一般实系数四次方程的谢国芳公式-绝对准确可靠又最简明快捷的求根公式

一般实系数四次方程的谢国芳公式-绝对准确可靠又最简明快捷的求根公式
一般实系数四次方程的谢国芳公式-绝对准确可靠又最简明快捷的求根公式

一般实系数四次方程的谢国芳求根公式

作者:谢国芳(Roy Xie ) Email: roixie@https://www.360docs.net/doc/2213034756.html,

【摘要】本文给出了一个绝对准确可靠又最简明快捷的一般实系数四次方程的求根公式,其中涉及的运算全部为实数运算,可以在普通的科学计算器上进行。

以下把一般四次方程的形式设为

432

4640ax bx cx dx e ++++=

在系数中引入数字因子4, 6, 4是为了使后面各参数的表达式尽可能地简洁,注意五个系数的数字因子1, 4, 6, 4, 1恰好是二项式系数( 4432(1)4641x x x x x +=++++ ).

一般实系数四次方程的谢国芳求根公式

对于实系数四次方程 432

4640a x b x c x d x e ++++= (0)a > , 定义参数

2

H b ac =-, 2

43I ae bd c =-+, 23

32G a d abc b =-+, 3

2

2

3

4H a H I G

J a

--=

,

3

2

27I J ?=-,

称0G ≠,220I J +≠(即, I J 不同时为0)的情形为一般情形,又可以分为下面这两种情况[1]:

(一)一般情形的求根公式Ⅰ

当32

270

I J

?=-<时,方程的四个根为

1,2

3,4

(sgn(/

(sgn(/

x b G a

x b G a

?=--

?

?

?=-+

?

其中sgn()

G为G的符号(sign),

1 (0)

sgn()

1 (0)

G

G

G

>

?

=?

-<

?

2

a

t H

=+.

(二)一般情形的求根公式Ⅱ

当32

270

I J

?=-≥时,方程的四个根为

1

2

3

4

(/

(/

(/

(/

x b a

x b a

x b a

x b a

?=-+++

?

?=-+

?

?

=--+-

?

?

=---+

??

其中

1

)

3

y H

θ

=+

,

2,3

2

)

33

y H

θπ

=±+,

1

cos

J

θ-

-

=.

s是一个符号因子(sign factor),等于1或1-,视实数

123

,,

y y y的符号

而定:当

123

,,

y y y全为正数时sgn()

G

s=-,否则sgn()

G

s=.

(三)特殊情形的求根公式

(Ⅰ) 当0G 1

, 0

I J ==时,

方程有一个三重实根(sgn(/b G a -+和另

一个实根(3sgn(/b G a --.

(Ⅱ) 当0G =时, 方程的四个根为

1234

(/(/(/(/x b a x b a x b a

x b a ?=-+??=-+???=--??=--

?

【注1】规定各求根公式中的平方根全部取主值(设z 为复数z 的模,θ为其幅角主值(πθπ-<≤)

/2

i θ

, /2

i θ,称前者为主值),实际

上,除了特殊情形Ⅱ之外,各平方根号内的数全都是实数,当它是正数时平方根主值就是普通的实平方根,而当它是负数时则等于其绝对值的实平方根乘以i 。

例题

例题1 解四次方程 4322121030x x x x +---=.

解:21121051, , 2, , 34

2

6

4

2

a b c d e --==

=

=

==

=-

=-

2

219()(2)24

H b ac =-=--=

22

154334()()3(2)1422I ae bd c =-+=---+-=

2

3

35

11332()3()(2)2()2224

G a d abc b =-+=-

--+=

32

329932744()()14()4442J H H I G =--=-?-=

32

3

2

278707271427(

)2

4

I J

?=-=-=-

因为0?<,所以用 一般情形的求根公式Ⅰ 求解:

2190.012116724918617422507

24

a t H =++=+

+

30, sgn ()14

G G =

>=

11(sgn(/2

3.0711409009234886169

x b G a =--±

=-

-+

21 4.2912928931344829057

2

x =-

-≈-

3,412

0.389924003894502855570.27493870736756802215x i

=-

-±≈-±

例题2 解四次方程 43231418810x x x x ++++=.

解:1471883, , 3, 2, 14

2

6

4

a b c d e ==

=

=

==

==

2

2713()3324H b ac =-=-?=

2

2

74331423322

I ae bd c =-+=?-?

?+?=

232

37

737

32323332()224

G a d abc b =-+=?-??

?+?=

32

2

322

33

1313374()3(

)2(

)

414

4

4

4

3

H a HI G

J a

?-??---=

=

=-

3

2

3

2

110127(2)27()4

16

I J

?=-=--

=

因为0?>,所以用 一般情形的求根公式Ⅱ 求解:

1

1

()

1cos cos 1.0936126008583018847J

θ---==≈弧

度113

)) 5.5385306812982778167334

y H θθ=+=+≈

2213) 1.3494473524579513276

3

34y θ

π=+

+

2213) 2.8620219662437708557

3

3

4

y θ

π=-+≈

因为123, , y y y 全为正数,sgn () =1G s =-- 37(0, sgn ()1)

4

G G =

>=

17(/(/3 1 2

x b a =-++=-

-

+=-

27(/3 2.90227220776028929072

x =-

-

-≈-

37(/30.558895228078820053052x =-

+

+-≈-

47(/30.205499230827557322952

x =-

+

-+≈-

例题3 解四次方程 432183571962400x x x x -+-+=.

解:1893571191961, , , 49, 2404

2

62

4

a b c d e --==

=-==

=

=-=

2

2

9119157()2

2

4H b ac =-=-

-

=-

2

2

911939915432404()(49)3(

)2

2

4

I ae bd c =-+=---+=

23

39119932(49)3()()2()572222

G a d abc b =-+=---

+-= 322

3

2

157157399151419091

44()()572 4

4

4

8

J H a H I G

=--=?---

?

-=-

32

3

2

399151419091

27(

)27()1440585343174

8

I J

?=-=--

=

因为0?>,所以用 一般情形的求根公式Ⅱ 求解:

1

1

cos cos 0.39062182774728867633 ()

θ--==≈弧度

15157o s ()c o s (

)17.935443512405450943

3

3

4

y H θθ

=+=

-≈

22157+

)74.327803692239770745

3

3

4

y θ

π-

≈-

32157)61.357639820165680199

3

3

4

y θ

π-

-

≈-

因为123, , y y y 不全为正数,sgn () =1G s = (5720, s g n (G G =>

=

1,2(/9 2 8.735025798316398797416.454469174310768933x b a i i

=-+±+=

+

±+

≈±

3,4(/9 2 0.264974201683601202550.78824565743655318750x b a i i =-+=

+

±-

≈±

作者简介: 谢国芳,浙江绍兴人,独立语言学者和数学研究者,著有《解密英语——学外语从零点到绝顶的最速路经》、《日语汉字读音规律揭秘》、《破解韩国语单词的奥秘》等,建有以传播外语和数学知识与文化为宗旨的网站“语数之光”。已发表的数学和物理方面的论文有:

4. 《一般三次方程的简明新求根公式和根的判别法则》 (2012年第21期《数学学习与研究》)

二次微分方程的通解

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解

这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且 x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 2 1y y i x e x -= βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解

微分方程公式运用表

微分方程公式运用表 一、 一阶微分方程 判断特征: (,)dy f x y dx = 类型一:()()dy g x h y dx =(可分离变量的方程) 解法(分离变量法): ()()dy g x dx h y =,然后两边同时积分。 类型二:()()dy P x y Q x dx +=(一阶线性方程) 解法(常数变易法):()()(())P x dx P x dx y e C Q x e dx -??=+? 类型三: (,)(,)dy f x y f tx ty dx ==(一阶齐次性方程) 解法(换元法):y u x =?令类型一 类型四:P()y=Q(x)y n dy x dx +(伯努利方程) 解法(同除法):1()()n n dy y P x y Q x dx --+=?类型二 二、 可降阶的高阶微分方程 类型一:()()n y f x = 解法(多次积分法):(1)()()n du u y f x f x dx -=? =?令多次积分求 类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx =?=?令一阶微分方程 类型三:''(,')y f y y = 解法:'(,)dp dp dy dp p y p f y p dx dy dx dy =?==??令类型二 三、线性微分方程 类型一:''()'()0y P x y Q x y ++=(二阶线性齐次微分方程) 解法:找出方程的两个任意线性不相关特解:12(),()y x y x

则:1122()()()y x c y x c y x =+ 类型二:''()'()()y P x y Q x y f x ++=(二阶线性非齐次微分方程) 解法:先找出对应的齐次微分方程的通解:31122()()()y x c y x c y x =+ 再找出非齐次方程的任意特解()p y x ,则:1122()()()()p y x y x c y x c y x =++ 类型三:'''0y py q ++=(二阶线性常系数齐次微分方程) 解法(特征方程法):2 1,20p q λλλ++=?= (一)122121240x x p q y c e c e λλλλ?=->?≠?=+ (二)12120()x y c c x e λλλλ?=?==?=+ (三)12120,(cos sin )x i i y e c x c x αλαβλαβββ?

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

MATLAB求解常微分方程数值解

利用MATLAB求解常微分方程数值解

目录 1. 内容简介 (1) 2. Euler Method(欧拉法)求解 (1) 2.1. 显式Euler法和隐式Euler法 (2) 2.2. 梯形公式和改进Euler法 (3) 2.3. Euler法实用性 (4) 3. Runge-Kutta Method(龙格库塔法)求解 (5) 3.1. Runge-Kutta基本原理 (5) 3.2. MATLAB中使用Runge-Kutta法的函数 (7) 4. 使用MATLAB求解常微分方程 (7) 4.1. 使用ode45函数求解非刚性常微分方程 (8) 4.2. 刚性常微分方程 (9) 5. 总结 (9) 参考文献 (11) 附录 (12) 1. 显式Euler法数值求解 (12) 2. 改进Euler法数值求解 (12) 3. 四阶四级Runge-Kutta法数值求解 (13) 4.使用ode45求解 (14)

1.内容简介 把《高等工程数学》看了一遍,增加对数学内容的了解,对其中数值解法比较感兴趣,这大概是因为在其它各方面的学习和研究中经常会遇到数值解法的问题。理解模型然后列出微分方程,却对着方程无从下手,无法得出精确结果实在是让人难受的一件事情。 实际问题中更多遇到的是利用数值法求解偏微分方程问题,但考虑到先从常微分方程下手更为简单有效率,所以本文只研究常微分方程的数值解法。把一个工程实际问题弄出精确结果远比弄清楚各种细枝末节更有意思,因此文章中不追求非常严格地证明,而是偏向如何利用工具实际求解出常微分方程的数值解,力求将课程上所学的知识真正地运用到实际方程的求解中去,在以后遇到微分方程的时候能够熟练运用MATLAB得到能够在工程上运用的结果。 文中求解过程中用到MATLAB进行数值求解,主要目的是弄清楚各个函数本质上是如何对常微分方程进行求解的,对各种方法进行MATLAB编程求解,并将求得的数值解与精确解对比,其中源程序在附录中。最后考察MATLAB中各个函数的适用范围,当遇到实际工程问题时能够正确地得到问题的数值解。 2.Euler Method(欧拉法)求解 Euler法求解常微分方程主要包括3种形式,即显式Euler法、隐式Euler法、梯形公式法,本节内容分别介绍这3种方法的具体内容,并在最后对3种方法精度进行对比,讨论Euler法的实用性。 本节考虑实际初值问题 使用解析法,对方程两边同乘以得到下式

解一元二次方程(公式法)

应用拓展 某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元二次方程m 是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足: ①211(1)(2)0m m m ?+=?++-≠?或②21020m m ?+=?-≠?或③1020 m m +=??-≠? 解:(1)存在.根据题意,得:m 2+1=2 m 2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x 2-1-x=0 a=2,b=-1,c=-1 b 2-4ac=(-1)2-4×2×(-1)=1+8=9 134 ±= x 1=,x 2=-12 因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=- 12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m 2+1=0,m 不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=-13 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-?1时,其一元一次方程的根为x=- 13. 布置作业 1.教材P 45 复习巩固4. 2.选用作业设计:

初等数论 第五章 同余方程

第五章同余方程 本章主要介绍同余方程的基础知识,并介绍几类特殊的同余方程的解法。 第一节同余方程的基本概念 本节要介绍同余方程的基本概念及一次同余方程。 在本章中,总假定m是正整数。 定义1设f(x) = a n x n a1x a0是整系数多项式,称 f(x) 0 (mod m) (1)是关于未知数x的模m的同余方程,简称为模m的同余方程。 若a n≡/0 (mod m),则称为n次同余方程。 定义2设x0是整数,当x= x0时式(1)成立,则称x0是同余方程(1)的解。凡对于模m同余的解,被视为同一个解。同余方程(1)的解数是指它的关于模m互不同余的所有解的个数,也即在模m的一个完全剩余系中的解的个数。 由定义2,同余方程(1)的解数不超过m。 定理1下面的结论成立: (ⅰ) 设b(x)是整系数多项式,则同余方程(1)与 f(x) b(x) b(x) (mod m) 等价; (ⅱ) 设b是整数,(b, m) = 1,则同余方程(1)与 bf(x) 0 (mod m) 等价; (ⅲ) 设m是素数,f(x) = g(x)h(x),g(x)与h(x)都是整系数多项式,又设x0是同余方程(1)的解,则x0必是同余方程 g(x) 0 (mod m) 或h(x) 0 (mod m)

的解。 证明 留做习题。 下面,我们来研究一次同余方程的解。 定理2 设a ,b 是整数,a ≡/0 (mod m )。则同余方程 ax b (mod m ) (2) 有解的充要条件是(a , m )b 。若有解,则恰有d = (a , m )个解。 证明 显然,同余方程(2)等价于不定方程 ax my = b , (3) 因此,第一个结论可由第四章第一节定理1得出。 若同余方程(2)有解x 0,则存在y 0,使得x 0与y 0是方程(3)的解,此时,方程(3)的全部解是 ??? ????-=+=t m a a y y t m a m x x ),(),(00,t Z 。 (4) 由式(4)所确定的x 都满足方程(2)。记d = (a , m ),以及 t = dq r ,q Z ,r = 0, 1, 2, , d 1, 则 x = x 0 qm r d m x r d m +≡0(mod m ),0 r d 1。 容易验证,当r = 0, 1, 2, , d 1时,相应的解 d m d x d m x d m x x )1(20000-+++,,,,Λ 对于模m 是两两不同余的,所以同余方程(2)恰有d 个解。证毕。 在定理的证明中,同时给出了解方程(2)的方法,但是,对于具体的方程(2),常常可采用不同的方法去解。 例1 设(a , m ) = 1,又设存在整数y ,使得a b ym ,则 x a ym b +(mod m ) 是方程(2)的解。 解 直接验算,有 ax b ym b (mod m )。

数论算法讲义 3章(同余方程)

第 3 章 同余方程 (一) 内容: ● 同余方程概念 ● 解同余方程 ● 解同余方程组 (二) 重点 ● 解同余方程 (三) 应用 ● 密码学,公钥密码学 3.1 基本概念及一次同余方程 (一) 同余方程 (1) 同余方程 【定义3.1.1】(定义1)设m 是一个正整数,f(x)为n 次多项式 ()0111a x a x a x a x f n n n n ++++=--Λ 其中i a 是正整数(n a ≠0(mod m )),则 f (x)≡0(mod m ) (1) 叫做模m 的(n 次)同余式(或模m 的(n 次)同余方程),n 叫做f(x)的次数,记为deg f 。 (2) 同余方程的解 若整数a 使得 f (a)≡0(mod m )成立,则a 叫做该同余方程的解。 (3) 同余方程的解数 若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。即剩余类

a C ={x |x ∈Z ,x ≡a (mod m )} 中的每个剩余都是解。故把这些解都看做是相同的,并说剩余类a C 是同余方程(1)的一个解,这个解通常记为 x ≡a (mod m ) 当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程(2)的不同的解,所有对模m 的两两不同余的解的个数,称为是同余方程(1)的解数,记作()m f T ;。显然 ()m f T ;≤m (4) 同余方程的解法一:穷举法 任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程(1),在这完全剩余系中解的个数就是解数()m f T ;。 【例1】(例1)可以验证,x ≡2,4(mod 7)是同余方程 15++x x ≡0(mod 7) 的不同的解,故该方程的解数为2。 50+0+1=1≡3 mod 7 51+1+1=3≡3 mod 7 52+2+1=35≡0 mod 7 53+3+1=247≡2 mod 7 54+4+1=1029≡0 mod 7 55+5+1=3131≡2 mod 7 56+6+1=7783≡6 mod 7 【例2】求同余方程122742 -+x x ≡0(mod 15)的解。 (解)取模15的绝对最小完全剩余系:-7,-6,…,-1,0,1,2,…,7,直接计算知x =-6,3是解。所以,该同余方程的解是 x ≡-6,3(mod 15)

常微分方程数值解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。[教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步 推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截

用公式法解一元二次方程教案

用公式法解一元二次方 程教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

优质课比赛教案 第23章 23.2 用公式法解一元二次方程 整体设计 教学分析 求根公式是直接运用配方法推导出来的,从数字系数的一元二次方程到字母系数的方程,体现了从特殊到一般的思路。用公式法解一元二次方程是比较通用的方法,它体现了一元二次方程根与系数最直接的关系,一元二次方程的根是由系数a,b,c决定的,只要将其代入求根公式就可求解,在应用公式时应首先将方程化成一般形式。 教学目标 知识与技能: 1、理解一元二次方程求根公式的推导过程 2、会用求根公式解简单系数的一元二次方程 过程与方法: 经历探索求根公式的过程,发展学生的合情推理能力,提高学生的运算能力并养成良好的运算习惯 情感、态度与价值观 通过运用公式法解一元二次方程的训练,提高学生的运算能力,并让学生在学习中获得成功的体验,建立学好数学的自信心。 重点: 掌握一元二次方程的求根公式,并能用它熟练地解一元二次方程

难点: 一元二次方程求根公式的推导过程 教学过程: 一、复习引入: 1、用配方法解下列方程: (1)4x 2-12x-1=0;(2)3x 2+2x-3=0 2、用配方法解一元二次方程的步骤是什么? 说明:教师引导学生回忆配方法解一元二次方程的基本思路及基本步骤,为本节课的学习做好铺垫。 3、你能用配方法解一般形式的一元二次方程ax 2+bx+c=0(a ≠0)吗? 二、问题探究: 问题1:你能用一般方法把一般形式的一元二次方程ax 2+bx+c=0(a ≠0)转化为(x+m)2=n 的形式吗? 说明:教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让 学生分组讨论交流,达成共识,最后化成(x+a b 2)2=2244a a c b - ∵a ≠0,方程两边都除以a,得x 2+ 0=+a c x a b 移项,得x 2+ a c x a b -= 配方,得x 2+ 22)2(-)2(a b a c a b x a b +=+ 即(x+=2)2a b 2244a ac b -

二阶常系数齐次线性微分方程的通解证明教学提纲

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为 12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? (1)

常微分方程教材

第九章 微分方程 一、教学目标及基本要求 (1) 了解微分方程及其解、通解、初始条件和特解的概念。 (2) 掌握变量可分离的方程和一阶线性方程的解法,会解齐次方程。 (3) 会用降阶法解下列方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。 (4) 理解二阶线性微分方程解的性质以及解的结构定理。 (5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 (6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以及它们的和与二阶常系数非齐次线性微分方程的 特解和通解。 (7) 会用微分方程解决一些简单的应用问题。 二、本章教学内容的重点和难点 1、理解和熟悉微分方程的一些基本概念; 2、掌握一阶和高阶微分方程的各种初等积分法; 3、熟悉线性方程的基础理论,掌握常系数二阶线性齐次与非齐次方程的解法; 4、会列微分方程及其始值问题去解决实际问题。 三、本章教学内容的深化和拓宽: 1、分离变量法的理论根据; 2、常用的变量代换; 3、怎样列微分方程解应用题; 4、黎卡提方程; 5、全微分方程的推广; 6、二阶齐次方程; 7、高阶微分方程的补充; 8、求线性齐次方程的另一个线性无关的解; 9、求线性非齐次方程的一个特解; 10、常数变易法。 本章的思考题和习题 解下列方程(第1-6题) 1、2)0(,)1(==+'+y x y y x 2、()[]f dx x f e e x f x x x ,)(02?+=可微 3、212 22sin 22sin 1X e y x y y x ++='?+ 4、0)3(24=+-xydx dy x y 5、21)0(,1)0(,022- ='=='+''y y y x y 6、2y y y x y '-'+'= 7、已知可微函数)(x f 满足 ?-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、已知)(,,1)(2 1)(10x f f x f da ax f 求可微+= ?; 9、求与曲线族C y x =+2232相交成ο45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器内注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器内,多余的水便从容器内流出,问经过多少时间,两容器内的含盐量相等?

公式法解一元二次方程教案

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

线性同余方程组的解

线性同余方程组的解 学生:罗腾,江汉大学数计学院(数学与应用数学系) 指导老师:许璐,江汉大学 摘要 “孙子算经”一书中写于公元前三世纪,这个谜题如下:有堆东西不知道有多少,如果三个三地数,最后余下两个;五个五个的数,最后余下三个;七个七个的数,最后余下二个,问这堆东西共有多少?我们可以把这个问题用数学符号表示成同余式的形式: ()()().7mod 3,5mod 2,3mod 1≡≡≡x x x 定理1 设,,,,,a b c d e f 和m 均为整数,0m >,若(,)1m ?=,其中ad bc ?=-.则 线性同余方程组(mod ) (mod )ax by e m cx dy f m +≡??+≡? ,有唯一一组关于模m 的解为 ()(mod ) ()(mod ) x de bf m y af ce m ?≡?-?? ≡?-??, 其中?是?关于模m 的逆,即1(mod )m ??≡. 证 首先,将同余式(mod )ax by e m +≡两边都乘以d ,将同余式(mod )cx dy f m +≡两边都乘以b ,得到 (mod )(1) (mod )(2)adx bdy de m bcx bdy bf m +≡?? +≡? ()()12-得到 ()()mod ad bc x de bf m -≡- 令ad bc ?=-,则()mod x de bf m ??≡-.下面我们把同余式两边都乘以?,其中 1(mod ) m ??≡ ∴()()mod x de bf m ≡?- 同理,将同余式(mod )ax by e m +≡两边都乘以c ,将同余式(mod )cx dy f m +≡两边

公式法解一元二次方程(教案)

21.2.2公式法 教案设计(张荣权) 教学内容:用公式法解一元二次方程 教材分析:在解一元二次方程时,仅仅是直接开平方法、配方法解一元二次 方程是远远不够的。对于系数不特殊的一元二次方程,这两种方法就不方便了。而用求根公式法解较复杂的一元二次方程教方便了。因此,学习用公式法解一元二次方程很有必要,也是不可缺少的一个重要内容。而公式法是一元二次方程的基本解法,它为进一步学习一元二次方程的解法级简单应用起到铺垫作用。 教学目标: 知识与技能目标:1.理解一元二次方程求根公式的推导。 2.会用求根公式解简单数字的一元二次方程。 3.理解一元二次方程的根的判别式,并会用它判别一元二次方程根的情况。 过程与方法:在教师的指导下,经过观察、推导、交流归纳等活动导出一元二次方程的求根公式,培养学生的合情推理与归纳总结能力。 情感态度与价值观:培养学生独立思考的习惯和合作交流意识。 教学重点、难点及突破 重点:1.掌握公式法解一元二次方程的步骤。 2.熟练的利用求根公式解一元二次方程。 难点:理解求根公式的推导过程及判别公式的应用。 教学突破 本节课我主要采用启发式、探究式教学法。教学中力求体现“试——究——升”模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配方能力有限,所以,崩皆可借助于多媒体辅助教学,指导学生通过观察,分析,总结配方规律,从而突破难点。学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性,主动性和创造性。 教学设想 通过复习配方法解一元二次方程,导入对一般形式的一元二次方程的解法探讨,通过提问引导学生观察思考,产生问题,进行小组合作探讨,发现结论。加深对应用公式法的理解。渗透由特殊到一般和分类讨论及化归的数学思想,运用解一元二次方程的基本思想----开方降次,重视相关的知识联系,建立合理的逻辑过程,突出解一元二次方程的基本策略。 教学准备 教师准备:课件精选例题 学生准备:配方法解一元二次方程、二次根式的化简 教学过程:

常微分方程计算

实验八 常微分初值问题的数值解法 8.1实验目的 ① 掌握常微分方程数值解的常用算法; ② 培养编程与上机调试能力. 8.2算法描述 8.2.1改进欧拉法 求解 '0 ()(,)()()y x f x y a x b y a y ?=≤≤?=? 对给定的(,)f x y ,用改进的欧拉公式 1111()[()()]2 n n n n n n n n n n y y hf x y h y y f x y f x y ++++=++???=++++??求解常微分方程初值问题的解. 8.2.2四阶龙格-库塔法 对上述给定的(,)f x y ,用四阶龙格-库塔法求解常微分方程初值问题 112341213243(22)6(,) 11(,)2211(,)22(,)n n n n n n n n n n h y y k k k k k f x y k f x h y hk k f x h y hk k f x h y hk +?=++++??=???=++???=++??=++?? 8.3实验题目 (1) 用改进的欧拉公式,求解常微分方程初值问题的解 20.10.4(0)1 dy y x dx y ?=?≤≤??=? (2) 用四阶龙格-库塔公式解初值问题: / 2.0 2.6,0.2(2.0)1dy x y x h dx y ?=?≤≤=??=?

8.4实验要求 (1)选择一种计算机语言设计出改进欧拉法和四阶龙格-库塔法方法求解常微分方程初值问题的程序,观察运行结果. (2)利用Matlab求解常微分方程初值问题 函数dsolve()用于求解微分方程.Dy表示:dy/dt(t 为缺省的自变量),Dny表示y对t 的n阶导数. Matlab6.1环境下操作如下: >> y=dsolve('Dy=y*y','y(0)=1') %求解题目1 >> y=dsolve('Dy=y/t','y(2.0)=1') %求解题目2 (3)利用最小二乘法拟合通过改进欧拉法求出微分方程的一系列数值解的近似函数方程.并利用Matlab的绘图功能画出函数的曲线 8.5思考 一阶微分方程初值问题有哪些数值解法?比较各种方法的优缺点并举具体例子说明之?

高阶线性微分方程常用解法简介

高阶线性微分方程常用解法简介 摘要:本文主要介绍高阶线性微分方程求解方法,主要的内容有高阶线性微分方程求解的常 用方法如。 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3, ,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++= 其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++ 其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ 是特征方程111()0n n n n F a a a λλλλ--≡++++= 的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ (5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ= 均为实数,则(5)是方程(3)的n 个线性无关的实值解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++ 其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.

几类三阶常微分方程的通解公式【开题报告】

毕业论文开题报告 数学与应用数学 几类三阶常微分方程的通解公式 一、选题的背景、意义 常微分方程是指包含一个自变量和它的未知函数以及未知函数的微分的等式。微分方程差不多是和微积分同时产生的,它的形成和发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关。20世纪30年代中期法国数学家勒雷和绍尔建立了LeraySchauder度理论[1]。他们的方法用于研究线性微分、积分、泛函数方程时,取得了巨大成功。 常微分方程在很多学科领域内有着重要的作用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等等,这些问题都可以归结为高阶微分方程的模型[1,2],或者化为研究解的性质的问题。很多物理与技术问题都可以化归为微分方程的求解问题。牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,就会有解方程的方法[3-5]。微分方程也就成了最有生命力的数学分支。常微分方程是数学分析或基础数学的一个组成部分,在整个数学大厦中占据着重要位置。 有关三阶常微分方程的求解研究已经取得了较为丰富的结果,下面对研究三阶常微分方程的通解详见文献[6-10]。 二、研究的基本内容与拟解决的主要问题 本文主要是对三阶常微分方程通解的研究,具体研究的基本内容与拟解决的主要问题如下: 问题1 如果已知三阶线性微分方程 ()()()() +++= y P x y Q x y R x y f x ''''''

二次微分方程的通解

二次微分方程的通解 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线 性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 ypyqy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使ye rx 满足二阶常系数齐次线性微分方程 为此将ye rx 代入方程 ypyqy 0 得 (r 2prq )e rx 0 由此可见 只要r 满足代数方程r 2prq 0 函数ye rx 就是微分方程的解 特征方程 方程r 2prq 0叫做微分方程ypyqy 0的特征方程 特征方程的两个根r 1、r 2可用公式 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(21212 1-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又

公式法解一元二次方程及答案详细解析

21.2.2公式法 一.选择题(共5小题) 1.用公式法解一元二次方程x2﹣5x=6,解是() A.x1=3,x2=2 B.x1=﹣6,x2=﹣1 C.x1=6,x2=﹣1 D.x1=﹣3,x2=﹣2 2.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是() A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3 C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣3 3.(2011春?招远市期中)一元二次方程x2+c=0实数解的条件是()A.c≤0 B.c<0 C.c>0 D.c≥0 4.(2012秋?建平县期中)若x=1是一元二次方程x2+x+c=0的一个解,则c2+c=() A.1 B.2 C.3 D.4 5.(2013?下城区二模)一元二次方程x(x﹣2)=2﹣x的解是()A.﹣1 B.2 C.﹣1或2 D.0或2

二.填空题(共3小题) 6.(2013秋?兴庆区校级期中)用公式法解一元二次方程﹣x2+3x=1时,应求出a,b,c的值,则:a= ;b= ;c= . 7.用公式法解一元二次方程x2﹣3x﹣1=0时,先找出对应的a、b、c,可求得△,此方程式的根为. 8.已知关于x的一元二次方程x2﹣2x﹣m=0,用配方法解此方程,配方后的方程是. 三.解答题(共12小题) 9.(2010秋?泉州校级月考)某液晶显示屏的对角线长30cm,其长与宽之比为4:3,列出一元二次方程,求该液晶显示屏的面积.

10.(2009秋?五莲县期中)已知一元二次方程x2+mx+3=0的一根是1,求该方程的另一根与m的值. 11.x2a+b﹣2x a+b+3=0是关于x的一元二次方程,求a与b的值. 12.(2012?西城区模拟)用公式法解一元二次方程:x2﹣4x+2=0. 13.(2013秋?海淀区期中)用公式法解一元二次方程:x2+4x=1.

相关文档
最新文档