什么是晶圆级晶片尺寸封装

什么是晶圆级晶片尺寸封装
什么是晶圆级晶片尺寸封装

什么是晶圆级晶片尺寸封装(Wafer Level Chip Scale Packaging)

1. 晶圆级晶片尺寸封装(Wafer Level Chip Scale Packaging)是先在整片晶圆上进行封装和测试,然后经切割并将IC直接用机台以pick up & flip方式将其放置于Carrier tape中,并以Cover tape保护好后,提供后段SMT (Surface Mounting technology)直接以机台将该IC自Carrier tape取料后,置放于PCB上。

WLCSP选用较大的锡铅球来形成接点藉以进行电性导通,其目的是增加元件与基板底材之间的距离,进而降低并承受来自于基板与元件间因热膨胀差异产生的应力,增加元件的可靠性。利用重分布层技术则可以让锡球的间距作有效率的安排,设计成矩阵式排列(grid array)。采用晶圆制造的制程及电镀技术取代现有打金线及机械灌胶封模的制程,不需导线架或基板。晶圆级封装只有晶粒般尺寸,且有较好的电性效能,因系以每批或每片晶片来生产, 故能享有较低之生产成本。

2.特点:

WLCSP 少掉基材、铜箔等,使其以晶圆形态进行研磨、切割后完成的IC 厚度和一般QFP 、BGA……等等比较起来为最薄、最小、最轻,较符合未来产品轻、薄之需求;且因其不需再进行封装,即可进行后段SMT 制程,故其成本价格可以较一般传统封装为低。

● 封装技术比较: 封装方式 优 点 缺 点

传统封装(QFP 、BGA ) 1. 技术成熟 2. 制程稳定 1. 无法达到未来细间距要求

2. 制程较复杂

3. 完成的IC 成本高

晶圆级晶片尺寸封装 1. 尺寸小

2. 成本低

3. 简化制程

4. 可达Fine Pitch 要求 1. I/O 数少(<100)

3.产品应用面:

3.1 Power supply (PMIC/PMU, DC/DC converters, MOSFET' s,...)

3.2 Optoelectronic device

3.3 Connectivity (Bluetooth, WLAN)

3.4 Other features (FM, GPS, Camera)

4.生产流程简介

1.5 Inspection after ball mount

2. CP ?Chip probing test

3. Grinding ?Wafer backgrind

4. BSM

?Wafer backside metallization (option)

5. BSC

?Wafer backside coating

6. Laser

?Laser making (Wafer form)

7. Dicing ?Wafer mount and saw

8. AOI ?Sort inspection

9. T&R ?Tape and reel (pick and

place)

10. V/M ?Inspection after T&R

11.Pack ?Vacuum sealing dry packing -

芯片封装全套整合(图文精选对照)

芯片封装方式大全 各种IC封装形式图片 BGA Ball Grid Array EBGA 680L LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L QFP Quad Flat Package TQFP 100L SBGA SC-70 5L SDIP SIP Single Inline Package

TSBGA 680L CLCC CNR Communicatio n and Networking Riser Specification Revision 1.2 CPGA Ceramic Pin Grid Array DIP Dual Inline Package SO Small Outline Package SOJ 32L SOJ SOP EIAJ TYPE II 14L SOT220 SSOP 16L

DIP-tab Dual Inline Package with Metal Heatsink FBGA FDIP FTO220 Flat Pack HSOP28SSOP TO18 TO220 TO247 TO264 TO3

ITO220 ITO3p JLCC LCC LDCC LGA LQFP PCDIP TO5 TO52 TO71 TO72 TO78 TO8 TO92

PGA Plastic Pin Grid Array PLCC 详细规格PQFP PSDIP LQFP 100L 详细规格METAL QUAD 100L 详细规格PQFP 100L 详细规格TO93 TO99 TSOP Thin Small Outline Package TSSOP or TSOP II Thin Shrink Outline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid

芯片常用封装及尺寸说明

A、常用芯片封装介绍 来源:互联网作者: 关键字:芯片封装 1、BGA 封装(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配 LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚 LSI 用的一种封装。封装本体也可做得比 QFP(四侧引脚扁平封装)小。例如,引脚中心距为 1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚 QFP 为 40mm 见方。而且 BGA 不用担心 QFP 那样的引脚变形问题。该封装是美国 Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为 1.5mm,引脚数为225。现在也有一些 LSI 厂家正在开发500 引脚的 BGA。 BGA 的问题是回流焊后的外观检查。 现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国 Motorola 公司把用模压树脂密封的封装称为 OMPAC,而把灌封方法密封的封装称为 GPAC(见 OMPAC 和 GPAC)。 2、BQFP 封装(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和 ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见 QFP)。

芯片封装大全(图文对照)

封装有两大类;一类是通孔插入式封装(through-hole package);另—类为表面安装式封装(surface moun te d Package)。每一类中又有多种形式。表l和表2是它们的图例,英文缩写、英文全称和中文译名。图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。 DIP是20世纪70年代出现的封装形式。它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。 但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到很大限制。 为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引出方式,因而引脚数可高达500条~600条。 随着表面安装技术(surface mounted technology, SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。它的引脚节距也从DIP的2.54 mm减小到1.77mm。后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。 QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。引脚节距进一步降低到1.00mm,以至0.65 mm和0.5 mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。但在管脚数要求不高的情况下,SOP以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。 方形扁平封装-QFP (Quad Flat Package) [特点] 引脚间距较小及细,常用于大规模或超大规模集成电路封装。必须采用SMT(表面安装技术)进行焊接。操作方便,可靠性高。芯片面积与封装面积的比值较大。 小型外框封装-SOP (Small Outline Package) [特点] 适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。引脚离芯片较远,成品率增加且成本较低。芯片面积与封装面积比值约为1:8 小尺寸J型引脚封装-SOJ (Smal Outline J-lead) 有引线芯片载体-LCC (Leaded Chip Carrier) 据1998年统计,DIP在封装总量中所占份额为15%,SOP在封装总量中所占57%,QFP则占12%。预计今后DIP的份额会进一步下降,SOP也会有所下降,而QFP会维持原有份额,三者的总和仍占总封装量的80%。 以上三种封装形式又有塑料包封和陶瓷包封之分。塑料包封是在引线键合后用环氧树脂铸塑而成,环氧树脂的耐湿性好,成本也低,所以在上述封装中占有主导地位。陶瓷封装具有气密性高的特点,但成本较高,在对散热性能、电特性有较高要求时,或者用于国防军事需求时,常采用陶瓷包封。 PLCC是一种塑料有引脚(实际为J形引脚)的片式载体封装(也称四边扁平J形引脚封装QFJ (quad flat J-lead package)),所以采用片式载体是因为有时在系统中需要更换集成电路,因而先将芯片封装在一种载体(carrier)内,然后将载体插入插座内,载体和插座通过硬接触而导通的。这样在需要时,只要在插座上取下载体就可方便地更换另一载体。 LCC称陶瓷无引脚式载体封装(实际有引脚但不伸出。它是镶嵌在陶瓷管壳的四侧通过接触而导通)。有时也称为CLCC,但通常不加C。在陶瓷封装的情况下。如对载体结构和引脚形状稍加改变,载体的引脚就可直接与PCB板进行焊接而不再需要插座。这种封装称为LDCC即陶瓷有引脚片式载体封装。 TAB封装技术是先在铜箔上涂覆一层聚酰亚胺层。然后用刻蚀方法将铜箔腐蚀出所需的引脚框架;再在聚酰亚胺层和铜层上制作出小孔,将金属填入铜图形的小孔内,制作出凸点(采用铜、金或镍等材料)。由这些凸点与芯片上的压焊块连接起来,再由

晶圆级封装产业

晶圆级封装产业(WLP) 晶圆级封装产业(WLP),晶圆级封装产业(WLP)是什么意思 一、晶圆级封装(Wafer Level Packaging)简介晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。WLP 一、晶圆级封装(Wafer Level Packaging)简介 晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。WLP封装具有较小封装尺寸(CSP)与较佳电性表现的优势,目前多用于低脚数消费性IC的封装应用(轻薄短小)。 晶圆级封装(WLP)简介 常见的WLP封装绕线方式如下:1. Redistribution (Thin film), 2. Encapsulated Glass substrate, 3. Gold stud/Copper post, 4. Flex Tape等。此外,传统的WLP封装多采用Fan-in 型态,但是伴随IC信号输出pin 数目增加,对ball pitch的要求趋于严格,加上部分组件对于封装后尺寸以及信号输出脚位位置的调整需求,因此变化衍生出Fan-out 与Fan-in + Fan-out 等各式新型WLP封装型态,其制程概念甚至跳脱传统WLP 封装,目前德商英飞凌与台商育霈均已经发展相关技术。 二、WLP的主要应用领域 整体而言,WLP的主要应用范围为Analog IC(累比IC)、PA/RF(手机放大器与前端模块)与CIS(CMOS Ima ge Sensor)等各式半导体产品,其需求主要来自于可携式产品(iPod, iPhone)对轻薄短小的特性需求,而部分NOR Flash/SRAM也采用WLP封装。此外,基于电气性能考虑,DDR III考虑采用WLP或FC封装,惟目前JEDEC仍未制定最终规格(注:至目前为止,Hynix, Samsung与Elpida已发表DDR III产品仍采F BGA封装),至于SiP应用则属于长期发展目标。此外,采用塑料封装型态(如PBGA)因其molding compo und 会对MEMS组件的可动部份与光学传感器(optical sensors)造成损害,因此MEMS组件也多采用WLP

电子封装技术发展现状及趋势

电子封装技术发展现状及趋势 摘要 电子封装技术是系统封装技术的重要内容,是系统封装技术的重要技术基础。它要求在最小影响电子芯片电气性能的同时对这些芯片提供保护、供电、冷却、并提供外部世界的电气与机械联系等。本文将从发展现状和未来发展趋势两个方面对当前电子封装技术加以阐述,使大家对封装技术的重要性及其意义有大致的了解。 引言 集成电路芯片一旦设计出来就包含了设计者所设计的一切功能,而不合适的封装会使其性能下降,除此之外,经过良好封装的集成电路芯片有许多好处,比如可对集成电路芯片加以保护、容易进行性能测试、容易传输、容易检修等。因此对各类集成电路芯片来说封装是必不可少的。现今集成电路晶圆的特征线宽进入微纳电子时代,芯片特征尺寸不断缩小,必然会促使集成电路的功能向着更高更强的方向发展,这就使得电子封装的设计和制造技术不断向前发展。近年来,封装技术已成为半导体行业关注的焦点之一,各种封装方法层出不穷,实现了更高层次的封装集成。本文正是要从封装角度来介绍当前电子技术发展现状及趋势。

正文 近年来,我国的封装产业在不断地发展。一方面,境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,拉动了封装产业规模的迅速扩大;另一方面,国内芯片制造规模的不断扩大,也极大地推动封装产业的高速成长。但虽然如此,IC的产业规模与市场规模之比始终未超过20%,依旧是主要依靠进口来满足国内需求。因此,只有掌握先进的技术,不断扩大产业规模,将国内IC产业国际化、品牌化,才能使我国的IC产业逐渐走到世界前列。 新型封装材料与技术推动封装发展,其重点直接放在削减生产供应链的成本方面,创新性封装设计和制作技术的研发倍受关注,WLP 设计与TSV技术以及多芯片和芯片堆叠领域的新技术、关键技术产业化开发呈井喷式增长态势,推动高密度封测产业以前所未有的速度向着更长远的目标发展。 大体上说,电子封装表现出以下几种发展趋势:(1)电子封装将由有封装向少封装和无封装方向发展;(2)芯片直接贴装(DAC)技术,特别是其中的倒装焊(FCB)技术将成为电子封装的主流形式;(3)三维(3D)封装技术将成为实现电子整机系统功能的有效途径;(4)无源元件将逐步走向集成化;(5)系统级封装(SOP或SIP)将成为新世纪重点发展的微电子封装技术。一种典型的SOP——单级集成模块(SLIM)正被大力研发;(6)圆片级封装(WLP)技术将高速发展;(7)微电子机械系统(MEMS)和微光机电系统(MOEMS)正方兴未艾,它们都是微电子技术的拓展与延伸,是集成电子技术与精密

什么是晶圆级晶片尺寸封装

什么是晶圆级晶片尺寸封装(Wafer Level Chip Scale Packaging) 1. 晶圆级晶片尺寸封装(Wafer Level Chip Scale Packaging)是先在整片晶圆上进行封装和测试,然后经切割并将IC直接用机台以pick up & flip方式将其放置于Carrier tape中,并以Cover tape保护好后,提供后段SMT (Surface Mounting technology)直接以机台将该IC自Carrier tape取料后,置放于PCB上。 WLCSP选用较大的锡铅球来形成接点藉以进行电性导通,其目的是增加元件与基板底材之间的距离,进而降低并承受来自于基板与元件间因热膨胀差异产生的应力,增加元件的可靠性。利用重分布层技术则可以让锡球的间距作有效率的安排,设计成矩阵式排列(grid array)。采用晶圆制造的制程及电镀技术取代现有打金线及机械灌胶封模的制程,不需导线架或基板。晶圆级封装只有晶粒般尺寸,且有较好的电性效能,因系以每批或每片晶片来生产, 故能享有较低之生产成本。 2.特点:

WLCSP 少掉基材、铜箔等,使其以晶圆形态进行研磨、切割后完成的IC 厚度和一般QFP 、BGA……等等比较起来为最薄、最小、最轻,较符合未来产品轻、薄之需求;且因其不需再进行封装,即可进行后段SMT 制程,故其成本价格可以较一般传统封装为低。 ● 封装技术比较: 封装方式 优 点 缺 点 传统封装(QFP 、BGA ) 1. 技术成熟 2. 制程稳定 1. 无法达到未来细间距要求 2. 制程较复杂 3. 完成的IC 成本高 晶圆级晶片尺寸封装 1. 尺寸小 2. 成本低 3. 简化制程 4. 可达Fine Pitch 要求 1. I/O 数少(<100) 3.产品应用面: 3.1 Power supply (PMIC/PMU, DC/DC converters, MOSFET' s,...) 3.2 Optoelectronic device 3.3 Connectivity (Bluetooth, WLAN) 3.4 Other features (FM, GPS, Camera) 4.生产流程简介

集成电路封装的发展现状及趋势

集成电路封装的发展现 状及趋势 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

序号:39 集成电路封装的发展现状及趋势 姓名:张荣辰 学号: 班级:电科本1303 科目:微电子学概论 二〇一五年 12 月13 日

集成电路封装的发展现状及趋势 摘要: 随着全球集成电路行业的不断发展,集成度越来越高,芯片的尺寸不断缩小,集成电路封装技术也在不断地向前发展,封装产业也在不断更新换代。 我国集成电路行业起步较晚,国家大力促进科学技术和人才培养,重点扶持科学技术改革和创新,集成电路行业发展迅猛。而集成电路芯片的封装作为集成电路制造的重要环节,集成电路芯片封装业同样发展迅猛。得益于我国的地缘和成本优势,依靠广大市场潜力和人才发展,集成电路封装在我国拥有得天独厚的发展条件,已成为我国集成电路行业重要的组成部分,我国优先发展的就是集成电路封装。近年来国外半导体公司也向中国转移封装测试产能,我国的集成电路封装发展具有巨大的潜力。下面就集成电路封装的发展现状及未来的发展趋势进行论述。 关键词:集成电路封装、封装产业发展现状、集成电路封装发展趋势。 一、引言 晶体管的问世和集成电路芯片的出现,改写了电子工程的历史。这些半导体元器件的性能高,并且多功能、多规格。但是这些元器件也有细小易碎的缺点。为了充分发挥半导体元器件的功能,需要对其进行密封、扩大,以实现与外电路可靠的电气连接并得到有效的机械、绝缘等

方面的保护,防止外力或环境因素导致的破坏。“封装”的概念正事在此基础上出现的。 二、集成电路封装的概述 集成电路芯片封装(Packaging,PKG)是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连线,引出接线端并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。此概念称为狭义的封装。 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。封装为芯片提供了一种保护,人们平时所看到的电子设备如计算机、家用电器、通信设备等中的集成电路芯片都是封装好的,没有封装的集成电路芯片一般是不能直接使用的。 集成电路封装的种类按照外形、尺寸、结构分类可分为引脚插入型、贴片型和高级封装。 引脚插入型有DIP、SIP、S-DIP、SK-DIP、PGA DIP:双列直插式封装;引脚在芯片两侧排列,引脚节距,有利于散热,电气性好。 SIP:单列直插式封装;引脚在芯片单侧排列,引脚节距等特征与DIP基本相同。

光刻和晶圆级键合技术在3D互连中的研究

光刻和晶圆级键合技术在3D互连中的研究 作者:Margarete Zoberbier、Erwin Hell、Kathy Cook、Marc Hennemayer、Dr.-Ing. Barbara Neuber t,SUSS MicroTec 日益增长的消费类电子产品市场正在推动当今半导体技术的不断创新发展。各种应用对增加集成度、降低功耗和减小外形因数的要求不断提高,促使众多结合了不同技术的新结构应运而生,从而又催生出诸多不同的封装方法,因此可在最小的空间内封装最多的功能。正因如此,三维集成被认为是下一代的封装方案。 本文将探讨与三维互连技术相关的一些光刻挑战。还将讨论三维封装使用的晶圆键合技术、所面临的各种挑战、有效的解决方案及未来发展趋势。 多种多样的三维封装技术 为了适应更小引脚、更短互连和更高性能的要求,目前已开发出系统封装(SiP)、系统芯片(SoC)和封装系统(SoP)等许多不同的三维封装方案。SiP即“单封装系统”,它是在一个IC封装中装有多个引线键合或倒装芯片的多功能系统或子系统。无源元件、SAW/BA W滤波器、预封装IC、接头和微机械部件等其他元件都安装在母板上。这一技术造就了一种外形因数相对较小的堆叠式芯片封装方案。 SoC可以将所有不同的功能块,如处理器、嵌入式存储器、逻辑心和模拟电路等以单片集成的方式装在一起。在一块半导体芯片上集成系统设计需要这些功能块来实现。通常,So C设计与之所取代的多芯片系统相比,它的功耗更小,成本更低,可靠性更高。而且由于系统中需要的封装更少,因而组装成本也会有所降低。 SoP采用穿透通孔和高密度布线以实现更高的小型化。它是一种将整个系统安装在一个芯片尺寸封装上的新兴的微电子技术。过去,“系统”往往是一些容纳了数百个元件的笨重的盒子,而SoP可以将系统的计算、通信和消费电子功能全部在一块芯片上完成,从而节约了互连时间,减少了热量的产生。 最近穿透硅通孔(TSV)得到迅速发展,已成为三维集成和晶圆级封装(WLP)的关键技术之一。三维TSV已显现出有朝一日取代引线键合技术的潜力,因此它可以使封装尺寸进

晶圆级封装WLP优势

晶圆级封装W L P优势 The Standardization Office was revised on the afternoon of December 13, 2020

晶圆级封装(WLP)优势 晶圆级封装(WLP)以BGA技术为基础,是一种经过改进和提高的CSP(芯片级封装),充分体现了BGA、CSP的技术优势。它具有许多独特的优点。 晶圆级封装(Wafer Level Package,WLP)采用传统的IC工艺一次性完成后道几乎所有的步骤,包括装片、电连接、封装、测试、老化,所有过程均在晶圆加工过程中完成,之后再划片,划完的单个芯片即是已经封装好的成品;然后利用该芯片成品上的焊球阵列,倒装焊到PCB板上实现组装。WLP的封装面积与芯片面积比为1:1,而且标准工艺封装成本低,便于晶圆级测试和老化。 晶圆级封装以BGA技术为基础,是一种经过改进和提高的CSP,充分体现了BGA、CSP的技术优势。它具有许多独特的优点: (1)封装加工效率高,它以晶圆形式的批量生产工艺进行制造; (2)具有倒装芯片封装的优点,即轻、薄、短、小; 图5 WLP的尺寸优势 (3)晶圆级封装生产设施费用低,可充分利用晶圆的制造设备,无须投资另建封装生产线; (4)晶圆级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提高设计效率,减少设计费用; (5)晶圆级封装从芯片制造、封装到产品发往用户的整个过程中,中间环节大大减少,周期缩短很多,这必将导致成本的降低;

(6)晶圆级封装的成本与每个晶圆上的芯片数量密切相关,晶圆上的芯片数越多,晶圆级封装的成本也越低。晶圆级封装是尺寸最小的低成本封装。晶圆级封装技术是真正意义上的批量生产芯片封装技术。 WLP的优势在于它是一种适用于更小型集成电路的芯片级封装(CSP)技术,由于在晶圆级采用并行封装和电子测试技术,在提高产量的同时显著减少芯片面积。由于在晶圆级采用并行操作进行芯片连接,因此可以大大降低每个I/O 的成本。此外,采用简化的晶圆级测试程序将会进一步降低成本。利用晶圆级封装可以在晶圆级实现芯片的封装与测试。

芯片封装类型图解

集成电路封装形式介绍(图解) BGA BGFP132 CLCC CPGA DIP EBGA 680L FBGA FDIP FQFP 100L JLCC BGA160L LCC

LDCC LGA LQFP LQFP100L Metal Qual100L PBGA217L PCDIP PLCC PPGA PQFP QFP SBA 192L TQFP100L TSBGA217L TSOP

CSP SIP:单列直插式封装.该类型的引脚在芯片单侧排列,引脚节距等特征和DIP基本相同.ZIP:Z型引脚直插式封装.该类型的引脚也在芯片单侧排列,只是引脚比SIP粗短些,节距等特征也和DIP基本相同. S-DIP:收缩双列直插式封装.该类型的引脚在芯片两侧排列,引脚节距为1.778mm,芯片集成度高于DIP. SK-DIP:窄型双列直插式封装.除了芯片的宽度是DIP的1/2以外,其它特征和DIP相同.PGA:针栅阵列插入式封装.封装底面垂直阵列布置引脚插脚,如同针栅.插脚节距为2.54mm或1.27mm,插脚数可多达数百脚. 用于高速的且大规模和超大规模集成电路. SOP:小外型封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,字母L状.引脚节距为 1.27mm. MSP:微方型封装.表面贴装型封装的一种,又叫QFI等,引脚端子从封装的四个侧面引出,呈I字形向下方延伸,没有向外突出的部分,实装占用面积小,引脚节距为1.27mm. QFP:四方扁平封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈L字形,引脚节距为 1.0mm,0.8mm,0.65mm,0.5mm,0.4mm,0.3mm,引脚可达300脚以上. SVP:表面安装型垂直封装.表面贴装型封装的一种,引脚端子从封装的一个侧面引出,引脚在中间部位弯成直角,弯曲引脚的端部和PCB键合,为垂直安装的封装.实装占有面积很小.引脚节距为0.65mm,0.5mm. LCCC:无引线陶瓷封装载体.在陶瓷基板的四个侧面都设有电极焊盘而无引脚的表面贴装型封装.用于高 速,高频集成电路封装. PLCC:无引线塑料封装载体.一种塑料封装的LCC.也用于高速,高频集成电路封装. SOJ:小外形J引脚封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈J字形,引脚节距为 1.27mm. BGA:球栅阵列封装.表面贴装型封装的一种,在PCB的背面布置二维阵列的球形端子,而不采用针脚引脚. 焊球的节距通常为1.5mm,1.0mm,0.8mm,和PGA相比,不会出现针脚变形问题. CSP:芯片级封装.一种超小型表面贴装型封装,其引脚也是球形端子,节距为0.8mm,0.65mm,0.5mm等. TCP:带载封装.在形成布线的绝缘带上搭载裸芯片,并和布线相连接的封装.和其他表面贴装型封装相比,芯片更薄,引脚节距更小,达0.25mm,而引脚数可达500针以上. 介绍:

晶圆级封装(WLP)优势

晶圆级封装(WLP)优势 晶圆级封装(WLP)以BGA技术为基础,是一种经过改进和提高的CSP(芯片级封装),充分体现了BGA、CSP的技术优势。它具有许多独特的优点。 晶圆级封装(Wafer Level Package,WLP)采用传统的IC工艺一次性完成后道几乎所有的步骤,包括装片、电连接、封装、测试、老化,所有过程均在晶圆加工过程中完成,之后再划片,划完的单个芯片即是已经封装好的成品;然后利用该芯片成品上的焊球阵列,倒装焊到PCB板上实现组装。WLP的封装面积与芯片面积比为1:1,而且标准工艺封装成本低,便于晶圆级测试和老化。 晶圆级封装以BGA技术为基础,是一种经过改进和提高的CSP,充分体现了BGA、CSP的技术优势。它具有许多独特的优点: (1)封装加工效率高,它以晶圆形式的批量生产工艺进行制造; (2)具有倒装芯片封装的优点,即轻、薄、短、小; 图5 WLP的尺寸优势 (3)晶圆级封装生产设施费用低,可充分利用晶圆的制造设备,无须投资另建封装生产线; (4)晶圆级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提高设计效率,减少设计费用; (5)晶圆级封装从芯片制造、封装到产品发往用户的整个过程中,中间环节大大减少,周期缩短很多,这必将导致成本的降低;

(6)晶圆级封装的成本与每个晶圆上的芯片数量密切相关,晶圆上的芯片数越多,晶圆级封装的成本也越低。晶圆级封装是尺寸最小的低成本封装。晶圆级封装技术是真正意义上的批量生产芯片封装技术。 WLP的优势在于它是一种适用于更小型集成电路的芯片级封装(CSP)技术,由于在晶圆级采用并行封装和电子测试技术,在提高产量的同时显著减少芯片面积。由于在晶圆级采用并行操作进行芯片连接,因此可以大大降低每个I/O的成本。此外,采用简化的晶圆级测试程序将会进一步降低成本。利用晶圆级封装可以在晶圆级实现芯片的封装与测试。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

晶圆级封装技术的发展现状

晶圆级封装技术的发展现状 2016-04-18 12:36来源:内江洛伯尔材料科技有限公司作者:研发部 晶圆级封装随着IC芯片技术的发展,芯片封装技术也不断达到新的水平,目前已可在单芯片上实现系统的集成。 在众多的新型封装技术中,晶圆级封装技术最具创新性、最受世人瞩目,是封装技术取得革命性突破的标志。晶圆级封装技术的构思是在整片晶圆上进行CSP封装技术的制造,也就是在晶圆级基本完成了大部分的封装工作。因此,晶圆级封装结构,则可省略覆晶技术点胶的步骤,目前可采用弹性体或是类弹性体来抵消应力,而这些弹性体的制程,可在整片晶圆上完成,因此省去了对一个个组件分别点胶的复杂制程。方形晶圆封装技术的设计理念,首先为增加组件与底材之间的距离,亦即选用更大的锡铅焊料球实现导电性,现有的晶圆级封装技术,采用重新布局技术来加大锡铅焊料球的间距,以达到加大锡铅焊料球体积的需求,进而降低并承受由基板与组件之间热膨胀差异而产生的应力,提高组件的可靠性。 晶圆级封装和晶圆级芯片尺寸封装(WLCSP)是同一概念,它是芯片尺寸封装的一个突破性进展,表示的是一类电路封装完成后仍以晶圆形式存在的封装,其流行的主要原因是它可将封装尺寸减小到和IC芯片一样大小以及其加工的成本低,晶圆级封装目前正以惊人的速度增长,其平均年增长率(CAGR)可达210%,推动这种增长的器件主要是集成电路、无源组件、高性能存储器和较少引脚数的器件。 目前有5种成熟的工艺技术可用于晶圆凸点,每种技术各有利弊。其中金线柱焊接凸点和电解或化学镀金焊接凸点主要用于引脚数较少的封装(一般少于40),应用领域包括玻璃覆晶封装(COG)、软膜覆晶封装(COF)和RF模块。由于这类技术材料成本高、工序时间长,因此不适合I/O引脚多的封装件。另一种技术是先置放焊料球,再对预成形的焊料球进行回流焊接,这种技术适用于引脚数多达300的封装件。目前用得最多的两种晶圆凸点工艺是电解或化学电镀焊料,以及使用高精度压印平台的焊膏印刷。 印刷焊膏的优点之一是设备投资少,这使很多晶圆凸点加工制造厂家都能进入该市场,为半导体制造厂家服务。随着WLP逐渐为商业市场所接受,全新的晶圆凸点专业加工服务需求持续迅速增长。的确,大多数晶圆凸点加工厂都以印刷功能为首要条件,并提供一项或多项其它技术。业界许多人士都认为焊膏印刷技术将主导多数晶圆凸点的应用。

最全的芯片封装方式(图文并茂)

芯片封装方式大全 各种IC 封装形式图片 BGA Ball Grid Array EBGA680L LBGA160L PBGA217L Plastic Ball Grid Array SBGA192L QFP Quad Flat Package TQFP100L SBGA SC-705L SDIP SIP Single Inline Package SO Small Outline Package

TSBGA680L CLCC CNR Communication and Networking Riser Specification Revision1.2 CPGA Ceramic Pin Grid Array DIP Dual Inline Package SOJ32L SOJ SOP EIAJ TYPE II14L SOT220 SSOP16L SSOP TO18

DIP-tab Dual Inline Package with Metal Heatsink FBGA FDIP FTO220 Flat Pack HSOP28 ITO220 TO220 TO247 TO264 TO3 TO5 TO52 TO71

ITO3p JLCC LCC LDCC LGA LQFP PCDIP PGA Plastic Pin Grid Array TO72 TO78 TO8 TO92 TO93 TO99 TSOP Thin Small Outline Package

PLCC 详细规格 PQFP PSDIP LQFP100L 详细规格 METAL QUAD 100L 详细规格 PQFP100L 详细规格 QFP Quad Flat Package TSSOP or TSOP II Thin Shrink Outline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid Array ZIP Zig-Zag Inline Package TEPBGA288L TEPBGA C-Bend Lead

电子行业先进封装深度报告

电子行业先进封装深度报告 一、未来先进封装是驱动摩尔定律的核心驱动力 1、半导体产业链和摩尔定律 (1)半导体产业链自上而下分为芯片设计、晶圆代工、封装和测试四个环节。 设计公司研发人员首先完成芯片的寄存器级的逻辑设计和晶体管级的物理设计,验证通过的电路版图交付给代工厂; 晶圆代工厂专门从事半导体晶圆制造生产,接受IC 设计公司委托制造,自身不从事设计,其产品是包含成百上千颗晶粒(每颗晶粒就是一片IC)的晶圆; 封装厂通过多道封装工序引出晶粒I/O 焊盘上的电子信号并制作引脚/焊球,实现芯片与外界的电气互连; 测试环节是IC制造的最后一步,作用是验证IC 是否能按设计功能正常工作。 图:半导体产业链

(2)半导体行业摩尔定律指出,单位面积芯片上集成的晶体管数每隔18 个月增加一倍(芯片面积减小50%),其背后驱动力是行业对高性能、低功耗芯片的不断追求,并导致芯片不断小型化,同时从降低芯片流片成本、节约电路板空间考虑也要求芯片面积缩减。 纳米级工艺制程降低可降低集成电路的工作电压和CMOS 晶体管驱动电流,从而减少功耗,同时小尺寸的器件减小了晶体管和互连线寄生电容,提高了芯片的工作频率和性能。 图:半导体工艺与I/O 密度趋势图

2、从PC →NB →手机/平板→可穿戴设备,半导体产业小型化需求不减 (1)PC、笔记本电脑、手机/平板等传统消费电子产品的工业设计美观性、便携性、功能性以及电池续航时间的消费需求驱动半导体元器件产业不断朝小型化、低功耗方向发展。 (2)未来电子行业的发展方向是可穿戴设备和MEMS(微机电系统),可穿戴设备/MEMS自身产品特性和应用场合(可穿戴设备要求轻薄化和智能化,MEMS工作在微小空间)对半导体元器件小型化的要求进一步加大。 苹果iWatch 包含无线/蓝牙、生物感测、电源管理和微控制器等模块,屏幕表面弯曲且尺寸不超过1.5英寸,电路板芯片布局布线难度增加,同时还需要考虑和iPhone相同的电池使用时间问题,小型低功耗芯片是最好的解决方案; MEMS是集微型传感器和执行器于一体的微型机电系统,广泛应用于消费电子、生物医疗、汽车电子和军工领域,如iPhone/iPad中使用的加速度传感器和陀螺仪,进行精细外科手术必备的微型机器人和汽车发动和刹车系统中使用的压力传感器。 3、晶圆制程接近极限已难驱动摩尔定律

芯片封装大全_图文对照_

IC BGA Ball Grid Array EBGA 680L LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L QFP Quad Flat Package TQFP 100L SBGA SC-70 5L SDIP SIP Single Inline Package SO Small Outline

TSBGA 680L CLCC CNR Communication and Networking Riser Specification Revision 1.2 CPGA Ceramic Pin Grid Array DIP Dual Inline Package Package SOJ 32L SOJ SOP EIAJ TYPE II 14L SOT220 SSOP 16L SSOP

DIP-tab Dual Inline Package with Metal Heatsink FBGA FDIP FTO220 Flat Pack HSOP28 ITO220 TO18 TO220 TO247 TO264 TO3 TO5 TO52

ITO3p JLCC LCC LDCC LGA LQFP PCDIP PGA Plastic Pin Grid Array TO71 TO72 TO78 TO8 TO92 TO93 TO99

PLCC PQFP PSDIP LQFP 100L METAL QUAD 100L PQFP 100L QFP Quad Flat Package TSOP Thin Small Outline Package TSSOP or TSOP II Thin Shrink Outline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid Array ZIP Zig-Zag Inline Package TEPBGA 288L TEPBGA

芯片封装大全

芯片封装大全

1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以 代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸 点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。 封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。 该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可 能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有 一些LSI 厂家正在开发500 引脚的BGA。 BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为, 由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。 美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为 GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫)以 防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用 此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有 玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心 距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗 口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1.5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。 带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。 8、COB(chip on board)

半导体芯片行业全梳理 (附股)

半导体芯片行业全梳理(附股) 去年开始,半导体芯片行业得到了资金的认可,直到现在,仍有很多上市公司被持续爆炒。在信息技术高速发展的今天,大数据是资源,堪比新经济的石油;5G是道路,决定信息的传输速度;芯片是核心,是数据分析的大脑。不管是工业互联网、人工智能、虚拟现实、影音娱乐、汽车数码,新产业的发展都要围绕这三个行业进行,所以大数据、5G 和半导体芯片是工业4.0的根基,是所有新兴行业的根本。今天聊半导体!长期以来,我国集成电路产业都是逆差,严重依赖国外进口,每年进口芯片超2000亿美元。2014年9月,千亿规模的国家集成电路产业基金(以下简称“大基金”)成立,扮演着产业扶持与财务投资的双重角色。目前大基金已成为11家A股上市公司的股东,而且大基金还将参与多家公司的增发而获得股权。大基金代表国家集成电路产业的发展方向,其投资的上市公司值得投资者关注,下面梳理一下大基金持股A股公司情况。国科微:持股15.79%,二股东;三安光电、兆易创新、通富微电、北斗星通:持股超10%;长电科技:9.54%晶方科技:9.32%北方华创:7.5%长川科技:7.5%纳斯达:4.29%同时,大基金将参与长电科技、通富微电、万盛股份、景嘉微、雅克科技、耐威科技的增发,增发完成后,大基金持股情况如下:长电科技:19%通富微

电:15.7%万盛股份:7.41%雅克科技:5.73%此外大基金 还投资了华天科技的子公司,入股士兰微生产线,与巨化股份合作发展电子化学材料。大基金加持的A股公司可以重点关注,但半导体到底是怎样的一个行业,我们简单梳理一下。半导体分为四类产品,分别是集成电路、光电子器件、分立器件和传感器。其中规模最大的是集成电路,市场规模达到2,753 亿美元,占半导体市场的81%,所以有时大家会把半导体行业跟集成电路混为一谈。从半导体产业链上下游来看:半导体产业链上中下游全梳理:上游:IC设计、半导体材料、半导体设备一、IC设计重点关注:兆易创新:国内存储器及MCU芯片产业的龙头企业,主营业务存储芯片是国家战略 支持的IC细分方向。大基金战略入股,公司将成为国家存 储器战略落地的产业平台之一。韦尔股份:模拟芯片龙头。公司是国内鲜有的同时具备强大半导体设计和IC分销实力 的公司,业务模式独特。公司主营业务为半导体分立器件、电源管理IC等半导体这些产品广泛应用于移动通信、车载 电子、安防、网络通信、家用电器等领域。国科微:公司是国家高新技术企业和经工业和信息化部认定的集成电路设 计企业,长期致力于大规模集成电路的设计、研发及销售。在广播电视芯片市场,公司长期保持直播卫星市场的龙头地位,占有绝对的市场份额。弘信电子:高速成长的国内柔性印制电路板(FPC)龙头。公司当前主营FPC研发、设计、

最新SMT常见贴片元器件封装类型和尺寸资料

1、SMT表面封装元器件图示索引(完善)

2、SMT物料基础知识 一. 常用电阻、电容换算: 1.电阻(R): 电阻:定义:导体对电流的阻碍作用就叫导体的电阻。 无方向,用字母R表示,单位是欧姆(Ω),分:欧(Ω)、千欧(KΩ)、兆欧(MΩ)1MΩ=1000KΩ=1000000Ω 1).换算方法: ①.前面两位为有效数字(照写),第三位表示倍数10n次方(即“0”的个数) 103=10*103=10000Ω=10KΩ 471=47*101=470Ω 100=10*100=10Ω 101=10×101=100Ω 120=12×100=12Ω ②.前面三位为有效数字(照写),第四位表示倍数倍数10n次方(即“0”的个数). 1001=100*101=1000Ω=1KΩ 1632=163*102=16300Ω=16.3KΩ 1470=147×100=147Ω 1203=120×103Ω=120KΩ 4702=470×102Ω=47KΩ

2.电容(C): 电容的特性是可以隔直流电压,而通过交流电压。它分为极性和非极性,用C表示。 2.1三种类型:电解电容钽质电容有极性, 贴片电容无极性。 用字母C表示,单位是法(F),毫法(MF),微法(UF),纳法(NF)皮法(PF) 1F=103MF=106UF=109NF=1012PF 2.2换算方法: 前面两位为有效数字(照写),第三位倍数10n次方(即“0”的个数) 104=10*104=100000PF=0.1UF 100=10*100=10PF 473=47×103=47000pF=47nF=0.047uF 103=10×103=10000pF=10nF=0.01uF 104=10×104=100000pF=10nF=0.1uF 221=22×101=220pF 330=33×100=33pF 2.3钽电容: 它用金属钽或者铌做正极,用稀流酸等配液做负极,用钽或铌表面生成的氧化膜做成介质制成,其特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好,用在要求较高的设备中。钽电容表面有字迹表明其方向、容值,通常有一条横线的那边标志钽电容的正极。钽电容规格通常有:A型、B型、C型、P型。 2.4 电容的误差表示 2.4.1常用钽电容代换参照表. 1UF:105、A6、CA6 2.2UF:225 3.3UF:335、AN6、CN6、JN6、CN69 4.7UF:475、JS6 10UF:106、JA7、AA7、GA7 22UF:226、GJ7、AJ7、JJ7 47UF:476 3. 电感(L)

相关文档
最新文档