基于DERF的SD方法预测月降水和极端降水日数

基于DERF的SD方法预测月降水和极端降水日数
基于DERF的SD方法预测月降水和极端降水日数

管井降水计算

管井降水计算书 合肥市小仓房污水处理厂一期工程二标工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:180天;施工单位:安徽水安建设发展股份有限公司。 本工程由合肥市重点局投资建设,北京市政设计研究/合肥市政设计有限公司设计,合肥市勘察院地质勘察,浙江江南工程管理股份有限公司监理,安徽水安建设发展股份 有限公司组织施工;由邹总担任项目经理,邹总担任技术负责人。 工程说明:合肥市小仓房污水处理厂拟建于包河区大圩乡境内,繁华大道(规划道路)以北。一期日处理污水规模10万m3/d,总征地面积13、8ha,占地面积9、9ha,附属建筑面积2950m2,生产建筑面积6045、1m2。 本次工程主要包括进水泵房及粗格栅间、出水井、细格栅间、曝气沉沙池、砂水分离车间、污泥泵房、沉淀池、配水井、提升泵房、滤池设备间、紫外消毒渠道以及场内土方挖填、道路、排水管道等全部工作内容。 建筑物结构形式主要以钢筋砼框架为主,个别为砖混结构,部分构筑物主要为现浇钢筋砼整体结构。 拟建场地现主要为水田,地形较平坦,西部局部为藕塘及沟渠。实测地面高程8、60~12、62m,最大高差4、02m。根据现场地址情况,大部分构筑物地下软基采用水泥搅拌桩形成复合地基处理。 场地地下水类型主要有两类:一类分布于①层素填土中的上层滞水及②层淤泥质 粉质粘土、③层粘土中的孔隙水,水量与地势高低及填土厚度有较大关系,场地地下水较丰富,主要由大气降水、地表水渗入为主补给,无统一地下水位,排泄途径主要就是蒸发及渗入低洼处为主。水位标高8、60~10、53m。另一类为分布于⑥层粉土及⑦层粉土夹粉砂中的承压水,主要由地下径流渗透补给,与南淝河河水联系密切,其承压水头一般大于4m。 鉴于以上地质及水文情况,对于大部分深基坑部位均需要进行降、排水施工,以确保基坑边坡及构筑物自身的安全。 一、水文地质资料

基于GIS的降雨径流预报方法分析

基于GIS的降雨径流预报方法分析 【摘要】降水径流的准确预测直接关系到该流域人民生活的各个方面,因此为了更好的满足降雨径流预报的需求,需要寻找高效的预测手段来对降雨径流进行预测。本文从GIS的降雨径流预报方法出发,分析了影响水文过程的各方面因素并阐述了对获得数据信息的预处理方法。提出了以遗传算法为基础结合GIS技术的神经网络模型,这种模型的应用有效的提高了信息预测的精度和效率。并且本文中也介绍了GIS降雨径流预报方法,通过对降雨信息的处理,有效的提高了降雨径流预报模型在计算机数据输入时精度,结合 GIS空间分析方法,对降雨区域的降雨径流进行数值模拟,从而得到了降水区域的径流量与影响系数之间的关系。 【关键词】降雨径流;地理信息系统(GIS);预报方法 1.引言 GIS(Geographic Information System)即地理信息系统,是在地理空间的基础上,以信息科学和系统工程的理论知识为根本,利用计算机管理和分析地理数据,从而提供管理、决策等所需信息的技术系统。总而言之一句话,GIS是综合处理和分析地理空间数据的一种技术系统,是以测绘测量为基础,以数据库作为数据储存和使用的数据源,以计算机编程为平台的全球空间分析即时技术。地理信息系统作为获取、存储、分析和管理地理空间数据的重要工具、技术和学科,近年来得到了广泛关注和迅猛发展。 最近的30年内,地理信息技术取得了十分显著的发展,在国土管理、农林牧业、邮电通讯、公共设施管理、资源的调查、军事公安、环境的评估、城市规划、灾害的预测、交通运输、水利电力、统计、商业金融等几乎所有领域都得到了广泛的应用[1]。 2.降雨径流的概述 所谓降雨径流就是由降雨形成的径流,这些径流通过地表或者是地下水流入河道,并向流域出口断面汇集。降雨径流会受到多种因素的制约,比若说是地形、地貌、植被、降水和土地的使用以及人类活动等,从这些种种因素我们可以看到径流的形成过程是非常复杂的。长时间以来,降雨径流的研究一直备受水文界的

管井降水计算方案

一、场地岩土工程情况 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在~之间,层底标高在~之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在~之间,层底标高在~之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在~之间,渗透系数为K=×10-2cm/s。 层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状第③ 1 态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在~之间,层底标高~之间,渗透系数为K=×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为~%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-6cm/s。 地下水埋藏于自然地表下~,标高在~之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在~米之间。 二、降水方案的选择 本工程地质条件主要为粉土、砂土。现场基坑深度为,根据该场地附近地区的已有降水经验,拟采用管井井点降水方案降低地下水位,即在基坑周围及坑内布设一定数量的管

管井降水施工方案

拉斐公馆?北区 编制单位:遂宁市科华建筑工程有限公司 编制时间:2017年6月25 日 基坑管井降水工程施工方案

第一章方案编制依据 一、编制依据 1.1核工业西南勘察设计研究院有限公司出具的南滨帝景A区地质勘查报告; 1.2 《基础结构平面布置图》 1.3 规范依据 中华人民共和国、行业和四川省政府颁布的现行有效的建筑结构和建筑施工的各类规范、规程及验评标准、有关法律、法规及规定。ISO9001质量管理标准、ISO14001环境管理标准、OSHMS18001职业安全健康管理标准。 第二章工程概况

一、工程基本概况 工程位于遂宁市船山区银河路西侧、明霞路北侧。场地原分布为种植地、居民宅基地及居民道路,经过拆迁,现用建渣铺垫。 该标段共建3栋高层,局部商业楼,工程设计地下二层,地上1~32层,地下室建筑面积约39533m2,,住宅建筑面积134532m2,商业楼面积23186m2,建筑高度6米~99.45米。基础形式为筏板基础、桩基础。主楼筏板厚1200,地下室筏板厚300,基础梁高1150。 二、地下水文概况 遂宁地处中纬度亚热带的四川盆地中部,光、热资源丰富,雨量充沛,属亚热带温暖湿润气候,主导向为北风,年平均风速约为0.8m/s,年平均气温约17.3℃,年平均日照时约1390小时,年平均相对湿度约82%,平均风荷载为0.3kN/m2。根据本地区水文资料,区域内涪江河年平均水位约为273.00m,枯水位约270.00m,最大流量约273.00m3/s,涪江历史最高洪水约为278.174m,流量为24600m3/s,根据过军渡电站工程相关资料,区域内涪江河常年水位为275.50m。拟建场地在地貌上属涪江Ⅰ级阶地。地下水主要为赋存于卵石层中的孔隙潜水,略具承压性,主要受大气降水、涪江河水补给,向下游及涪江河排泄,场地地下水水量丰富,水位变化主要受季节性降水及涪江水位控制。依据地勘得出水位一般在砂卵石层中,砂及卵石层为场地地下水的主要含水层,其厚度约为7~10m,地下水稳定水位埋深约0.3-2.0m,相应标高为 274.91-275.37m。 第三章施工方案选择 一、基坑降水是工程的先行工作,由于地下水位较浅和地下水的毛细上升作用,地基土中的空隙几乎为水所饱和,地基土的粘度大,使得开挖和倾倒困难。为了确保土方开挖的顺利施工必须在土方开挖前10天进行降水。 二、人工降水的方法有多种:轻型井点、喷射井点、电渗降水、管井井点等。结合本工程的水文地质条件和该地区以往降水经验,对各种降水方法施工可行性和工程造价的综合比较分析后认为:本拟建工程采用管井井点降水是本工程优选的方法。其优点在于:降水效果好、作业条件简单、运行管理方便、操作维修简便、运行成本低、可塑性大。 三、井点设计依据 1、《银河路南滨帝景A区工程勘察报告》

管井降水方案

别士桥泵站工程基坑管井井点降水方案 一、工程概述 本工程为宣城市北门综合改造工程的一部分,工程位于状元北路至宛溪河之间,长约620m,对该段道双河进行裁弯取直,并在末端修重建别士桥排涝泵站。本次降水为两个单体。○1泵站○2排水涵泵站建筑物包括进水闸、前池及进水池、泵房、压力水箱、控制段、排涝穿堤出水涵(兼自排涵)等。泵房为湿室型堤后式、安装6台1200ZLB-100型立式轴流泵,配6台YL4503-12型立式电动机,设计排涝流量24.28m3/s,总装机容量1500Kw。 根据现场实际开挖地下水位埋藏较浅,8.6m米处见地下水,基础埋设较深,基础标高为4.3m,且即将进入雨季,地下水位不断上升,土内含水接近饱和状态,这种施工条件给基础施工带来很大的困难。基础开挖后随时有塌方的危险,其中多处距原有建筑物、管架、污水管线及污水井等特别近,基础开挖后如果塌方,扰动原有基础及管线等,将对原建筑物等构成极大的危害,可能会造成重大安全事故,后果不堪设想,存在极大的安全隐患。 因此根据实际情况采用管井降水。为了满足文明施工的要求,确保安全生产和工程质量,我公司采取管井降水的措施,管井降水所排出的水必须按要求排放到指定的排水井,并做好排水的过滤工作,这些降水、排水工作都要持续到基础工程完毕回填后才能停止,以保证

基础等在干燥条件下施工。 二、编制依据 1、有关文件;宣城市水务局“水堤〔2013〕35号文”。 2、宣城市北门改造地形图及规划图。 3、别士桥泵站工程施工图纸 4、《宣城市道叉河河道整治及别士桥泵站工程初步设计阶段工程地质勘察报告》(安徽省水利水电勘测设计院2012.9); 5、《建筑与市政降水工程技术规范》(JGJ/T111-98); 6、《水利水电工程施工组织设计规范》(SL303-2004); 7、建筑地基基础工程施工质量验收规范GB50202-2002 8、现场实际勘察 三、施工准备 根据工程的结构、特点、进度要求及现场实际情况,投入足够的施工人员,机械设备按种类和数量组织进场。合理规划摆放位置,暂时未用的设备应维修完好待命。 现场测量人员用白灰划出井点降水下管的位置,清理障碍,避免与原有管线等相撞。 四、管井降水方案 4.1降水形式 基坑外侧采用环形管井降水,井点管间距17m,降水深度为 5.3m,基坑挖深8.2 m。将地下水位降至基坑换填底以下1m(绝对标高3.3m)时再进行土方开挖。 管井降水:管井设置于基坑顶外侧,降水井深度(从自然地面算

管井降水计算书

管井降水计算书 一、水文地质资料 该计算书计算主要依据为国家行业标准《建筑基坑支护技术规范》(JGJ 120-99),同时参阅了《建筑施工手册》(第四版)和姚天强等编写的《基坑降水手册》。 三、计算过程 1、基坑底板承压水头计算: h k =(H s r s )/(F s r w ) H S 为基坑最终开挖面到下部承压含水层顶面间的距离(m); γ s 为承压含水层顶板以上土层的重度(kN/m3); F s 为安全系数,取1.1~1.3; r w 为水的重度(kN/m3); h为承压含水层从顶板算起的承压水头高度(m)。 h s 为实际承压水头高度(m); h s >h k 时:需要进行降压降水,降压水头高度为h s -h k = 6-0.56 = 5.44 m。 2、基坑总涌水量计算:

基坑降水示意图 Q=2.73kMS/log(1+R/r ) Q为基坑涌水量; k为渗透系数(m/d); S为基坑水位降深(m); S=(D-d w )+S w D为基坑开挖深度(m); d w 为地下静水位埋深(m); sw为基坑中心处水位与基坑设计开挖面的距离(m); R为降水井影响半径(m); r 为基坑等效半径(m); M为由含水层底板到过滤器有效工作部分中点的长度(m); 通过以上计算可得基坑总涌水量为349.22m3。 3、降水井数量确定: 单井出水量计算: Q=120πr s l3k1/2 降水井数量计算: n=1.1Q/q q为单井允许最大进水量(m3/d); r s 为过滤器半径(m);

l为过滤器进水部分长度(m); k为含水层渗透系数(m/d)。 通过计算得井点管数量为6个。 4、过滤器长度计算 群井抽水时,各井点单井过滤器进水长度按下式验算: y >l y 0=[H2-0.732Q/k×(logR -log(nr n-1r w )/n]1/2 l为过滤器进水长度; r 为基坑等效半径; r w 为管井半径; H为潜水含水层厚度; R 为基坑等效半径与降水井影响半径之和; R 0=R+r R为降水井影响半径; 通过以上计算,取过滤器长度为5.85m。

降雨量预测的简单方法---数学建模论文

摘要 首先,本文运用SAS和Excel两种软件工具对两种方法预测到的数据进行定量分析比较,采用绝对误差法让每一天每一个站点每一个时段预测到的数据与相应的实际的数据作差,求绝对值,再加总总的绝对值误差,建立了模型(1),得出了数据预测的方法一比方法二效果较好的结论。 其次,考虑到绝对误差法的局限性,进一步采用相对误差法对模型(1)进行改进,让每一天每一个站点每一个时段预测到的数据与相应的实际的数据作差的绝对值除于相对应的真实时段的数据,建立了模型(2);由于有些数据为0的缘故,对模型(2)进一步改进得到模型(3),仍然得出方法一优于方法二的结论。 最后,本文对模型进行了评价。 关键词:绝对误差法相对误差法SAS Excel

一、问题重述 FORECAST中的文件名为_dis1和_dis2,例如f6181_dis1中包含2002年6月18日采用第一种方法预测的第一时段数据(其2491个数据为该时段各网格点的数据),而f6183_dis2中包含2002年6月18日采用第二种方法预测的第三时段数据。 MEASURING中包含了41个名为<日期>.SIX的文件,如020618.SIX表示2002年6月18日晚上21点开始的连续4个时段各站点的实测数据,这些文件的数据格式是: 站号纬度经度第1段第2段第3段第4段58138 32.9833 118.5167 0.0000 0.2000 10.1000 3.1000 58139 33.3000 118.8500 0.0000 0.0000 4.6000 7.4000 58141 33.6667 119.2667 0.0000 0.0000 1.1000 1.4000 58143 33.8000 119.8000 0.0000 0.0000 0.0000 1.8000 58146 33.4833 119.8167 0.0000 0.0000 1.5000 1.9000 …… 根据已有的数据用模型判断这两种预测方法的优劣。 二、符号说明 m1:用方法一测量的数据的绝对误差 m2:用方法二测量的数据的绝对误差 x1:用方法一测量的数据的相对误差 x2:用方法二测量的数据的相对误差 ti:各个时段的数据(i=1,2,3,4) yn1n2n3:n1月n2日第n3种方法的预测数据 a:极小值 三、模型假设 3.1假设观测站点设置不均匀不影响观测结果 3.2假设所有预报数据和实测数据及预报点和观测站的经纬度坐标值均有效,不考虑人为因素造成的无效数据。

时间序列分析降水量预测模型完整版

时间序列分析降水量预 测模型 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

课程名称: 时间序列分析 题目: 降水量预测 院系:理学院 专业班级:数学与应用数学10-1 学号: 学生姓名:戴永红 指导教师:__潘洁_ 2013年 12 月 13日 1.问题提出 能不能通过以前的降水序列为样本预测出2002的降水量? 2.选题 以国家黄河水利委员会建站的山西省河曲水文站1952年至2002年51年的资料为例,以1952年至2001年50年的降水序列作为样本,建立线性时间序列模型并预测2002年的降水状态与降水量,并与2002年的实际数据比较说明本模型的具体应用及预测效果。资料数据见表1。 表1 山西省河曲水文站55年降水量时间序列

3.原理 模型表示 均值为0,具有有理谱密度的平稳时间序列的线性随机模型的三种形式,描述如下:

1、()AR p 自回归模型:1122t t t p t p t ωφωφωφωα-------=由2p +个参数刻画; 2、()MA q 滑动平均模型:1122t t t t q t q ωαθαθαθα---=----由2q +个参数刻画; 3、(,)ARMA p q 混和模型: (,)ARMA p q 混和模型由3p q ++个参数刻画; 自相关函数k ρ和偏相关函数kk φ 1、自相关函数k ρ刻画了任意两个时刻之间的关系,0/k k ργγ= 2、偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间值11,t t k ωω++-固定的条件下,两端t ω,t k ω+的线性联系密切程度。 3、线性模型k ρ、kk φ的性质 表2 三种线性模型下相关函数性质 模型识别 通常平稳时间序列t Z ,0,1t =±仅进行有限n 次测量(50)n ≥,得到 一个样本函数,且利用平稳序列各态历经性:1 1n j j Z Z n μ=≈=∑做变换, t t Z ω=,1,t n =,将1,,n Z Z 样本换算成为样本1,,n ωω,然后再确定平 稳时间序列{,0,1}t t ω=±的随机线性模型。 3.3.1 样本自相关函数 平稳序列21012 ,,,,,ωωωωω--, ()0t E ω=,对于样本,定义自协方 差函数:

管井降水方案

观湖名邸大车库工程 降 水 施 工 方 案 江苏燕舞建设工程有限公司二0一六年二月二十八日 目录

一、工程概况 二、降水施工方案编制依据 三、地质条件 3.1地层情况 3.2水文地质条件 四、降水目的及要求 4.1降水目的 4.2降水要求 五、降水方案设计 5.1成井施工工艺 六、设备人员配备 七、应急预案 八、安全、文明施工措施 九、施工工期及工期保证措施 十、降水质量保证措施 十一、降水对周边环境的影响

一、工程概况 1.1 、本工程观湖名邸人防大车库工程主体结构形式为剪力墙框架结构,基础为桩基础。 1.2 、本工程基坑四周场地一般,基坑相对开挖较深,周边及中间均采用 管井降水进行施工,基坑上部距基础坑壁1.0~1.5M左右设置排水沟,将雨水及其它地面水引流至远离基坑处排水,基坑内在基础轮廓线的外侧增设集水坑及明沟,利用潜水泵及时将积水排除。 二、编制依据: 本施工方案仅为该工程基坑降水施工所用,具体编制依据如下: 2.1、业主提供的《岩土工程勘察报告》; 2.2、业主提供的本项目的的地下室基础结构平面设计图; 2.3、其它有关的规范及规程 三、地质条件 3.1、地层情况 根据业主提供的《岩土工程勘察报告》,拟建场地基坑开挖影响范围内的地 质情况如下: 根据钻探所揭示,地基土层自上而下分述如下: 1,素填土: 灰~灰黄色, 湿,主要成份为粉质黏土,夹较多植物根茎,松散, 土质不均匀。 2,粉质黏土:灰黄色,湿~饱和,可塑,见少量铁锰氧化物斑纹,无摇震反应, 切面稍有光滑,干强度及韧性中等,土质欠均匀。拟建场区内普遍分布。 3,淤泥质粉质黏土:灰黄~灰色,饱和,流塑,局部不均匀地夹少量粉土团块, 无摇震反应,切面稍有光滑,干强度及韧性中等,土质较均匀。拟建场区内普遍分 布。 4,粉质黏土: 灰黄色,湿~饱和,可塑,见少量铁锰氧化物斑纹,无摇震反应, 切面稍有光滑,干强度及韧性中等,土质欠均匀。拟建场区内普遍分布。 5,粉砂:灰色,饱和,中密,局部密实,颗粒级配良好,见少量云母碎屑与贝壳碎屑,平均黏粒含量为5.5%,土质不均匀。拟建场区内普遍分布。

降水量100毫米什么概念

降水量100毫米什么概念 降水量是指从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度。它是衡量一个地区降水多少的数据。以mm为单位,气象观测中取一位小数。 1毫米的降水量是指在一亩地(666.7平方米)上面的降水量到达水深1毫米。 气象学中常有年、月、日、12小时、6小时甚至1小时的降水量。一年中降下来的雨雪统统融化为水,称为年降水量。把一个地方多年的年降水量平均起来,就称为这个地方的平均年雨量。例如,北京的平均年雨量是644.2毫米,上海的平均年雨量是1123.7毫米。按气象观测规范规定,气象站在有降水的情况下,每隔六小时观测一次。 按降水强度可分为:小雨、中雨、大雨、暴雨、大暴雨、特大暴雨,小雪、中雪、大雪、暴雪、大暴雪和特大暴雪。 小雨:1d(或24h)降雨量小于10mm者。 中雨:1d(或24h)降雨量10~25mm者。 大雨:1d(或24h)降雨量25~50mm者。

暴雨:1d(或24h)降雨量50~100mm者。 大暴雨:1d(或24h)降雨量100~250mm者。 特大暴雨:1d(或24h)降雨量在250mm以上者。 小雪:12小时内降雪量小于1.0mm(折合为融化后的雨水量,下同)或24小时内降雪量小于2.5mm的降雪过程。 中雪:12小时内降雪量1.0~3.0mm或24小时内降雪量2.5~5.0mm 或积雪深度达3mm的降雪过程。 大雪:12小时内降雪量 3.0~6.0mm或24小时内降雪量5.0~10.0mm或积雪深度达5mm的降雪过程。 暴雪:12小时内降雪量大于6.0mm或24小时内降雪量大于10.0mm 或积雪深度达8mm的降雪过程。 大暴雪:12小时内降雪量大于12.0mm或24小时内降雪量大于20.0mm或积雪深度达16mm的降雪过程。 特大暴雪:12小时内降雪量大于24.0mm或24小时内降雪量大于

时间序列分析-降水量预测模型

课程名称: 时间序列分析 题目: 降水量预测 院系:理学院 专业班级:数学与应用数学10-1 学号: 87 学生姓名:戴永红 指导教师:__潘洁_ 2013年 12 月 13日

1.问题提出 能不能通过以前的降水序列为样本预测出2002的降水量? 2.选题 以国家黄河水利委员会建站的山西省河曲水文站1952年至2002年51年的资料为例,以1952年至2001年50年的降水序列作为样本,建立线性时间序列模型并预测2002年的降水状态与降水量,并与2002年的实际数据比较说明本模型的具体应用及预测效果。资料数据见表1。 表1 山西省河曲水文站55年降水量时间序列

3.原理 模型表示 均值为0,具有有理谱密度的平稳时间序列的线性随机模型的三种形式,描述如下: 1、()AR p 自回归模型:1122t t t p t p t ωφωφωφωα-------=L 由2p +个参数刻画; 2、()MA q 滑动平均模型:1122t t t t q t q ωαθαθαθα---=----L 由2q +个参数刻画; 3、(,)ARMA p q 混和模型: 11221122t t t p t p t t t q t q ωφωφωφωαθαθαθα----------=----L L (,)ARMA p q 混和模型由3p q ++个参数刻画; 自相关函数k ρ和偏相关函数kk φ 1、自相关函数k ρ刻画了任意两个时刻之间的关系,0/k k ργγ= 2、偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间值11,t t k ωω++-L 固定的条件下,两端t ω,t k ω+的线性联系密切程度。 3、线性模型k ρ、kk φ的性质 表2 三种线性模型下相关函数性质 模型识别

管井降水主要施工方法及技术要求

管井降水主要施工方法 及技术要求 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

基坑降水施工方案 4.1 施工组织 按项目管理要求组织施工,实行项目经理负责制,配备有经验的施工技术管理人员组成项目管理班子,指挥协调工程施工,并按基坑降水质量达标要求,由主任工程师或专业工程师进行技术监督与管理把关,管理班子下设技术组、钻井组、洗井安泵组、抽降水值班组、电工组、安全保卫行政管理组等组成基坑降水疏干组织。 4.2施工准备阶段 ⑴资料:仔细研究分析同设计有关的图件及文字说明,编制基坑降水施工方案,准备有关记录表格、工具等,参加技术交底。 ⑵场地:组织现场踏勘,做好场区内“三通一平”工作,要求甲方提供地下障碍及管线的准确位置,以防意外事故发生,进行场区施工规划,布置施工井孔泥浆配置要求及循环途径。 ⑶设备:检查设备配套情况,对设备进场后开工前应进行试运转。 ⑷人员::开工前进行分岗、分班、进行施工工艺交底答疑;明确工作要求及标准,说明施工重点、难点及应急措施,并应对参与施工的管理人员进行安全及文明生产教育。⑸材料:订购材料,进场检查验收,不合格产品不许购用。 4.3施工工艺流程

4.4 管井降水主要施工方法及技术要求 4.4.1 钻进成井 ⑴ 放线定点:根据甲方给定的基坑开挖边线,用仪器及钢尺进行放线定井点位置,定完后应会同甲方或监理代表签字认可后,方可进行施工,井孔中心定位误差不得大于5cm。 ⑵ 钻机就位:钻机安装要求平稳牢固,钻机就位,偏差不许大于 5cm。 ⑶ 泥浆护壁:开钻前应准备一定量的红粘土,配制泥浆指标应控制其比重为0.8~1.0,粘度为19~21S,含砂量不大于4%,胶体率应达90~95%。 ⑷ 钻井:经专业工程师与甲方或监理代表现场检查合格后,方可开钻,施工中应保持井内应有水头压浆高度,防止井壁坍塌。 ⑸ 管井钻进达到设计深度以后,需报请专业工程师进行检查,验井深度抵达成井要求深度后冲捞沉渣,复验井深及钻头直径,合格签字后,方可进行清井下井管及滤管。 ⑹ 下井管及带孔眼或缝状包网水泥滤管时应检查接井管部位有无缺损裂纹,严禁“带伤”井管下入井内,下管时必须每隔5m下入导正扶中器,确保井管居中不歪斜,接管部位应包扎纱网或尼龙布,防止泥砂等进入井内,下管后应立即进行填砾,以防由于拖延填砾产生井内缩径,填不进砾料,造成引渗效果差的废井。 ⑺ 砾料应保证规格质量,含泥粉的砾料必须过筛后再用,填砾时应沿井壁与井管间缓慢投入,严禁车装冲填,以免冲撞井管产生歪斜及中间堵

年最大降雨量

年最大降雨量及翻斗雨量计维护周期 最大降水量是描述一个局部地方的降雨大小,通过对一年降雨量的统计来对比降雨的大小。我国南方降雨普遍多与北方。世界上降水量最多的地方是印度的乞拉朋奇,年平均降雨量达12700毫米,年最大降雨量多达22990.1毫米。我国降水量最多的地方属台湾省的火烧寮,那里的年平均降水量达6489毫米;年最大降雨量多达8409毫米。我国大陆上年降雨量最多的地方是西藏雅鲁藏布江下游河谷中的巴昔卡,年平均降雨量高达4495.O毫米。我国日降水量最大的地方也出现在台湾的火烧寮,为1672毫米;我国大陆上最大日雨量出现在河南方城县郭林,1975年8月7日的日降雨量达1054.7毫米,超过了当地的年平均降雨量。 降水量与降雨量是同一意义,表示一个地区降雨大小。降水量(precipitation [amount])从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度。降水量以mm为单位,气象观测中取一位小数性质降水量一般用雨量筒测定。所以降水量中可能包含少量的露、霜和松等。气象学中常有年、月、日、12小时、6小时甚至1小时的降水量。6小时中降下来的雨雪统统融化为水,称为6小时降水量;24小时降下来的雨雪统统融化为水,称为24小时降水量;一个旬降下来的雨雪统统融化为水,称为旬降水量……一年中,降下来的雨雪统统融化为水,称为“年降水量”。液态降水量称为雨量,有时两者也作为同义词。单位时间的降水量称为降水强度,常用mm/h或mm/min为单位。单位时间的雨量称为雨强。把一个地方多年的年降水量平均起来,就称为这个地方的“平均年雨量”。例如,北京的平均年雨量是644.2毫米,上海的平均年雨量是1123.7毫米。 东南沿海的广东、广西东部、福建、江西和浙江大部以及台湾等地区年降水量为1 500~2 000毫米;长江中下游地区为1 000~1 600毫米;淮河、秦岭一带和辽东半岛年降水量为800~1 000毫米;黄河下游、渭河、海河流域以及东北大兴安岭以东大部分地区为500~750毫米;黄河上、中游及东北大兴安岭以西地区为200~400毫米;西北内陆地区年降水量为100~200毫米;新疆塔里木盆地、吐鲁番盆地和柴达木盆地不足50毫米,盆地中心不足20毫米。 1861年这里的年降雨量达22 990毫米,这是有降水记录以来,人们记录到的最大年降雨量,因而被称“世界雨极”。其年均降雨量达10 000毫米以上

管井井点降水的施工方案

牧马山污水处理厂工程降水专项方案 编制: 审核: 审批: 北京桑德环境工程有限公司

目录 一、编制依据 (3) 二、施工准备 (3) 三、井点设置及计算 (3) 四、工艺流程 (3) 五、操作要点及技术要求 (4) 六、质量要求 (4) 七、安全要求 (5) 八、环保措施 (5)

管井井点降水施工方案 一、编制依据: 《建筑工程施工质量验收统一标准》GB50300-2001 《建筑地基基础工程施工质量验收规范》GB50202-2002 工程施工图纸岩土工程勘察报告及按建设单位要求,本工程采用管井井点降水,根据工程现场实际情况及地质报告编制以下施工方案。 二、施工准备 1、材料 无砂混凝土管(滤管)、滤网、2~4mm砂碎石混合料、潜水钻机、泥浆车、泥浆泵、清水泵、潜水泵等。 2、作业条件 (1)现场三通一平已完成。 (2)地质勘测资料齐全,根据地下水位埋深、土层分布和基坑放坡系数,确定井点位置、数量和降水深度。 三、井点设置及计算 本工程按建设单位要求及地质情况,采用管井井点降水,呈矩形布置。井点沿基坑周围离边坡上缘1.5—1米呈矩形布置,井点深入透水层3-7米,还应比所需降水的深度深6—8米,井距根据现场情况定,共6口降水井。 四、工艺流程

井点测量定位→挖井口→安护筒→钻机就位→钻孔→回填井底砂垫层→吊放井管→回填井管与孔壁间的碎石过滤层→洗井→井管内下设水泵、安装抽水控制电路→试抽水→降水井正常工作→降水完毕拔井管→封井 五、操作要点及技术要求 1.定位:根据设计的井位及现场实际情况,准确定出各井位置,并做好标记。 2.采用循环钻成孔,孔径一为300mm,用泥浆护壁,孔口设置护筒、,以防孔口塌方,并在一侧设排泥沟、泥浆池。成孔后立即清孔,并安装井管。井管下入后,井管的滤管部分应放置在含水层的适当范围内;并在井管与孔壁间填充碎石滤料。 3.安装水泵前,用压缩空气洗井法清洗滤井,冲除尘渣,直到井管内排出的水由浑变清,达到正常出水量为止。 4.采用DN100水泵,及DN100塑料管将地下水排到建设单位指定的排水沟。水泵安装后,对水泵本身和控制系统做一次全面细致的检查,合格后进行试抽水,满足要求后转入正常工作。 5.观测井中地下水位变化,做好详细记录。 六.质量要求 1.基坑周围井点应对称,同时抽水,使水位差控制在要求限度内。 2.井管安放应力求垂直并位于井孔中间,井管顶部应比自然地面高0.5m。

论述马尔可夫模型的降水预测方法

随机过程与随机信号处理课程论文

论述马尔可夫模型的降水预测方法 摘要:预测是人们对未知事物或不确定事物行为与状态作出主观的判断。中长 期降水量的预测是气象科学的一个难点问题, 也是水文学中的一个重要问题。今年来,针对降水预测的随机过程多采用随机过程中的马尔可夫链。本文总结了降水预测的马尔可夫预测的多种方法和模型,对其中的各种方法的马尔可夫链进行了比较和分析,得出了一些有用的结论。 关键字:降水预测,随机过程,马尔可夫链,模拟 前言:大气降水是自然界水循环的一个重要环节。尤其在干旱半干旱地区, 降 水是水资源的主要补给来源, 降水量的大小,决定着该地区水资源的丰富程度。因此, 在水资源预测、水文预报中经常需要对降水量进行预报。然而, 由于气象条件的变异性、多样性和复杂性, 降水过程存在着大量的不确定性与随机性, 因此到目前为止还难以通过物理成因来确定出未来某一时段降水量的准确数值。在实际的降水预测中,有时不必预测出某一年的降水量,仅需预测出某个时段内降水的状况既可满足工作需要。因此,预测的范围相应扩大,精度相应提高。因此对降水的预测可采用随机过程的马尔可夫链来实现。 用随机过程中马尔可夫链进行预测是一种较为广泛的预测方法。它可用来预测未来某时间发生的变化, 如预测运输物资需求量、运输市场等等。马尔可夫链, 就是一种随机时间序列, 它表示若已知系统的现在状态, 则系统未来状态的规律就可确定, 而不管系统如何过渡到现在的状态。我们在现实生活中, 有很多情况具有这种属性, 如生物群体的生长与死亡, 一群体增加一个还是减少一个个体, 它只与当前该生物群体大小有关, 而与过去生物群体大小无关。] 本文针对降水预测过程中采用马尔可夫链进行模拟进行了综述和总结。主要的方法有利用传统的马尔可夫链的方法模拟;有采用加权的马尔可夫链模拟来进行预测;还有基于模糊马尔可夫链状模型预测的方法;还有通过聚类分析建立降水序列的分级标准来采用滑动平均的马尔可夫链模型来预测降水量;从这些方法中我们可以看出,马尔可夫链对降水预测有着重要的理论指导意义。 1.随机过程基本原理 我们知道,随机变量的特点是,每次试验结果都是一个实现不可预知的,但为确定的量。而在实际中遇到的许多物理现象,实验所得到的结果是一个随时间变化的随机变量,且用一个或多个随机变量我们有时无法描述很多这种现象的的全部统计规律,这种情况下把随时间变化的随机变量的总体叫做随机过程。对随机过程的定义如下:

管井降水计算书

1、基坑总涌水量计算: 基坑降水示意图 根据基坑边界条件选用以下公式计算: Q=πk(2H-S d )S d /ln(1+R/r o )=π5(2×ln(1+= Q为基坑涌水量; k为渗透系数(m/d); H为含水层厚度(m); R为降水井影响半径(m); r 为基坑等效半径(m); S d 为基坑水位降深(m); S d =(D-d w )+S D为基坑开挖深度(m); d w 为地下静水位埋深(m); S为基坑中心处水位与基坑设计开挖面的距离(m); 通过以上计算可得基坑总涌水量为。 2、降水井数量确定: 单井出水量计算: q 0=120πr s lk1/3 降水井数量计算: n=q q 为单井出水能力(m3/d); r s 为过滤器半径(m); l为过滤器进水部分长度(m); k为含水层渗透系数(m/d)。 通过计算得井点管数量为4个。 3、过滤器长度计算 群井抽水时,各井点单井过滤器进水长度按下式验算: y >l y 0=[k×(lgR -lg(nr n-1r w )/n]1/2

l为过滤器进水长度; r 为基坑等效半径; r w 为管井半径; H为潜水含水层厚度; R 为基坑等效半径与降水井影响半径之和; R 0=R+r R为降水井影响半径; 通过以上计算,取过滤器长度为。 4、基坑中心水位降深计算: S 1=H-(H2-q/(πk)×Σln(R/(2r sin((2j-1)π/2n)))) S 1 为基坑中心处地下水位降深; q=πk(2H-S w ) S w /(ln(R/r w )+Σ(ln(R/(2r sin(jπ/n))))) q为按干扰井群计算的降水井单井流量(m3/d),按下式计算: S w = H 1 +s-d w +r o ×i =+根据计算得S 1 = >= S d =,故该井点布置方案满足施工降水 要求!

管井降水计算书

1、基坑总涌水量计算: 根据基坑边界条件选用以下公式计算: Q=πk(2H-S d)S d/ln(1+R/r o)=π5(2×ln(1+= Q为基坑涌水量; k为渗透系数(m/d); H为含水层厚度(m); R为降水井影响半径(m); r0为基坑等效半径(m); S d为基坑水位降深(m); S d=(D-d w)+S D为基坑开挖深度(m); d w为地下静水位埋深(m); S为基坑中心处水位与基坑设计开挖面的距离(m); 通过以上计算可得基坑总涌水量为。 2、降水井数量确定: 单井出水量计算: q0=120πr s lk1/3 降水井数量计算: n=q0 q0为单井出水能力(m3/d); r s为过滤器半径(m); l为过滤器进水部分长度(m); k为含水层渗透系数(m/d)。 通过计算得井点管数量为4个。 3、过滤器长度计算 群井抽水时,各井点单井过滤器进水长度按下式验算: y0>l y0=[k×(lgR0-lg(nr0n-1r w)/n]1/2

l为过滤器进水长度; r0为基坑等效半径; r w为管井半径; H为潜水含水层厚度; R0为基坑等效半径与降水井影响半径之和; R0=R+r0 R为降水井影响半径; 通过以上计算,取过滤器长度为。 4、基坑中心水位降深计算: S1=H-(H2-q/(πk)×Σln(R/(2r0sin((2j-1)π/2n)))) S1为基坑中心处地下水位降深; q=πk(2H-S w) S w /(ln(R/r w)+Σ(ln(R/(2r0 sin(jπ/n))))) q为按干扰井群计算的降水井单井流量(m3/d),按下式计算: S w= H1+s-d w +r o×i =+根据计算得S1= >= S d=,故该井点布置方案满足施工降水要求!

雨量预测方法

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛的题目是:C题雨量预报方法的评价 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):江西师范大学科学技术学院 参赛队员(打印并签名):1.熊军军 2.许谞 3.许盛敏 指导教师或指导教师组负责人(打印并签名):温利民 日期:2005年09月19日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

雨量预报方法的评价模型 摘要 本文建立了一个关于雨量预报方法的评估模型。 首先,通过对给定的大量数据(预报数据和实测数据)进行统计画图分析,得出了散点图。然后分别对两种不同方法预报的41天中每天4个时段各等距网格点的雨量数据进行处理和分析。在可接受的度数差范围内搜索与各个观测站点距离最近的网格点,按从小到大排序后取其最小的4个网格点,再根据欧氏距离倒数加权的方法对它们赋权重,取出4个网格点对应的雨量,分别与各自的权重相乘,累加得到的值来预测相对应观测站点的雨量。 对得到的观测站点的预测雨量进行两种方法的分析,方法一:将预测雨量与实测雨量求偏差率,并对所有偏差率求出一个偏差率的算术平方根,作为评价准确性的指数,从而得到第一种雨量预报方法的准确性的指数为102.8755,第二种雨量预报方法的准确性的指数为726.6841;方法二:将预测雨量与实测雨量分别转化为对应的级别(如雨量在区间0.1——2.5为1级),用同级率比较法将它们作比较,从而得到第一种雨量预报方法的同级率为73.9346%,第二种雨量预报方法的同级率为70.9662%。 本文利用数学软件Matlab很好地实现了编程模拟计算,并结合实际测得的数据得出了雨量预报方法的同级率,很好地指导了人们的生活与工作。 关键词:(预报、实测、网格点、同级率)

轻型井点降水设计计算例题

轻型井点系统设计计算示例 某多层厂房地下室呈凹字形,其平面尺寸如图1-76所示,基础底面标高为-4.5m,电梯井部分深达-5.30m,天然地面标高为-0.40m。根据地质勘测资料:标高在-1.40m 以上为亚粘土,再往下为粉砂土,地下水静水位在-1.80m处,土的渗透系数为5m/d。基坑边坡采用1∶0.5,为施工方便,坑底开挖平面尺寸比设计平面尺寸每边放出0.5m。 图1—76 某地下室现场 根据本工程基坑的平面形状和深度,轻型井点选用环形布置并在凹字形中间插入一排井点,如图1-77所示。 井点管的直径选用50mm,布置时距坑壁取1.0m,其所需的埋置深度(从地面算至滤管顶部)用(公式1-54)计算,则至少为: (4.5-0.4)+0.5+17.5×0.1=6.34m 由于考虑轻型井点降水深度一般以6m为宜及现有井点管标准长度为6m,因此将总管 埋设在地面下0.6m处即先挖0.6m深的沟槽,然后在槽底铺设总管。此时井点管所需的长度: 6.34-0.6+0.20(露出槽底高度)=5.91(m),(小于6.0,可满足要求)。 电梯井处的基坑深度比其他部分要深0.8m ,所以该处井点管长度改用7m。 井点管的间距,考虑粉砂土的渗透系数不大,初步选用1.6m。

总管的直径选用127mm ,长度根据图布置方式算得: 2(67.6+2×1.0)+(46.4+2×1.0)+(46.4-2×1.8-2×1.0) = 276.2 (m) 抽水设备根据总管长度选用三套,其布置位置与总管的划分范围如图所示。 图1—36 某工程基坑轻型井点系统布置 a )平面布置图(1、2、3—三套抽水设备编号、同时表示挖土时情况); b )高程布置图 现将以上初步布置核算如下。 1)涌水量计算 按无压不完整井考虑,由于凹字形中间插有一排井点,分为两半计算:含水层的有效深度H0按表1-9求出: ,所以m H (99.10)00.194.4(85.10=+=) 基坑中心的降水深度)(2.35.08.15.4m s =+-= 抽水影响半径R 按公式(1-58)求出: )(25.46599.102.395.1m R =??= 83.00 .194.494.41'/=+=+s s

轻型井点降水施工方案(含计算书)

轻型井点降水施工方案 一、工程概况 主要结构类型:16#~18#、24#~26#楼为剪力墙结构,21#楼(运动中心)为框架结构。 建筑面积:约11万平方米 抗震等级:24#楼为抗震等级为三级,抗震构造措施的抗震等级为二级;16#、17#、18#、21#楼抗震等级为二级,抗震构造措施的抗震等级为一级。 土质、水位:本工程土质为粉质粘土。抗浮设计水位绝对标高为0.7米,该地下水对混凝土结构及钢筋混凝土结构中的钢筋具有微腐蚀性,工程施工时严禁采用地下水。 二、场区水文地质条件 勘察期间,在勘探深度范围内各孔均见地下水,地下水类型主要为①耕植土、②粉质粘土层中的上层滞水和③粉砂层及以下砂层中的孔隙潜水。补给来源主要为大气降水及海水补给。勘察期间为枯水期,稳定水位埋深0.2~1.2m,稳定水位标高0.49~0.97m,地下水位受季节降水量控制,年变化幅度在1~1.5m左右,每年的7~9月份为丰水期,地下水最高水位出现在8~9月份。 三、降水方案确定 本工程场区地面绝对标高为2.45~3.74米,建筑室内地面标

高(±0.000)相当于绝对标高:24#楼为 4.20;25#楼、26#楼为4.95;16#楼为4.65;17#楼、18#楼为4.95;21#楼(运动中心)为4.35。基坑底标高(相对标高)为-6.2~-7.5米,基坑开挖深度为 4.23~6.45米,降水深度为 4.73~6.95米,水位下降高度2.35~3.64米。根据该场区水文地质条件,结合本工程各单体结构特点拟采用以下降水方案: 16#、17#、18#、24#、25#、26#楼采用一级轻型井点降水及临轻型井点降水的方法将地下水位降低至满足工程要求。 21#楼(运动中心)由于基坑开挖面积大,开挖深度较深,近6.5米,降水深度较大约6.95米,采用一级轻型井点降水满足不了实际降水需要,因此运动中心将采用二级轻型井点降水,沿开挖基坑周边分两次布置两级降水井进行降水以满足施工需要。 四、总体部署 1、抽水设备的选择和数量的配备,考虑到每台真空泵的抽水能力,每台泵可连接30根降水管,抽水设备为赞扬7.5KW真空泵. 2、轻型井点管的布置 水平布置间距按0.6米设置,转角处可增设二根,吸水井点管的长度为6.5米。 3、轻型进点的安装设置 按井点降水布置图图示位置先挖深1.5米,沟宽度1.5米的沟槽,在沟槽内插入井点管,井点管通过软胶皮管与积水总管连接,积水总管与抽水调配连接,每个独立的降水单元连接完成,就可以开始运行.

相关文档
最新文档