6534kg,涂有DG—605可损失0.3647kg。并且涂有DG—605的冷鲜肉在规定的保质期内色泽鲜艳,肉毒梭菌和金黄色葡萄球菌等病原菌分泌毒素的速度大大降低,且肉质更为柔软有弹性。汁液流失少,口感好,滋味鲜美,肉质更嫩,熬出的汤清亮醇香。

使用方法:

1)按DG—605:水=2—3:7—8的比例配成水溶液。

2)宰后新鲜畜胴体以喷淋4方式涂上DG—605的水溶液既可进入冷却工序

食品乳化剂的特性及在油脂乳化中的应用

食品乳化剂的特性及在油脂乳化中的应用 一、前言 随着人们生活水平的提高及饮食结构的变化,在传统追求色、香、味的同时,更加重视食品的功能化、特性化和多样性,无论怎样更新,食品的营养性和安全性是保障和提高人类健康最重要的前提。所以要达到上述目标,正确和科学使用食品乳化剂尤为重要,基于此,我们技术工作者严格按照《中华人民共和国食品卫生法》和《食品添加剂卫生管理办法》研发、生产、推荐使用优质、规范的食品乳化剂,勇担食品安全之重任。 二、食品乳化剂的特性及乳化机理 食品乳化剂是一类能使两种或两种互不相容构成相(如:油和水)均匀地形成分散或乳状(乳浊)体的活性物质。其特性取决于乳化剂的HLB值(亲水亲油平衡值),而HLB值的大小取决于乳化剂的分子构成,乳化剂分子亲水基团数量多(如:-OH基),表现出强的亲水性,即HLB值偏高,形成水包油(O/W)型乳化剂;若乳化剂分子中碳氢链越长(如:CH3—CH2—CH2—……),亲油基团大,则亲油性强,HLB值偏低,形成油包水(W/O)型乳化剂,人们规定亲水性100%乳化剂,HLB值为20(以油酸钾为代表),亲油性100%,HLB 值为零(以石蜡为代表)期间分成20等分,如图一所示: HLB值1~6易形成W/O型乳化体系,其中1~3为消泡剂,3.5~6为油包水型乳化剂。6~20易形成O/W型乳化体系,其中7~8为润湿剂,8~18为油/水型乳化剂,13~15为洗涤剂,15~18为去污、加溶剂。截止2006年《中华人民共和国卫生部公告》我国已批准使用的食品乳化剂为36种,主要为阴离子和非离子,极少量两性离子,据相关资料报道,我国目前年用量4万吨左右,其中单甘酯2万吨左右。现将主要品种及特性列于表一。 表一乳化剂主要品种及特性 单甘酯(GMS DGMS)特性: 乳化、分散、抗淀粉老化 硬脂酰乳酸钠(SSL)特性: 增筋、乳化、防老化、保鲜、增大面包、馒头体积、改善组织结构 硬脂酰乳酸钙-钠(CSL-SSL) 特性: 增筋、乳化、防老化、保鲜、增大面包、馒头体积、改善组织结构. 三聚甘油单硬脂酸酯(PGFE)特性: 较强的乳化性,保湿、柔软性、防止淀粉回生老化 双乙酰酒石酸单(双)甘油酯(DATEM)特性: 乳化、增加面团弹性、韧性和持气性,增大面包、馒头体积,防止老化. 月桂酸/辛酸单甘酯(GML/GMC)特性: 乳化、分散、防腐、保鲜. 斯盘、吐温系列(S-60 、T-60等)特性: 良好乳化、稳定、分散、

食品乳化剂综述

食品乳化剂综述 【摘要】本综述主要介绍食品乳化剂的作用原理和分类,了解乳化剂的功能以及它在食品加工中的应用,还举出了乳化剂在面包,烘焙食品,饮料方面的应用实例。介绍食品乳化剂的发展前景以及发展趋势。关键词:食品乳化剂;原理;烘焙食品;应用 1. 乳化剂的乳化原理 乳化剂作为一类食品添加剂,在食品工业中扮演着重要的角色,它是现代食品工业的 [1]重要组成部分,在食品工业中的需求量约占添加剂的50%。基于其表面活性性质和与食品组分的相互作用,乳化剂不仅在各种原料混合、融合等一系列加工过程中起乳化、分散、润滑和稳定等作用,而且还可以改进和提高食品的品质和稳定性。比如,它可以使食品舌感润滑、保持质感,还被用作蛋糕的起泡剂、豆腐的消泡剂等。在面包生产中,乳化剂可以保护淀粉粒,防止老化,从而使面包食感得到改良,并在防氧化、抗菌和品质等方面得到改善。 乳化剂是一种表面活性剂,既有亲水基团,又有亲油基团,两者分别处于两端,形成不对称的分子结构。可将两种不溶物质“吸附”在一起。乳化剂是乳液的一种稳定剂,也是表面活性剂的一种。乳化剂可以分散在分散质的表面,形成薄膜或者是双电层,可以是分散相带有电荷,这样就可以阻止分散相的小液滴互相凝结,使形成的乳浊液比较稳定。例如,在农药的原药(固态)或原油(液态)中加入一定量的乳化剂,再把它们溶解在有机溶剂里,混合均匀后可制成透明液体,叫乳油。常用的乳化剂有肥皂、阿拉伯胶、烷基苯磺酸钠、硬脂酸钠盐、羧酸盐、硫酸盐等。 1.1 液体物料中的乳化原理

在两种不相混合的液体中(如油和水),乳化剂分子能吸附于液体界面上,并定向排列,亲水基团指向水相,疏水基团指向油相,通过乳化剂的“架桥”作用,使水和油两相紧密地融合在一起。 1.2 固体物料中的乳化原理 乳化剂与食品中的蛋白质、淀粉、脂类作用,改善食品结构。碳水化合物是多羟基的醛、酮或多羟基醛、酮的缩合物。由于单糖及配糖链的结构特性,故碳水化合物能够形成亲水和疏水区域,因此,乳化剂与碳水化合物的相互作用有两种,即通过氢键产生的亲水相互作用及由疏水键产生的疏水相互作用。借助氢键的形成,乳化剂可加成在支链淀粉的外部分枝上,形成支链淀粉——乳化剂复合体。单糖或低聚糖有良好的水溶性,没有疏水层,因此与乳化 [3]剂不发生疏水作用。而高分子多糖则不然,它与乳化剂发生疏水作用。 [4]2.乳化剂的分类 乳化剂性质的差异,除了与烃基的大小、形状有关外,还主要与亲水基的不同有关,亲水基团的变化比疏水基团要大得多,因而乳化剂的分类,一般就以亲水基团的结构,即按离子分类而划分。 2.1(甘油脂肪酸酯为无臭或特殊气味的白色至淡黄色粉未、薄片、颗粒、蜡状块或为半流动的粘稠液体。是食品和饲料中常用的乳化剂。 2.2. 蔗糖脂肪酸酯为无味或稍有特异气味的白色至黄褐色粉未、块状或无色至微黄色粘性树脂状。常用作食品、饲料乳化剂。 2.3. 聚氧乙烯脂肪酸山梨糖醇酯为白色至褐色液体、半流体或蜡状块。是常用的食品、饲料、药物和化妆品乳化剂,常用于维生素、矿物质和香料的乳化、分散和可溶性的处理。 2.4. 聚氧乙烯脂肪酸甘油酯为白色至黄褐色液体、半流体或蜡块状。广泛应用于食品、医药、化妆品和饲料生产。 3乳化剂的作用与应用

表面活性剂在食品中的应用

表面活性剂在食品中的应用 作者:赵午腾北京农学院食品科学系 摘要:本文对表面活性剂的种类和在食品中的应用作以介绍,并着重介绍单硬脂酸甘油酯用作表面活性剂的食品及其工艺。 关键词:表面活性剂、单甘脂、食品工业、蔗糖酯、化学。 前言 随着人民生活水平的提高,人们对食品的要求也越来越高,食品除了要满足最基本的营养价值之外,还应具有良好的色香味。因此在食品工业中越来越多的使用食品添加剂,表面活性剂就是最常见的一类食品添加剂。表面活性剂是分子里含有固定的亲水亲油基团,能集中在溶液表面、两种不相混溶液体的界面或者集中在液体和固体的界面,降低其表面张力或界面张力的一大类化合物。表面活性剂在食品工业中的应用非常广泛,在一些食品制作中添加表面活性剂,可以大大地改善加工条件,提高产品质量,延长食品保鲜期等。高质量的食品加工,是离不开表面活性剂的应用的。 正文 表面活性剂简介 凡能显著改变体系表面(或界面)状态的物质都称为表面活性剂。表面活性剂能大幅度降低体系的表面(或界面)张力,使体系产生润湿和反润湿?乳化和破乳?分散和凝聚?起泡和消泡?增溶等一系列作用。因此,在食品工业中,表面活性剂可作为乳化剂?分散剂?润湿剂?消泡剂?粘度调节剂?杀菌剂等。 食品用表面活性剂的种类 表面活性剂在食品工业中的使用是有严格限制的,不能对人体产生危害。联合国粮农组织和世界卫生组织(FAO/WHO)批准使用的表面活性剂有:甘油脂肪酸酯?蔗糖脂肪酸酯?大豆磷脂?乙酸及酒石酸一及二甘油脂?二乙酰酒石酸一及二甘油酯?柠檬酸酯?聚甘油脂肪酸及蓖麻酸脂?硬脂酰柠檬酸及酒石酸酯?硬脂酰乳酸钙(钠)?硬脂酰富马酸钠?山梨糖醇酐脂肪酸酯?聚氧乙烯(20)及(40)硬脂酸酯等。高分子表面活性剂,如海藻酸钠?果胶酸钠?卡拉胶?壳聚糖水溶性蛋白等。它们大多数是半合成的多醇类非离子型表面活性剂,其中大豆磷脂及一些高分子表面活性剂为天然物。 表面活性剂在食品中的主要作用 1表面活性剂作乳化剂 乳化剂的分子内通常具有亲水基(羟基等)和亲油基(烷基),易在水与油的界面上形成吸附层,属表面活性剂,可分为油包水型和水包油型两类。可用的乳化剂总数约65种,常用的有脂肪酸甘油酯(主要为单甘油脂)/脂肪酸蔗糖酯/脂肪酸山梨糖醇酐酯/脂肪酸丙二醇酯/大豆

乳化剂性质及应用

食品乳化剂的性质及应用 一、乳化剂的简介: 1. 乳化剂是一种双亲分子,是有一个亲油端及一个亲水端在体系中,分散 相称为不连续相,在食品中,亲油基常是食品级油或脂的长链脂肪酸,亲水 基可以是非离子型,如甘油,亲水基可以是阴离子型(带负电如乳酸盐),亲 水基可以是两性(如卵磷脂),亲水基可以是阳离子型,具有毒性,一般不 用。 2.乳化液: 常有O/W与W/O型分散液,总的说来,连续相是乳化剂的溶解度较大的一相。 3、HLB 亲水性与亲油性平衡值,理论上,HLB=(亲水性分子量/总分子量)×20=a/b ×20 由此可见,HLB在0~20 较小值代表乳化剂在油相中更易溶解,较大值则相反,常见乳化剂的HLB值:

两种乳化剂混合物的HLB=A×HLBa+B×HLBb 其中A、B表示质量百分数。 经研究: HLB在3~6范围内有利于形成W/O型乳化液 HLB在11~15范围内,有利于形成O/W型乳化液 HLB在6~11范围内,无良好乳化性,只有湿润性能 O/W型乳化液在HLB=12最稳定, W/O型乳化液在HLB=3.5最稳定。 二、乳化剂的作用: 1、乳化剂最重要的作用是使互不相溶的水、油两相得以乳化形成均匀、稳定的乳状液,保持油和水的两相稳定。 2、与淀粉作用: 淀粉在水中形成@螺旋结构,内部有疏水作用,乳化剂疏水基进入淀粉@螺旋结构,通过疏水键与之结合,形成复合物或络合物,降低淀粉分子的结晶程度,乳化剂进入淀粉颗粒内部会阻止支链淀粉的结晶程度,防止淀粉老化,使面包、糕点等淀粉类制品柔软,具有保鲜作用。 3、与蛋白络合,改善食品结构及流变特性增强面团强度。蛋白质因氨基酸极性不同具有亲水和疏水性,在面筋中,极性脂类分子以疏水键与麦谷蛋白结合,以氢键与

常用食品乳化剂

常用食品乳化剂 面包用品质改良剂使用最多的乳化剂有硬脂酰乳酸钠(ssl)、硬脂酰乳酸钙(csl)、双乙酰酒石酸单甘油酯(datem)、蔗糖脂肪酯(se)、蒸馏单甘酯(dmg)等。 各种乳化剂通过面粉中的淀粉和蛋白质相互作用,形成复杂的复合体,起到增强面筋,提高加工性能,改善面包组织,延长保鲜期等作用,添加量一般为0.2%~0.5%(对面粉计)。 硬脂酰乳酸钠/钙(ssl/csl),具有强筋的保鲜的作用。一方面与蛋白质发生强烈的相互作用,形成面筋蛋白复合物,使面筋网络更加细致而有弹性,改善酵母发酵面团持气性,使烘烤出来的面包体积增大;另一方面,与直链淀粉相互作用,形成不溶性复合物,从而抑直链淀粉的老化,保持烘烤面包的新鲜度。ssl/csl在增大面包体积的同时,能提高面包的柔软度,但与其他乳化剂复配使用,其优良作用效果会减弱。 双乙酰酒石酸单甘油酯(datem),能与蛋白质发生强烈的相互作用,改进发酵面团的持气性,从而增大面包的体积和弹性,这种作用在调制软质面粉时更为明显。如果单从增大面包体积的角度考虑,datem在众多的乳化剂当中的效果是最好的,也是溴酸钾替代物一种理想途径。 蔗糖脂肪酸酯(se),在面包品质改良剂中使用最多的是蔗糖单脂肪酸酯,它能提高面包的酥脆性,改善淀粉糊黏度以及面包体积和蜂窝结构,并有防止老化的作用。采用冷藏面团制作面包时,添加蔗糖酯可以有效防止面团冷藏变性。 蒸馏单甘酯(dmg)。主要功能是作为面包组织软化剂,对面包起抗老化保鲜的作用,并且常与其他乳化剂复配使用,起协同增效的作用 聚甘油酯作为食品乳化剂用量最大.应用也最广。它具有较广的乳化性能.可用作水包油型(o/w)、油包水型(w/o)或双重乳化型

食品中常用乳化剂的优缺点及使用范围

食品中常见乳化剂的优缺点和适用范围 一、硬脂酰乳酸钠/钙(ssl/csl) 1.优点: 具有强筋的保鲜的作用。一方面与蛋白质发生强烈的相互作用,形成面筋蛋白复合物,使面筋网络更加细致而有弹性,改善酵母发酵面团持气性,使烘烤出来的面包体积增大;另一方面,与直链淀粉相互作用,形成不溶性复合物,从而抑直链淀粉的老化,保持烘烤面包的新鲜度。ssl/csl在增大面包体积的同时,能提高面包的柔软度。 2.缺点:与其他乳化剂复配使用,其优良作用效果会减弱。 3.适用范围:根据《食品添加剂使用卫生标准》GB2760-1996中规定:硬脂酰乳酸钠可用于面包、糕点,最大用量为2.0g/kg。 二、双乙酰酒石酸单甘油酯(datem) 1.优点: 能与蛋白质发生强烈的相互作用,改进发酵面团的持气性,从而增大面包的体积和弹性,这种作用在调制软质面粉时更为明显。如果单从增大面包体积的角度考虑,datem在众多的乳化剂当中的效果是最好的,也是溴酸钾替代物一种理想途径。 2.缺点:吸湿性大,细粉在夏季高温潮湿(或储存不当)时特别容易结块 3.适用范围: 用于植脂性粉末,5.0g/kg。氢化植物油、搅打过的奶油、面包、糕点,10g/kg。 三、蔗糖脂肪酸酯(se) 1.优点: 在面包品质改良剂中使用最多的是蔗糖单脂肪酸酯,它能提高面包的酥脆性,改善淀粉糊黏度以及面包体积和蜂窝结构,并有防止老化的作用。采用冷藏面团制作面包时,添加蔗糖酯可以有效防止面团冷藏变性。 2.缺点:

由于乳化剂的协同效应,单独使用蔗糖酯远不如与其他乳化剂合用,适当复配后乳化效果更佳。在酸性或碱性时加热可被皂化。 3.适用范围: 可用于肉制品、香肠、乳化香精、水果及鸡蛋保鲜、冰淇淋、糖果、面包, 1.5g/kg;乳化天然色素,10g/kg。 四、松香甘油酯 1.优点: 质脆,无臭或微有味。不溶于水、低分子醇,溶于芳香族溶剂、烃、萜烯、酯、酮、橘油及大多数精油。具有稳定饮料的作用。 2..适用范围: 可用于胶姆糖基础剂,最大量1.0g/kg。乳化香精,最大量100g/kg。可用作饮料的稳定剂,用量在成品中不超过0.05%,在口香糖基础剂用量不超过01% 五、改性大豆磷脂 1.优点: 用于人造黄油(氢化油),起乳化、防溅、分散等作用;用于油脂乳化剂,起油水乳化作用,乳化油可以代替纯油脂,有改进食品质量、节约食品加工用油的效果。在巧克力中起保形、润湿作用,能防止因糖分的再结晶而引起的发花现象。糖果中特别是对含有坚果及蜂蜜的糖果,能防止渗油及渗液作用,对口香糖能起留香作用。 2.缺点: 在水中很容易形成乳浊液,比一般的磷脂更容易分散和水合。极易吸潮,易溶于动植物油,部分溶于乙醇。 3.适用范围: 用于人造黄油、巧克力,0.2%~0.3%;糖果,0.5%;口香糖,0.2~0.3%、蛋制品等。 六、木糖醇酐单硬脂酸酯

乳化剂在食品中的作用原理

○食品添加剂○ 乳化剂在食品中的作用原理 张佳程 周浩 摘要:本文简要介绍了乳化剂在食品中的三方面作用:降低界面张力;与淀粉和蛋白质相互作用;改进脂肪和油的结晶。阐述了乳剂与食品中各成分的相互作用的基本原理。 关键词:乳化剂作用原理 一、引言 早在1921年,在人造黄油工业中,就应用了单双甘油酯,不过直到15—20年后,食品乳化剂的生产才有较大的工业规模。随着食品生产的工业化发展,对食品乳化剂提出了新的要求。 食品乳化剂的世界总需求量约25万吨,其中单甘油酯约占总消费量的2 3,其次是蔗糖酯。我国单甘油酯产量约2200吨,也已开发了乳化能力强的高纯度(90%以上)的分子蒸馏单甘酯。蔗糖酯我国从80年代开始开发,近来发展很快。大豆磷酯是使用很普遍的乳化剂,兼有一定的营养价值。但目前由于纯度不够,利用价值不高,有较大应用潜力。 二、食品乳化剂的概念 乳化剂一词,仅仅指凭借界面作用,能够促进乳状液或泡沫的乳化作用或稳定作用。不过,表面活性剂一词也常用在这些产品上。在食品中,乳化剂一词有时易产生误解,因为有些产品中所谓乳化剂的实际功能,只能与淀粉蛋白质等成分相互作用,完全与乳化作用无关。但是根据传统习惯,我们仍称它们为乳化剂。 通常食品乳化剂必须具有两种性质:表面活性和可食性。因而,通常食品乳化剂定义为能改善乳化体中各种构成相互之间的表面张力,使之形成均匀的分散体或乳化体,从而改进食品组织结构、口感、外观,以提高食品保存性的一类可食性的具有亲水和亲油双重性的化学物质。乳化剂一般分为油包水型和水包油型两类,以亲水亲油平衡值(H ydroph ilty and L i poph ilyty Balance,简称HLB)表示其特性。规定100%亲油性的乳化剂HLB为0,100%亲水性的HLB为20,其间分20等分,以表示其亲水亲油性的强弱情况和不同的作用(如图1)。在食品乳化剂中,一般亲油性占上风,但根据化学成分的不同,HLB值有相当大的变化。按Griffin 提出的公式可以计算出HLB值。 HLB 值 各乳化剂的适用性 各主要单酯的适用范围图1、HLB值与乳化剂的关系 HLB=20(1-S A) S=酯的皂化值 A=脂肪酸的酸值 三、食品乳化剂的作用 食品乳化剂的作用主要分三方面: 11乳化剂降低油—水界面的张力,促进乳化作用,在油—水、乳化剂界面上形成相平衡稳定乳状液。 油水两相之所以不相容,是由于两相间存在界面张力(或称表面张力),即油和水的接触面上有相互排斥和各自尽量缩小彼此接触面积的两种作用力。只有当油浮于水面分为两层时,其接触面积最小,最稳定。 牛奶是奶油及水的乳化体系,一般奶油表现为细微的小滴分散于水中,但长期静置后由于界面张力关系,奶油小滴便聚集成小球,并长大成凝聚团块,浮于水面,若加入乳化剂,其亲油基与奶油结合,在奶油微滴表面形成一层物理膜,可以防止油滴相互聚集。此时

乳化剂在食品中的应用

亲水性单甘酯在冰淇淋中的应用 亲水性单甘酯系列产品是一种复合乳化剂,以饱和脂肪酸单、双甘油酯作为原料,经特殊工艺添加亲水基团合成的,具有较强的热稳定性,在含水体系中具有优良的水解稳定性,具有很强的胶束形成能力,具有较高的HLB值(5~17),能够大大降低油/水界面体系的活性,无色,无味并具有良好生物降解性,无毒副作用,可以与其他乳化剂以任意比例配伍,对食品的色、香、味无任何影响,现已广泛应用在冰淇淋、乳制品、速冻食品等领域中。 冰淇淋属水包油(O/W)型乳液,应选用亲水性水包油型乳化剂,亲水性单甘酯在冰淇淋生产中的作用,主要表现在凝冻工序中脂肪粒子发生附聚而形成三维网络结构作为冰淇淋骨架,使气泡保持稳定,形成保型性和贮藏稳定性以及口融性均良好的组织,口感细腻。 因此选择亲水性单甘酯系列产品做乳化剂能通过控制冰淇淋料中脂肪球的附聚与凝聚而使冰淇淋具有较好的干性度、保型性、适宜的膨胀率、细腻的组织结构和口感、抗融化性好等特征。 此外,灌模产品中在适度提高膨胀率的情况下能很好地改善料液的流动性,利于灌模,同时也能改善口感。在水冰类产品中使产品口感更酥脆,透度提高。 亲水性单甘酯用量一般为脂肪百分含量的2~3% 脂肪含量% 亲水性单甘酯用量% 4~6 0.1~0.2 6~8 0.2~0.3 8~12 0.3~0.4

以上只是经验值,生产中通过高剪切或均质等适当手段,可减少乳化剂用量,最适宜用量须经试验来确定。 在冰淇淋生产中最为常用的乳化剂为蒸馏单甘酯,因为它价格低、乳化能力强、使用方便、有适宜的膨胀率(80~100%),但试验中我们发现若单纯使用蒸馏单甘酯作乳化剂做出的产品表面粗糙,口感不细腻,而当蒸馏单甘酯与亲水性单甘酯系列产品复配使用,乳化效果更好,料液粘稠度适中,搅打起泡性好,在相同膨胀率下表面光滑,光泽度好,组织细腻,有咬劲,口感好。 亲水性单甘酯在液态奶制品的应用 随着人们生活水 平的提高,牛乳作为营养全价食品倍受 消费者的青睐和喜爱,但牛奶在贮运过 程中常会出现脂肪上浮而影响产品质 量。这就需要加入乳化剂来改善这种情 况,减少脂肪上浮。 牛乳在均质过程 中,脂肪球破裂为小的脂肪球,脂肪球 表面积增大6-10倍,原奶中的乳化剂(磷 脂、酪蛋白)远不能满足脂肪界面膜的 需要,这就需要加入较多的乳化剂与脂 肪形成完整的界面膜,在水包油体系中, 乳化剂与水的相互作用主要取决于亲水 基团,当乳化剂的亲水基团大,亲油基 团小即HLB值高的乳化剂是水溶性的, 所以在均质过程中HLB值高的乳化剂迅

乳化剂在各种乳饮料的稳定性中作用及使用情况分析

乳化剂在各种乳饮料的稳定性中作用及使用情况分析 摘要:阐述了乳饮料中影响稳定性最重要的两个因素,以及这两个因素造成乳饮料体系不稳定的机理。乳化剂是乳饮料中常用的稳定剂,用于乳饮料体系的稳定。介绍了乳化剂的基本概念和性质,比如HLB值、W一0或0一W乳状液、乳化剂与碳水化合物的相互作用、乳化剂与蛋白质的相互作用、乳化剂与脂类化合物的相互作用等,通过介绍乳化剂的选择和使用原则引出了乳化剂在乳饮料中的作用机理,并列举了几种复合乳饮料或发酵乳饮料中乳化剂的应用情况,进一步说明了乳化剂在乳饮料中的作用。 关键字:乳化剂、作用机理、HLB值、乳饮料、稳定性 正文: 1.前言 添加剂是食品生产中的重要原料。食品添加剂是指为改善食品品质和色、香、味以及根据防腐和加工工艺的需要而加入食品中的化学合成品或天然物质。我国按食品添加剂的主要功能分类。如:防腐剂、乳化剂、发色剂、漂白剂、酸味剂、膨松剂、营养强化剂、甜味剂等23类。 食品添加剂在食品加工过程中必须按《食品添加剂使用卫生标准》中规定的使用量及范围添加才能对人体无害。但是近些年发生的食品安全问题令大多数人都对食品添加剂产生了或多或少的心理阴影,像在果脯、蜜饯、酱菜中超限量使用甜味素,有的甚至在蜜饯类食品中糖精钠最高含量超出允许限量12倍之多;超量使用护色剂亚硝酸盐加工肉制品;在馒头制作过程中滥用硫磺熏蒸馒头,致使馒头中维生素B2受到破坏;在干豆腐、香肠、冰棒中加人柠檬黄、胭脂红等合成色素;甚至在婴儿食品或奶制品中添加糖精、香精等食品添加剂。这些行为都是随意使用并添加食品添加剂的现象。较为严重的有:比如山西假酒事件,三聚氰胺事件,苏丹红事件以及今年所爆发的双汇瘦肉精事件和上海染色毒馒头事件。其中,与乳及乳制品相关的违禁添加物有4种:三聚氰胺(蛋白精)、硫氰酸钠、皮革水解物及13一内酰胺酶(金玉兰酶制剂,即解抗剂)。皮革水解物,添加到牛奶里可以增加蛋白质含量;三聚氰胺用来冒充蛋白质;解抗剂可以用来掩

乳化剂现状

食品乳化剂的发展趋势 1 食品乳化剂的现状 食品乳化剂属于表面活性剂,由亲水和疏水(亲油)部分组成。由于具有亲水和亲油的两亲特性,能降低油与水的表面张力,能使油与水"互溶"。它具有乳化、润湿、渗透、发泡、消泡、分散、增溶、润滑等作用。乳化剂在食品加工中有多种功效,是最重要的食品添加剂,广泛用于面包、糕点、饼干、人造奶油、冰淇淋、饮料、乳制品、巧克力等食品。乳化剂能促进油水相溶,渗入淀粉结构的内部,促进内部交联,防止淀粉老化,起到提高食品质量、延长食品保质期、改善食品风味、增加经济效益等作用。 世界上食品乳化剂约65种,FAO/WHO制订标准的有34种。2001年全世界年产乳化剂27.6万t,2002年产29万t。全世界每年总需求约8亿美元,耗用量25万t以上。消费量较大的5类乳化剂中,最多的是甘油脂肪酸酯,约占总量的53%;居第2位的是卵磷脂及其衍生物,约占20%;蔗糖脂肪酸酯和失水山梨醇脂肪酸酯约各占10%;丙二醇脂肪酸酯约占6%。 我国在1981年批准使用的食品乳化剂只有单甘酯和大豆磷脂两个品种,到2002年,我国允许使用的乳化剂达到29种。分别为单硬脂酸甘油酯、蔗糖脂肪酸酯、酪蛋白酸钠、山梨醇酐单脂肪酸酯、山梨醇酐三脂肪酸酯、山梨醇酐单油酸酯、木糖醇酐单硬脂酸酯、山梨醇酐单棕榈酸酯、硬脂酰乳酸钙、双乙酰酒石酸单(双)甘油酯、硬脂酰乳酸钠、松香甘油酯、氢化松香甘油酯、乙酸异丁酸蔗糖酯、聚氧乙烯山梨醇酐单硬脂酸酯、聚氧乙烯山梨醇酐单油酸酯、聚氧乙烯木糖醇酐单硬脂酸酯、辛,癸酸甘油酸酯、改性大豆磷脂、丙二醇脂肪酸酯、三聚甘油单硬脂酸酯、聚甘油单硬脂酸酯、聚甘油单油酸酯、山梨醇酐单月桂酸酯、聚氧乙烯(20)一山梨醇酐单月桂酸酯、聚氧乙烯(20)一山梨醇酐单棕榈酸酯、乙酰化单甘油脂肪酸酯、硬脂酸钾、聚甘油蓖麻酸酯,由此可见,乳化剂的发展在食品添加剂行业中是属于较快的,乳化剂的品种增长见图1。 到2004年底。我国乳化剂的4个主要品种。产量已达4万t/年(包括复配产品),其它25个品种产量、用量尚无法统计。据估计:我国年产蔗糖酯约150万t,Span、Tween 系列约2000t。所有的食品乳化剂的产量都比l0年前翻了一番,产品竞争相当激烈,乳化剂产量增长态势见图2,销售额增长态势见图3。 单甘酯在食品乳化剂中占50%以上的份额,产量在2万t左右。但我国早期食品乳化剂的应用中单甘酯并不突出。单甘酯的发展可以归结为3个原因:f1)原料和产品的价格优势;(2)使用、储藏较方便;(3)单甘酯制造技术的发展。而且自从20世纪9og代,我国自行研制出分子蒸馏装置。单甘酯粗制品比例逐步减少,分子蒸馏单甘酯占领国内乳化剂的主要市场,现有年产1500t分子蒸馏单甘酯的装置20多套,年产3000t分子蒸馏单甘酯的装置3套。据称已有年产5000t分子蒸馏单甘酯的装置。年产6000t分子蒸馏单甘酯的设备建设已列入国内企业的发展计划。2002年乳化剂的总销售额约4亿元(包括复配产品),其中单甘酯及其复配产品销售额达到1.9亿元。酪蛋白钠、Span、Tween系列产品,蔗糖酯和硬脂酰乳酸盐(酯)产品的销售额约1.5亿元。

食品乳化剂司盘

食品乳化剂司盘/吐温在食品中的应用的整理: 乳化剂——司盘(Span ) 化学名:聚氧乙烯山梨醇酐脂肪酸酯(Sorbitan fatty acid ester ) 性能:司盘是植物油脂分馏得到的各种脂肪酸和山梨醇经化学合成的产品,按GB2760-86 规定可以用作食品乳化剂,安全无毒,无刺激。依脂肪酸种类不同而得到系列产品,本系列产品为亲油性非离子型乳化剂,HLB 值 1.8-8.6 ,可以溶解于极性有机溶济和油脂。 应用: 司盘系列产品作为乳化剂广泛用在食品、化妆品和其它行业。作为食品添加剂广泛用在蛋糕油、面包改良剂和各类饮料中,起乳化、稳定、起泡等作用;作为化妆品添加剂可以稳定地乳化各种油脂,如:白矿油、硅油、动物油、合成油等,S-40 、S-60 、S-65 用在膏体产品中有乳化和增稠作用,S-80 、S-85 用在膏体中除了乳化作用外,还可以提高乳液光泽,增加油性感;司盘还用于其它工业,如纺织助剂(油剂、柔软剂)、金属加工助剂(防锈剂、切削液)。 包装:固体25 公斤/ 袋,15 公斤/ 箱液体25 公斤/ 桶,200 公斤/ 桶 运输:按一般化学品储运,保质期一年。 脂肪酸构成和指标 名称化学名外观60-80理化指标 酸值 (mgKOH/g)皂化值 (mgKOH/g)羟值 (mgKOH/g) ≤7.0155-170 330-270 4.5-7.5 140-150 270-305 ≤10.0145-155 235 ≤15.0170-190 260 ≤8.0 145-160 60-80 ≤15.0165-180 193-210 HLB值 S-20 山梨醇酐单月桂酸酯粘稠状液体8.6 S-40 山梨醇酐单棕榈酸酯块状固体 6.5 S-60 山梨醇酐单硬脂酸酯珠状固体 4.7 S-65 山梨醇酐三硬脂酸酯块状固体 2.1 S-80 山梨醇酐单油酸酯油状液体 4.3 S-85 山梨醇酐三油酸酯油状液体 1.8 乳化剂——吐温(Tween ) 化学名:聚氧烯山梨醇酐脂肪酸酯(Poiysorbate ) 性能:亲水性非离子型乳化剂,按GB2760-86 规定可以用作食品乳化剂,安全无毒,无刺激。依脂肪酸种类不同而得到系列产品,HLB 值9.6-16.7 ,可以溶解或分散于水、醇等极性有机溶剂。具有乳化、增溶和稳定作用。 应用: 吐温系列产品作为乳化剂广泛用在食品、化妆品和其它行业。与斯潘配合使用可以调配适合各种乳液所需乳化剂。作为食品添加剂广泛用在蛋糕油、面包改良剂和各类饮料中,起乳化、稳定、起泡等作用;作为化妆品添加剂可以稳定地乳化各种油脂,高HLB 值吐温还用作香料增溶剂,还用为温和洗涤剂,低HLB 值吐温对矿物油有特殊乳化性;吐温还用于其它工业,如:纺织助剂(油剂、柔

食品添加剂

第十章食品添加剂 一、概述: 1.食品添加剂的定义 食品添加剂是为改善食品色、香、味等品质,以及为防腐和加工工艺的需要而加入食品中的化学合成物质或者天然物质。 2.食品添加剂的分类 目前我国食品添加剂有22个类别,2000多个品种,包括酸度调节剂、抗结剂、消泡剂、抗氧化剂、漂白剂、膨松剂、着色剂、护色剂、乳化剂、酶制剂、增味剂、营养强化剂、防腐剂、甜味剂、增稠剂、香料等。 3.食品添加剂的使用要求 1)在规定使用限量范围内对人体无害; 2)严格的质量标准,有害杂质不得检出或不能超过容许限量; 3)对食品的营养成分不能有破坏作用,也不应影响食品的质量与品质。 4)用量小、功效明显; 5)使用安全、方便; 6)添加于食品后能分析鉴定出来。 4.食品添加剂的使用标准 日允许摄入量(ADI);安全系数;半致死量(LD50); 5.食品添加剂的毒性学评价 目的:确定安全性或毒性;确定准用量,提出对有害物质禁用或放弃

的理由,为制定食品添加剂使用的卫生标准及有关法规提供依据。主要内容: 1)食品添加剂的化学结构、理化性质、纯度、及其存在形式、降解过程和降解产物。 2)食品添加剂进入机体后,在组织器官内的储存分布、代谢转变及排泄情况。 3)食品添加剂及其代谢产物在机体内引起的生物学变化,即对机体可能造成的毒害及其机理。包括急性毒性、慢性毒性、对生育繁殖的影响、胚胎毒性、致畸性、致突变性、致癌性、致敏性等。 6. 食品添加剂的管理 二、乳化剂、增稠剂、膨松剂 1.乳化剂的定义及分类 定义:是指添加于食品后可显著降低油水两相界面张力,使互不相溶的油(疏水性物质)和水(亲水性物质)形成稳定乳浊液的食品添加剂。 分类: 按来源分 天然乳化剂(磷脂、蛋白、胶质、藻类) 合成乳化剂(酯类、环糊精、甾类、卤代油) 按离子的类型结构分 1 、离子型乳化剂(阴、阳、两性) 2 、非离子型乳化剂 根据亲水、亲油相对强弱分为

乳化稳定剂在乳饮料中的应用

乳化稳定剂在乳饮料中的应用 乳饮料是指以新鲜牛乳为原料(含乳30%以上)加入水与适量辅料,如可可、咖啡、果汁和蔗糖等物质,经有效杀菌而成的具有相应风味的含乳饮料。它是一种客观不稳定分散体系,既有蛋白质及果汁微粒形成的悬浮液、脂肪的乳浊液,又有以糖类、盐类形成的真溶液。实际生产中采用最先进的加工机械和加工工艺,也很难达到饮料的质量要求,常发生油脂上浮和蛋白质沉淀等质量问题。所以要添加适量的乳化剂、增稠剂等,使饮料保持稳定。调配型中性乳饮料(以巧克力乳饮料为例)可可奶乳饮料是以奶粉(或鲜牛乳)、可可粉、蔗糖等为主要原料调配而成。其一般的生产工艺为:原乳的标准化或乳粉的还原→可可粉预处理→稳定剂的溶解→混合配料→高压均质→灭菌→冷却→成品。由于可可奶乳饮料含奶量一般在30%以上,且可可粉不仅含有脂肪,还含有丰富的蛋白质和碳水化合物。所以可可奶生产中容易出现以下主要质量问题:1.可可粉和蛋白质沉淀;2.絮凝;3.可可粉结块;4.水析;5.油析;6.黏度太大。根据斯托克斯定律可知,提高可可奶饮料的黏度,缩小液体与可可颗粒之间的密度差,才能减少可可粒子的沉降速度。所以一般通过细化可可颗粒和增加体系黏度的方法来解决可可粉沉淀的问题。可可粉粒度较大,经过预处理、高压均质后,其粒度仍在2—50μm,虽然减少了可可颗粒的沉淀,但仍不能完全避免。实际生产中,一般采用添加乳化稳定剂的方法,乳化剂常选用卵磷脂和高HLB值的乳化剂,如蔗糖脂肪酸酯和多聚甘油脂肪酸酯。增稠剂常选用黄原胶、刺槐豆胶、

罗望子胶、卡拉胶,尤其是卡拉胶牞一方面它能与牛乳蛋白质相结合成网状结构牞另一方面它能形成触变性凝胶结构,从而达到悬浮可可粉的效果,另外还可以赋予可可奶饮料润滑的口感。调配型酸性含乳饮料在乳饮料市场中,调配型酸性含乳饮料占领了很大一部分市场。它一般是用酸溶液或果汁,将牛乳的pH从6.6—6.8调整到4.0—4.2制成的一种乳饮料,其典型工艺如下:原料乳(或还原乳)→标准化→加稳定剂、糖混合→冷却到40℃以下→酸化→定容→巴氏杀菌→加香→均质→灌装→二次灭菌→冷却→成品。一般先将稳定剂与5—10倍的白糖干混均匀,加入冷水或温水溶解,过胶体磨,待用。由于调配酸乳饮料的主要成分是水、蛋白质、脂肪、糖、盐等,是以水为分散介质,以蛋白质、脂肪为分散相的宏观分散体系,呈乳状液态。而牛乳的乳蛋白中,80%为酪蛋白质,属于高分子两性电解质。在制作酸性饮料时,由于加入了酸,pH会下降(一般酸性蛋白饮料pH为3.3—4.0)。当pH值降低到接近酪蛋白的等电点4.6,酪蛋白几乎完全凝聚沉淀。进一步增加酸性,则碱基的解离占优势。蛋白质粒子整体带上正电荷,即酪蛋白趋向分散溶解,使一度凝聚的大粒子分散开,形成不稳定的溶胶。另外,由斯托克斯定律可知,为防止蛋白质粒子沉降,要减少蛋白质粒子的直径,减少蛋白质粒子和分散介质的密度差,增加分散介质的黏度系数,故应选用添加一些耐酸性稳定剂来增加黏度,如CMC(Fh9)、黄原胶、PGA、果胶。它们都是耐酸性强的亲水胶体,具有稳定作用的酸性多糖,在酸性乳饮料中,可补偿蛋白质的阴离子电荷,由于静

表面活性剂在食品中得应用

第十章表面活性剂在食品工业中的应用 第一节概述 表面活性剂作为食品添加剂或加工助剂,广泛用于各类食品生产,对提髙食品质量、开发食品新品种、改进生产工艺、延长食品储藏保鲜期,提髙生产效率等有显著效果。表面活性剂在食品工业屮主要用作乳化剂、增稠剂、稳定剂、消泡剂.、起泡剂、糖助剂、润滑抗粘剂、清洗剂、水果剥皮剂、涂膜保鲜剂等,应用最广泛的是食品乳化剂。联合国粮农组织(FAO)、世界卫生组织(WHO)以及世界各国对食品添加剂和加工助剂的使用都制定了相应的法规或标准,规定了允许使用的食品添加剂品种、使用范围和最大用量。一些常用的表面活性剂类食品添加剂和加工助剂列于表10-1中。

第二节在食品中的作用 一、乳化剂及其与食品成分的相互作用 食品乳化剂种类繁多,按亲水亲油平衡值(BHL值)可分为水包油型和油包水型两类;根据亲水基在水中所带的电荷可分为阴离子型、非离子型、阳离子型和两性离子型四类。口前,允许使用的食品乳化剂约65种,常用的有甘油脂肪酸酯(主要为甘油单脂肪酸酯)、蔗糖脂肪酸酯、失水山梨醇脂肪酸酯,聚氧乙烯失水山梨醇脂肪酸酯、丙二醇脂肪酸指、大豆磷脂、硬脂酰乳酸钙(钠)、酪蛋白酸钠等(见表10-2),食品乳化剂的世界总需求量约为2.5×109,其中需求量最大的是甘油单脂肪酸酯,约占总需求量的2/3,其次是蔗糖脂肪酸酯。目前,食品乳化剂正向系列化、复配化、多功能、高效率、便于使用等方面发展。

乳化剂除具有乳化、增溶、分散、润湿、悬浮、消泡、起泡等表面活性外,还能与碳水化合物、类脂化合物和蛋白质等食品成分发生特殊的相互作用,这在

食品加工中对改进和提高食品质量起着重要的作用。 (一)乳化剂与类脂化合物的作用 类脂化合物中的油脂在食品中占有很大比例。在有水情况卜,油脂与乳化列相互作用形成稳定的乳状液,这是食品加工中所常利用的乳化作用。无水时油脂会产生多晶现象,这与其预处理有关(见图10-1)。 α-晶形的熔点最低,α-品形到次α-品形是可逆的,α-晶形到β-晶形是不可逆的,β-晶形具有较高的熔点。一般温度下,。α-晶形到β-晶形的过渡是缓慢的。 油脂的不同晶形赋予食品不同的感官特性。许多情况中,油脂的晶形处于不稳定的α-晶形或β-初级晶形,并趋于过渡到熔点最高、能量最低的β-晶形,因此,在食品加工中需加入具有变晶性的物质,以长时间内阻碍或延缓晶形变化,形成有利于食品感官性能和食用性能所需的晶形。某些趋向α-晶形的亲油性乳化剂与油脂相互作用和结合,就有调节结晶形成的作用。例如,蔗糖脂肪酸酯、斯潘60、潘65、甘油单(双)乳酸酯、聚甘油脂肪酸酯都可作为结晶调整剂,用于食品加工过程。熔化的油脂中加入斯潘60或斯潘65,冷却时形成介初级晶形,由于共结晶作用使这种晶形结构保持稳定。 (二)乳化剂与蛋白质的作用 蛋白质是具有一定结构特征的络合、聚合物分子,也是食品的基本成分。它的结构特征影响与乳化剂的相互作用和结合程度。蛋白质肽链中的肽键不能与乳化剂发生作用,而固定在多肽链上的氨基酸侧链能与乳化剂作用。结合方式与侧链的极性、乳化剂种类以及是否带有电荷和体系pH值等因素有关,主要有疏水结合、氢键结合及静电结合三种。 非极性蛋白质侧链基团与乳化剂的烃链相互作用产生疏水结合,条件是有水存在。溶剂水经非极性氨基酸扣互排斥,这是产生疏水结合的基础。疏水结合中乳化剂烃链固定于蛋白质上,而乳化剂的极性基结合在粒子表面,形成脂肪。 极性侧链不带电荷的蛋白质与乳化剂的亲水分子部分以氢键发生作用,此时乳化剂的烃链结合在粒子表面。侧链带电荷的蛋白质与带相反电荷的乳化剂产生静电相互作用。带正电荷的氨基酸侧链与带负电荷的乳化剂相互作用的方式在生物体系较为常见。 乳化剂与蛋白质相互作用形成的化合物属于脂肪,不同的脂肪及作用条件对结合程度影响很大。各种乳化剂与蛋白质的作用程度列于表10-3。在食品加工中,特别是在烘烤食品中大量利用蛋白质与乳化剂的相互作用和结合来改善食品

几种食品添加剂在饮料中的应用

无标题文档--返回-- 几种食品添加剂在饮料中的应用 食品添加剂在饮料的加工过程中起着极其重要的作用,新型食品添加剂对饮料的加工工艺、口味等都将带来新的影响和变化。它能帮助饮料生产企业在激烈的市场竞争中,通过产品创新脱颖而出。以下介绍一些食品添加剂在饮料中的应用。 乳化剂在饮料中的应用 乳化剂又称表面活性剂,具有亲水和亲油基二重性基团,能使油水均匀混合及分散。饮料中的乳化剂有赋香、起泡、着色等效果。 1 .饮料中使用的乳化剂 添加到饮料中乳化剂要符合食品卫生、安全。日本卫生法规定食品用的乳化剂有甘油脂肪酸酯、甘油醋酸脂肪酸酯、甘油乳酸脂肪酸酯、甘油柠檬酸脂肪酸酯、甘油琥珀酸脂肪酸酸、甘油乙酰酒石酸脂肪酸酯、山梨糖醇酐脂肪酸酯、聚甘油脂肪酸酯、蔗糖脂肪酸酯、丙二醇脂肪酸酯、大豆磷脂。其中以后四种脂肪酸酯及大豆卵磷脂应用最多。 饮料中可使用的乳化剂一般与乳化稳定剂、分散剂并用,可提高乳化稳定性。应用的乳化剂有天然乳化剂卵磷脂、皂草苷、单宁;含成乳化剂甘油脂肪酸酯、蔗糖脂肪酸酯、丙二醇脂肪酸酯,起表面活性剂的乳化作用;分散助剂糊精、饮糖,分散作用的阿拉伯胶、黄蓍胶类,增黏作用的果胶类果胶纤维素,保护胶质作用的蛋白类(干酪、明胶)、海藻酸等。 在乳化剂的HLB 值,用于判别乳化剂中的亲水与亲油平衡性的值,在水中应用时很有价值,如HLB 值在0.2 时起消泡作用,水中不分散, HLB 值4-6 时在水中分散性小,作W/O 乳化剂;在8-10 时乳状分散,稳定乳状分散,12-14 时透明分散;16-20 时呈可溶化剂,透明胶体溶液,为O/W 乳化剂。亲水性的乳化剂以蔗糖脂肪酸酯,聚甘油酯、皂草苷的HLB 值高。各种食用乳化剂的HLB 值为:甘油脂肪酸酯3-5 ,甘油醋酸脂肪酸酯2.5-3.5 ,甘油乳酸脂肪酸酯为3-4 ,甘油柠檬酸脂肪酸酯9 ,甘油琥珀酸脂肪酸酯5-7 ,甘油乙酰酒石酸脂肪酸酯8-10 ,聚甘油酯1-18 ,山梨糖醇脂肪酸酯2-9 ,蔗糖脂肪酸酯1-18 ,丙二醇脂肪酸酯15-30 ,卵磷脂3-4 ,皂草苷16 以上。 胶类、干酪素钠、改性淀粉等也可作亲水性乳化剂,亲油性乳化剂不能单独用在饮料中,要与亲水性乳化剂并用才有效。 2 .饮料中乳化剂的作用 饮料中使用的乳化剂应具备六个条件:安全、HLB 值高、耐酸、耐盐、水解性好、耐乙醇。 乳化剂在饮料中具有乳化、润湿、分散、起泡、助溶和抗菌等作用。 (1) 乳化作用 起乳化作用的有乳化香料,赋予饮料以香气和浊度,用高HLB 值的聚甘油脂肪酸酯及皂树皂苷,可调制成乳化香料。添加乳化香料的饮料多属酸性,而聚甘油脂肪酸酯和皂树苷耐酸性优,因而十分合适。亲水性好与耐酸性高的卵磷脂也可使用。

精细化工论文食品添加剂的研究与应用

食品添加剂的研究与应用 前言:随着我国食品工业的发展, 食品添加剂发挥着越来越重要的作用, 并已成为食品工业的灵魂, 没有食品添加剂就没有现代食品工业已成为食品界人士的共识。但是近年来发生的一系列食品安全事件, 使社会和公众对食品添加剂产生了误解, 认为食品添加剂是食品安全的主要问题, 并造成了一些不良影响。事实上, 那些引起食品安全事件发生的根本不是食品添加剂, 而是一些非法添加物。由于一些消费者缺乏对食品添加剂科学的、全面的、正确的认识,一时间将食品安全问题炒得沸沸扬扬,错把食品中非食品添加剂导致的安全问题归结到食品添加剂身上,造成了消费者对食品添加剂产生误解。因此,希望可以通过本文让广大消费者能够对食品添加剂有一定的了解。 一、食品添加剂的研究 1.食品保藏与保鲜剂 1.1防腐剂 防腐剂就是能够杀灭微生物或抑制其繁殖作用,减轻食品在生产、运输、销售等过程中因微生物而引起腐败的食品添加剂。 1.1.1苯甲酸及其钠盐 苯甲酸又名安息香酸。由于其在水中溶解度低,故多使用其钠盐。成本低廉。 苯甲酸进入机体后,大部分在9~15小时内与甘氨酸化合成马尿酸而从尿中排出,剩余部分与葡萄糖醛酸结合而解毒。但由于苯甲酸钠有一定的毒性,目前已逐步被山梨酸钠替代。 1.1.2山梨酸及其钠盐 又名花楸酸。由于在水中的溶解度有限,故常使用其钾盐。山梨酸是一种不饱和脂肪酸,可参与机体的正常代谢过程,并被同化产生二氧化碳和水,故山梨酸可看成是食品的成分,按照目前的资料可以认为对人体是无害的。 1.1.3对羟基苯甲酸脂 成本较高。对霉菌、酵母与细菌有广泛的抗菌作用。对霉菌和酵母的作用较强,但对细菌特别是革兰氏阴性杆菌及乳酸菌的作用较差。作用机理为抑制微生物细胞呼吸酶和电子传递酶系的活性,以及破坏微生物的细胞膜结构。其抑菌的能力随烷基链的增长而增强;溶解度随酯基碳链长度的增加而下降,但毒性则相反。但对羟基苯甲酸乙酯和丙酯复配使用可增加其溶解度,且有增效作用。在胃肠道内能迅速完全吸收,并水解成对羟基苯甲酸而从尿中排出,不在体内蓄积。

增稠剂在饮料中的应用

增稠剂在饮料的应用

摘要:1、增稠剂的种类 2、增稠剂在食品中的作用概括 3、增稠剂在饮料中的应用 4、影响增稠剂作用效果的因素 5、增稠剂的行业发展趋势 关键词:增稠剂饮料作用发展趋势 一、增稠剂的种类 1、1增稠剂的定义:增稠剂是一种食品添加剂,能增加流体或半流体食品黏度或形成凝胶,并能保持所在体系的相对稳定性的亲水性的食品添加剂,也称食品胶。 1、2分类 按其来源分为半化学合成和天然增稠剂。半化学合成主要有:羧甲基维生素钠,淀粉磷酸酯钠,羧甲基淀粉钠等。天然增稠剂包括瓜尔多胶,阿拉伯胶,海藻酸钠等。 二、增稠剂在食品中的作用概括[1] 2、1起泡作用和稳定泡沫的作用 增稠剂可以发泡,形成网状结构,它在搅拌时可包含大量气体,并使液泡表面黏性增加使其稳定。蛋糕,啤酒等使用海藻酸钠等做发泡剂。泡沫及瓶壁产生“连鬓子”是评价啤酒质量优劣的指标之一,增稠剂可以提高泡沫量及泡沫的稳定性,并在果肉饮品中起悬浮作用。 2、2保水作用

因为增稠剂是强亲水性物质,在肉制品,面包制品中能起到改良作用。由于增稠剂具有凝胶作用,使面制品粘弹性增加,淀粉α化程度增加,不易老化变干。 2、3矫味作用 增稠剂对一些不良气味具有掩蔽作用,但不能将其用于防腐食品。蔬菜汁酸奶中有一种乳腥味和蔬汁生草味,增稠剂可以减少和掩蔽其气味,提高饮品风味。 2、4其他 增稠剂还具有粘合作用,成膜作用,保健作用,乳化作用,润滑作用等诸多作用,被广泛应用于肉制品,调味品,奶酪,甜食中。 三、增稠剂在饮料中的应用 3、1增稠剂在饮品中的应用 由于增稠剂在饮品中具有增稠、稳定、均质、乳化胶凝作用、掩蔽、矫味、澄清及泡沫稳定等作用,被广泛应用于饮品加工中。孟岳成等研究了增稠剂对嗜酸乳杆菌发酵豆乳饮料稳定性的影响,结果表明,在单因素实验中,果胶、CMC、黄原胶的添加量分别为0.6%、0.5%、0.05%时,产品稳定性最好;复配后最佳的配比为:果胶为0.1l%、CMC为0.23%、黄原胶为0.05%,此时产品的沉淀率最小即稳定性最好[2]。罗玲泉等研究了增稠剂对搅拌型酸乳感官品质的影响,试验结果表明果胶、变性淀粉、明胶增稠剂分别添加0.5%、0.4%、0.2%时感官最佳;复配时最佳添加量分别为0.1%、0.12%、0.05%,总添加量约为0.27%,此时能获得最佳的酸乳感官品质[3]。吕心泉等

相关文档
最新文档