MATLAB的根轨迹分析法及重点习题

MATLAB的根轨迹分析法及重点习题
MATLAB的根轨迹分析法及重点习题

4.1某系统的结构如题4-1图所示,试求单位阶跃响应的调节时间t s ,若要求t s =0.1秒,系统的反馈系数应调整为多少?

解:(1)由系统结构图可知系统闭环传递函数为:

100

()100()1001()()1001*G s s s G s H s s a

a s

Φ===

+++ 在单位阶跃函数作用下系统输出为:

12100

()()()(100)100k k C s R s s s s a s s a

=Φ=

=+++

为求系统单位阶跃响应,对C(s)进行拉斯反变换:

10

21001001001001

lim ()lim

1001001

lim (100)()lim 11

()(100)1

()(1)

s s s a

s a at k sC s s a a

k s a C s s a

C s as a s a c t e a

→→→-→--===

+=+==-

=-

+=-

根据定义调节时间等于响应曲线进入5%误差带,并保持在此误差带内所需要的最短时间,且根据响应系统单位阶跃响应的函数表达式可以看出系统单位阶跃响应的稳态值为

1

a

,因此: 10010011()(1)0.950.051

ln 20

1001

=0.1ln 20=0.3s 10

s s at s at s s c t e a a e t a a t --=

-=?=?==

因为题中,所以

(2)若要求t s =0.1秒,则有:

1

ln 20=0.1

100=0.3s t a

a =

? 即:若要求调节时间缩小为0.1秒,则需将反馈环节的反馈系数调整为0.3。

4.2已知二阶系统的阶跃响应曲线如题4.2图所示,该系统为单位负反馈系统,试确定其开环传递函数。

解:根据系统阶跃响应曲线可以看出: 峰值时间=0.1s p t ,超调量 1.3-1

%=

100%30%1

σ?=; 根据课本中对典型二阶系统222

()2n

n n

s s s ωζωωΦ=++暂态性能指标的推导计算可知:

%p t e σ-=

=结合本题已知阶跃响应曲线可知:

0.1(1)%30%

(2)

p t e σ-=

===

由式(2)可知:

0.3ln 0.30.3832

cot =0.3832

=arccot 0.3832=69.0332=cos =0.3578

e

ζ?ζ?ζ?-=?-=?=

=即:

将ζ带入式(1)中可得:

0.1

p n t ω=

=

回顾题意对于典型二阶系统其闭环传递函数为222

()2n

n n

s s s ωζωωΦ=++,且系统为单位负反馈系统,所以系统开环传递函数和闭环传递函数之间满足如下关系:

2222

2

22

2

2211

()()121211211131.8851

===224.0753n n n n

n n n n n G s s s s G s s G s s G G s s s s

ωζωζωωωζωωωζωΦ==Φ==+++++++++,因为:所以:,

4.3单位反馈控制系统开环传递函数为()(1)

K

G s s Ts =+,若116s =0.25s K T -=、,试求

(1)动态性能指标%(0.05)s t σ?=、.

(2)欲使%=16%σ,当T 不变时,K 应取何值。

解:(1)对于单位反馈控制系统,已知开环传递函数可求出其闭环传递函数,并将其化为标准形式为:

22()(1)()1()1(1)1180.25n n n K K

G s K s Ts T s K s K G s Ts s K s s Ts T T T T

ωζωζω+Φ====

+++++++=

==?==即:;22 所以根据动态性能指标的计算公式将上述两参数带入后可得:

0.251

1

ln( 1.5142%44.43%

s n t s e e ζωσ--=-

=-====

(2)由于T=0.25s,所以可知

: 1n n T ωζωζ==?=2将阻尼比带入超调量的计算公式中

:

%16%0.16ln 0.16

ln 0.16 3.9388

e e K σζπ--==?=?-==?=将阻尼比带入可得:

4.4设控制系统如题4-4图所示,其中图(a)为无速度反馈系统,图(b)为带速度反馈系统,试确定系统阻尼比为0.5时K t 的值,并比较图(a)和图(b)系统阶跃响应的动态性能指标。

解:(1)根据系统结构图可求得两系统的闭环传递函数为

:

2210

()101(1)

(),101()()1021(1)

10

()10(1)

(),

101()()1010

1(1)(1)

1+100.2162

2a n n b t t

t n t n G s s s s G s H s s s s s G s s s s G s H s s s K s K s s s K K ωζωωζω+Φ=====++++++Φ===+++++++===所以所以因此

(2)根据已经求得的两系统的阻尼比和无阻尼自然振荡角频率可分别计算两系统的动态性能指标

:

0.55351.0053%60.47%

1

ln( 6.0168ra pa a sa n

t s t s e t s

σζω-===

====-

=

0.76481.1471%16.3%

1

ln( 1.9827rb pb b sb n

t s t s e t s

σζω-===

====-

=

经对比可看出:采用速度反馈的b 系统虽然上升时间和峰值时间稍有延长,但超调量存在明显下降,系统振荡剧烈程度下降,另外调节时间也显著降低,即使说系统能够在较快的时间内达到稳定,系统动态性能得到了提高。

4.5某系统结构如题4-5图所示,试判断系统的稳定性。

解:根据系统结构图可利用梅森公式求解其传递函数,结构图中前向通道有一条,回路有两个,且两回路相关,因此有:

22

12

111

321010(+1)2010

1(2)1(1)(1)11011010()21101

s s s s s s s s

P s P s s s s s ?=--?-=+++++=?=?+Φ=

=?+++

因此可得系统特征方程为:

32211010s s s +++=

列写其劳斯表为:

321102112090

211

1

s s s

根据劳斯判据可知,劳斯表第一列系数符号均未发生变化,因此系统稳定。

4.6已知系统特征方程如下,用劳斯判据判断系统的稳定性,如不稳定求在s 右半平面的根数及虚根值。另外用MATLAB 软件直接求其特征跟加以验证。 (1)

54325432243122432480

112323244841601248

00480,1

48

s=2j

s s s s s s s s s s +++++=+=±2劳斯表中出现全零行,根据上一行数据列写辅助方程为12s 对其求导得到全零行的新系数为:24

0,求解辅助方程可得

通过分析劳斯表中第一列系数可知并没有符号变化,所以不存在位于s 右半平面的特征根,另外由于系统劳斯表中出现全零行,所以系统不稳定,存在对称于原点的根为s=2j ±

用MATLAB 软件中函数roots 求特征方程根可得,系统特征方程根为如下所示,进一步验证了上述求解结果的正确性。

(2)

543254321031220352501

12

35320251680(16)(80)0335250

00250,1

25

s=s s s s s s s s s s +++++=+=±2同时乘以非正系数3可简化计算

劳斯表中出现全零行,根据上一行数据列写辅助方程为5s 对其求导得到全零行的新系数为:100,求解辅助方程可得

通过分析劳斯表中第一列系数可知并没有符号变化,所以不存在位于s 右半平面的特征根,另外由于系统劳斯表中出现全零行,

所以系统不稳定,存在对称于原点的根为

s=±

用MATLAB 软件中函数roots 求特征方程根可得,系统特征方程根为如下所示,进一步验证了上述求解结果的正确性。

(3)

6543265432(-20)(10)244478100147104480

5510

000

5100,510

s=1

290110

s s s s s s s s s s s s s -+-+--+=------+=-±-4劳斯表中出现全零行,根据上一行数据列写辅助方程为-5s 对其求导得到全零行的新系数为:-20-10,求解辅助方程可得

通过分析劳斯表中第一列系数符号变化两次,所以有两个位于s 右半平面的特征根,另外由于系统劳斯表中出现全零行,

所以系统不稳定,存在对称于原点的根为

s=1±±

用MATLAB 软件中函数roots 求特征方程根可得,系统特征方程根为如下所示,进一步验证了上述求解结果的正确性。

(4)

65432(4)(6)212741340

134

000

340,

34

s=j,s=2

250314s s s s s s s ----------=-

-±±-

-4劳斯表中出现全零行,根据上一行数据列写辅助方程为s 对其求导得到全零行的新系数为:4-6,求解辅助方程可得

通过分析劳斯表中第一列系数符号变化1次,所以有1个位于s 右半平面的特征根,另外由于系统劳斯表中出现全零行,所以系统不稳定,存在对称于原点的根为

s=j,s=2±±

用MATLAB 软件中函数roots 求特征方程根可得,系统特征方程根为如下所示,进一步验证了上述求解结果的正确性。

4.7已知单位反馈系统的开环传递函数为2

(0.51)

()(+1)(0.51)

K s G s s s s s +=++,试确定系统稳定时的K 值范围。

解:根据已知单位反馈系统开环传递函数可知系统特征方程为:

4320.5 1.52(0.51)0s s s K s K +++++=,对系统列写劳斯表可得:

4320.521.50.51

00.5123

4.50.516(0.51)

1

s K

s K K s K

K s K K K

++-

+--+

欲使系统稳定则需满足:0.51

20103

K K +-

>?<

4.50.510556(0.51)

K

K K K +-

>?--<<-+-+

0K >

汇总得:05 1.708K <<-+=

4.8已知系统的特征方程为321340400s s s K +++=,试确定系统稳定时的K 值范围,若要求闭环系统极点均位于s=-1垂线之左,K 值该如何调整。 解:(1)对系统列写劳斯表为:

32140

13

40404013

140s s K K s K

-

欲使系统稳定则需满足:40400;40013

K

K -

>>,即:013K <<。 (2)将1s s =-带入系统原特征方程中得:

32321017402801

17

10402819.8414028

s s s K s s K s K K +++-=---

欲使系统稳定则需满足:19.840 4.95K K ->?<;402800.7K K ->?>;即0.7 4.95K <<

4.9已知系统稳定,求2

()1()2

t r t t t =++的系统稳态误差。

解:由系统结构图可知系统开环传递函数为:

12(1)

(1)

m m k k s s T s τ++,即系统为II 型系统;

系统的静态位置误差系数,静态速度误差系数和静态加速度误差系数分别为:

21111222000(1)(1)(1)lim

;lim ;lim (1)(1)(1)m m m p v a m s s s m

m m k k s k k s k k s K K s K s k k s T s s T s s T s τττ→→→+++==∞==∞==+++; 由此可知系统在单位阶跃信号、单位斜坡信号和单位加速度信号作用下的稳态误差分别为:

111110;0;1ss ss ss p v a m

e e e K K K k k =

=====+,根据线性系统的叠加原理可得,在信号

r(t)作用下系统的稳态误差为:11

ss m

e k k =

4.10已知单位负反馈系统开环传递函数2

()(1)(0.51)

G s s s s =

++,求

2

()1()52

t r t t t =++作用下的稳态误差。

解:由于系统开环传递函数为: 2

()(1)(0.51)

G s s s s =

++,即系统为I 型系统;

系统的静态位置误差系数,静态速度误差系数和静态加速度误差系数分别为:

20

00222

lim

;lim 2;lim 0

(1)(0.51)(1)(0.51)(1)(0.51)

p v a s s s K K s K s s s s s s s s s s →→→==∞====++++++;

由此可知系统在单位阶跃信号、5t 信号和单位加速度信号作用下的稳态误差分别为:

1151

0;;12ss ss ss p v a

e e e K K K =

=====∞+,根据线性系统的叠加原理可得,在信号

r(t)作用下系统的稳态误差为:ss e =∞

4.11一直单位负反馈系统开环传递函数为2

8(1)

()(0.11)

s G s s s +=+,求2()1()r t t t t =++作用下的稳态误差。

解:由于系统开环传递函数为: 2

8(1)

()(0.11)

s G s s s +=

+,即系统为II 型系统;

系统的静态位置误差系数,静态速度误差系数和静态加速度误差系数分别为:

2

2220

008(1)8(1)8(1)lim

;lim ;lim 8(0.11)(0.11)(0.11)

p v a s s s s s s K K s K s s s s s s s →→→+++==∞==∞==+++; 由此可知系统在单位阶跃信号、单位斜坡信号和2t 作用下的稳态误差分别为:

112

0;0;0.251ss ss ss p v a

e e e K K K =

=====+,根据线性系统的叠加原理可得,在信号

r(t)作用下系统的稳态误差为:0.25ss e =

5.3基于MATLAB 的根轨迹分析法 5.3.1利用MATLAB 绘制根轨迹

利用伊凡斯给出的绘制根轨迹的基本规则,可以粗略地画出当系统某一参数变化时的根轨迹,但需要花费较多时间,且结果并不精确。而使用MATLAB 的相关指令,绘制较为精确的根轨迹就非常方便。

绘制根轨迹的常用指令为: rlocus(num,den); 或rlocus(num,den,K);

绘制例5-2给定单位负反馈控制系统的根轨迹图。 clc clear k=1;

z=[];

p=[0 -1 -2];

[num,den]=zp2tf(z,p,k);%将传递函数由零极点形式转换为多项式形式

rlocus(num,den);

V=[-3 2 -3 3 ];

axis(V);

title(‘root-locus plot of G(s)=K/s(s+1)(s+2)’);

xlabel(‘Re’);

ylabel(‘Im’);

返回的给定控制系统根轨迹图为:

-3

-2.5-2-1.5-1-0.500.51 1.52

-3-2

-1

1

2

3

root-locus plot of G(s)=K/s(s+1)(s+2)

Re

I m

对例5-3给定的自动控制系统绘制其根轨迹图。 clc clear

%k(s+1)/s(s+2)(s+3) k=1; z=[-1]; p=[0,-2,-3]; [n,d]=zp2tf(z,p,k);

rlocus(n,d)

执行本程序后可得给定系统根轨迹图为:

-3

-2.5-2-1.5-1-0.50

Root Locus

Real Axis

I m a g i n a r y A x i s

对例5-4所给定的自动控制系统绘制根轨迹图 clc clear

%k/s(s+3)(s^2+2s+2) g=tf(1,[conv([1,3],[1,2,2]) 0]); rlocus(g)

执行本程序后返回给定自动控制系统根轨迹图为:

-8

-6-4-2024

-5-4-3-2-101234

5Root Locus

Real Axis

I m a g i n a r y A x i s

对例5-5所示系统绘制根轨迹。 clc clear

G1=tf(1,[1 8]); G2=tf([1 1],[1 5 0]); H=tf(1,[1 2]); rlocus(G1*G2*H); V=[-10 2 -5 5]; axis(V);

grid on; xlabel(‘Re ’); ylabel(‘Im ’);

执行本程序后得到系统根轨迹为

-5-4-3-2-1

012345Root Locus

Re

I m

5.3.2基于根轨迹的系统性能分析

当做出控制系统根轨迹图之后,就可以根据根轨迹对系统进行定性的分析和定量的计算。因为系统的暂态性能和稳态性能与系统闭环极点位置密切相关,实际工程中对系统性能的要求往往可以转化为对闭环极点位置的要求。

1、分析1:在对系统的分析中,一般需要确定根轨迹上某一点的根轨迹增益及其对应的闭环极点。

2、分析2:在对系统的分析中,有时需要确定具有指定阻尼比的主导闭环极点及相对应的开环增益值。如下例所示:

clc

clear

n=[1];

d=[conv([1,1],[1,2]) 0];

kos=[0.5,0.707];

w=[0.5,1];

sgrid(kos,w);

hold on

rlocus(n,d);

[k,p]=rlocfind(n,d);

hold off

-6

-5

-4

-3

-2-10

1

2

-4-3

-2-10

1234

Root Locus

Real Axis

I m a g i n a r y A x i s

3、分析3

自动控制原理实验五利用matlab绘制系统根轨迹

实验五利用MATLAB绘制系统根轨迹 一、实验目的 (1)熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法; (2)熟练使用根轨迹设计工具SISO; (2)学会分析控制系统根轨迹的一般规律; (3)利用根轨迹图进行系统性能分析; (4)研究闭环零、极点对系统性能的影响。 二、实验原理及内容 1、根轨迹与稳定性 当系统开环增益从变化时,若根轨迹不会越过虚轴进入s右半平面,那么系统对所有的K值都是稳定的;若根轨迹越过虚轴进入s右半平面,那么根轨迹与虚轴交点处的K值,就是临界开环增益。应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下的闭环零、极点位置,从而得到相应的闭环传递函数。 2、根轨迹与系统性能的定性分析 1)稳定性。如果闭环极点全部位于s左半平面,则系统一定是稳定的,即稳定性只与闭环极点的位置有关,而与闭环零点位置无关。 2)运动形式。如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点,则时间响应一般是振荡的。 3)超调量。超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零、极点接近坐标原点的程度有关。 4)调节时间。调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。 5)实数零、极点影响。零点减小闭环系统的阻尼,从而使系统的峰值时间提前,超调量增大;极点增大闭环系统的阻尼,使系统的峰值时间滞后,超调量减小。而且这种影响将其接近坐标原点的程度而加强。 【自我实践5-1】 在实验内容(2)中控制系统的根轨迹上分区段取点,构造闭环系统传递函数,分别绘制其对应系统的阶跃响应曲线,并比较分析。 1:阻尼比=,k=

(完整word版)自控 根轨迹法习题及答案

1 第四章 根轨迹法习题及答案 1系统的开环传递函数为 ) 4)(2)(1()()(* +++=s s s K s H s G 试证明点311j s +-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 解 若点1s 在根轨迹上,则点1s 应满足相角条件π)12()()(+±=∠k s H s G ,如图解4-1所示。 对于31j s +-=,由相角条件 =∠)()(11s H s G =++-∠-++-∠-++-∠-)431()231()131(0j j j ππ π π -=- - - 6 3 2 满足相角条件,因此311j s +-=在根轨迹上。将1s 代入幅值条件: 14 31231131)(* 11=++-?++-?++-= j j j K s H s G )( 解出 : 12* =K , 2 3 8*==K K 2 已知开环零、极点如图4-22所示,试绘制相应的根轨迹。

2 解根轨如图解4-2所示: 3已知单位反馈系统的开环传递函数,要求: (1)确定 ) 20 )( 10 ( ) ( ) ( 2+ + + = * s s s z s K s G产生纯虚根为1j ±的z值和* K值; (2)概略绘出 )2 3 )( 2 3 )( 5.3 )(1 ( ) ( j s j s s s s K s G - + + + + + = * 的闭环根轨迹图(要求

3 确定根轨迹的渐近线、分离点、与虚轴交点和起始角)。 解(1)闭环特征方程 020030)()20)(10()(2342=++++=++++=***z K s K s s s z s K s s s s D 有 0)30()200()(3 2 4 =-++-=* * ωωωωωK j z K j D 令实虚部分别等于零即: ?????=-=+-**0 300 200324ωωωωK z K 把1=ω代入得: 30=* K , 199=z 。 (2)系统有五个开环极点: 23,23,5.3,1,054321j p j p p p p --=+-=-=-== ① 实轴上的根轨迹:[],5.3,-∞- []0,1- ② 渐近线: 1 3.5(32)(32) 2.15 (21)3,,555a a j j k σπππ?π--+-++--?==-???+?==±±?? ③ 分离点: 02 312315.31111=+++-++++++j d j d d d d 解得: 45.01-=d , 4.22-d (舍去) , 90.125.343j d ±-=、 (舍去) ④ 与虚轴交点:闭环特征方程为 0)23)(23)(5.3)(1()(=+-+++++=*K j s j s s s s s D 把ωj s =代入上方程,整理,令实虚部分别为零得: ?????=+-==-+=*0 5.455.43 )Im(05.795.10)Re(3 52 4ωωωωωωωj K j 解得: ???==*00K ω ,???=±=*90.7102.1K ω,???-=±=*3 .1554652.6K ω(舍去) ⑤ 起始角:根据法则七(相角条件),根轨迹的起始角为 74..923..1461359096..751804=----=p θ 由对称性得,另一起始角为 74.92,根轨迹如图解4-6所示。

第4章根轨迹分析法知识题解答

第四章根轨迹分析法 4.1 学习要点 1根轨迹的概念; 2 根轨迹方程及幅值条件与相角条件的应用; 3根轨迹绘制法则与步骤; 4 应用根轨迹分析参数变化对系统性能的影响。 4.2 思考与习题祥解 题4.1 思考与总结下述问题。 (1)根轨迹的概念、根轨迹分析的意义与作用。 (2)在绘制根轨迹时,如何运用幅值条件与相角条件? (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。 (4)总结增加开环零、极点对系统根轨迹的影响,归纳系统需要增加开环零、极点的情况。 答:(1)当系统某一参数发生变化时,闭环特征方程式的特征根在S复平面移动形成的轨线称为根轨迹。根轨迹反映系统闭环特征根随参数变化的走向与分布。 根轨迹法研究当系统的某一参数发生变化时,如何根据系统已知的开环传递函数的零极点,来确定系统的闭环特征根的移动轨迹。因此,对于高阶系统,不必求解微分方程,通过根轨迹便可以直观地分析系统参数对系统动态性能的影响。 应用根轨迹可以直观地分析参数变化对系统动态性能的影响,以及要满足系统动态要求,应如何配置系统的开环零极点,获得期望的根轨迹走向与分布。 (2)根轨迹上的点是闭环特征方程式的根。根轨迹方程可由闭环特征方程式得到,且为复数方程。可以分解为幅值条件与相角条件。运用相角条件可以确定S复平面上的点是否在根轨迹上;运用幅值条件可以确定根轨迹上的点对应的参数值。 (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。 考察开环放大系数或根轨迹增益变化时得到的闭环特征根移动轨迹称为常规根轨迹。除开环放大系数或根轨迹增益变化之外的根轨迹称为广义根轨迹,如系统的参数根轨迹、正反馈系统根轨迹和滞后系统根轨迹等。

根轨迹法习题和答案

第四章 根轨迹法习题及答案 4-1 系统的开环传递函数为 ) 4s )(2s )(1s (K )s (H )s (G * +++= 试证明3j 1s 1+-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 解 若点1s 在根轨迹上,则点1s 应满足相角条件 π)12()()(+±=∠k s H s G ,如图所示。 对于31j s +-=,由相角条件 =∠)s (H )s (G 11-++-∠-)13j 1(0 =++-∠-++-∠)43j 1()23j 1( ππ π π -=- - - 6 3 2 满足相角条件,因此311j s +-=在根轨迹上。 将1s 代入幅值条件: 14 3j 123j 113j 1K s H )s (G * 11=++-?++-?++-= )( 解出 : 12K * = , 2 3 8K K *== 4-2 已知单位反馈系统的开环传递函数如下,试求参数b 从零变化到无穷大时的根轨迹方程,并写出2b =时系统的闭环传递函数。 (1))b s )(4s (02)s (G ++= (2)) b s )(2s (s )b 2s (01)s (G +++= 解 (1) ) 4j 2s )(4j 2s () 4s (b 20s 4s )4s (b )s (G 2-++++=+++= '

28 s 6s 20 )s (G 1)s (G )s (2++=+=Φ (2) ) 10s 2s (s )20s 2s (b )s (G 2 2++++='=)3j 1s )(3j 1s (s ) 19j 1s )(19j 1s (b -+++-+++ 40 s 14s 4s ) 4s (10)s (G 1)s (G )s (23++++=+= Φ 4-3 已知单位反馈系统的开环传递函数) b s )(4s (s 2)s (G ++= ,试绘制参数b 从零变 化到无穷大时的根轨迹,并写出s=-2这一点对应的闭环传递函数。 解 ) 6s (s ) 4s (b )s (G ++= ' 根轨迹如图。 2s -=时4b =, ) 8s )(2s (s 216s 10s s 2)s (2 ++=++=Φ 4-4 已知单位反馈系统的开环传递函数,试概略绘出系统根轨迹。 ⑴ ) 1s 5.0)(1s 2.0(s k )s (G ++= (2) )1s 2(s )1s (k )s (G ++= (3) )3s )(2s (s ) 5s (k )s (G *+++= (4) ) 1s (s )2s )(1s (*k )s (G -++= 解 ⑴ ) 2s )(5s (s K 10)1s 5.0)(1s 2.0(s K )s (G ++=++= 三个开环极点:0p 1=,2p 2-=,5p 3-= ① 实轴上的根轨迹:(] 5,-∞-, []0,2-

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

(整理)MATLAB的根轨迹分析法及重点习题.

4.1某系统的结构如题4-1图所示,试求单位阶跃响应的调节时间t s ,若要求t s =0.1秒,系统的反馈系数应调整为多少? 解:(1)由系统结构图可知系统闭环传递函数为: 100 ()100()1001()()1001*G s s s G s H s s a a s Φ=== +++ 在单位阶跃函数作用下系统输出为: 12100 ()()()(100)100k k C s R s s s s a s s a =Φ= =+++ 为求系统单位阶跃响应,对C(s)进行拉斯反变换: 10 21001001001001 lim ()lim 1001001 lim (100)()lim 11 ()(100)1 ()(1) s s s a s a at k sC s s a a k s a C s s a C s as a s a c t e a →→→-→--=== +=+==- =- +=- 根据定义调节时间等于响应曲线进入5%误差带,并保持在此误差带内所需要的最短时间,且根据响应系统单位阶跃响应的函数表达式可以看出系统单位阶跃响应的稳态值为 1 a ,因此: 10010011()(1)0.950.051 ln 20 1001 =0.1ln 20=0.3s 10 s s at s at s s c t e a a e t a a t --= -=?=?== 因为题中,所以 (2)若要求t s =0.1秒,则有: 1 ln 20=0.1 100=0.3s t a a = ? 即:若要求调节时间缩小为0.1秒,则需将反馈环节的反馈系数调整为0.3。

4.2已知二阶系统的阶跃响应曲线如题4.2图所示,该系统为单位负反馈系统,试确定其开环传递函数。 解:根据系统阶跃响应曲线可以看出: 峰值时间=0.1s p t ,超调量 1.3-1 %= 100%30%1 σ?=; 根据课本中对典型二阶系统222 ()2n n n s s s ωζωωΦ=++暂态性能指标的推导计算可知: %p t e σ-= =结合本题已知阶跃响应曲线可知: 0.1(1)%30% (2) p t e σ-= === 由式(2)可知: 0.3ln 0.30.3832 cot =0.3832 =arccot 0.3832=69.0332=cos =0.3578 e ζ?ζ?ζ?-=?-=?= =即: 将ζ带入式(1)中可得: 0.1 p n t ω= = 回顾题意对于典型二阶系统其闭环传递函数为222 ()2n n n s s s ωζωωΦ=++,且系统为单位负反馈系统,所以系统开环传递函数和闭环传递函数之间满足如下关系: 2222 2 22 2 2211 ()()121211211131.8851 ===224.0753n n n n n n n n n G s s s s G s s G s s G G s s s s ωζωζωωωζωωωζωΦ==Φ==+++++++++,因为:所以:,

根轨迹分析实验报告

课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 控制系统的根轨迹分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验容和原理(必填) 三、主要仪器设备(必填) 四、操作法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握用计算机辅助分析法分析控制系统的根轨迹 2. 熟练掌握Simulink 仿真环境 二、实验容和原理 1. 实验容 一开环系统传递函数为 22) 34()2()(+++=s s s k s G 绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2. 实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k )从零变到无穷大时,死循环系统特征程的根在s 平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。在MATLAB 中,绘制根轨迹有关的函数有:rlocus ,rlocfind ,pzmap 等。 3. 实验要求 (1)编制MATLAB 程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink 仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab 软件,simulink 仿真环境 四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G = s + 2 ------------------------------- s^4 + 8 s^3 + 22 s^2 + 24 s + 9 Continuous-time transfer function. >> figure >> pzmap(G)

自动控制原理-线性系统的根轨迹实验报告

线性系统的根轨迹 一、 实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、 实验容 1. 请绘制下面系统的根轨迹曲线。 ) 136)(22()(22++++=s s s s s K s G ) 10)(10012)(1()12()(2+++++=s s s s s K s G )11.0012.0)(10714.0()105.0()(2++++= s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的围。 2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并 观察增加极、零点对系统的影响。 三、 实验结果及分析 1.(1) ) 136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: num=[1];

den=[1 8 27 38 26 0]; rlocus(num,den) [r,k]=rlocfind(num,den) grid xlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus') 运行结果: 选定图中根轨迹与虚轴的交点,单击鼠标左键得: selected_point = 0.0021 + 0.9627i k = 28.7425 r = -2.8199 + 2.1667i -2.8199 - 2.1667i -2.3313 -0.0145 + 0.9873i

时域分析法与根轨迹练习题

1. 自动控制系统对输入信号的响应,一般都包含两个分量,即一个是____________,另一个是__________分量。 2. 函数f(t)=t e 63-的拉氏变换式是________________________________。 3. 积分环节的传递函数表达式为G (s )=_________________________。 4. 在斜坡函数的输入作用下,___________型系统的稳态误差为零。 四、控制系统结构图如图2所示。 (1)希望系统所有特征根位于s 平面上s =-2的左侧区域,且ξ不小于0.5。试画出特征根在s 平面上的分布范围(用阴影线表示)。 (2)当特征根处在阴影线范围内时,试求,K T 的取值范围。 (20分) 五、已知系统的结构图如图3所示。若()21()r t t =?时,试求 (1)当0f K =时,求系统的响应()c t ,超调量%σ及调节时间s t 。 (2)当0f K ≠时,若要使超调量%σ=20%,试求f K 应为多大?并求出此时的调节时间s t 的值。 (3)比较上述两种情况,说明内反馈f K s 的作用是什么? (20分) 图3 六、系统结构图如图4所示。当输入信号()1()r t t =,干扰信号()1()n t t =时,求系统总 的稳态误差e ss 。 (15分) 图4 1、 根轨迹是指_____________系统特征方程式的根在s 平面上变化的轨迹。 2、 线性系统稳定的充分必要条件是闭环传递函数的极点均严格位于s______________半平面

3、在二阶系统中引入比例-微分控制会使系统的阻尼系数________________。 9、已知单位反馈系统的开环传递函数 50 ( ) (0.11)(5) G s s s s = ++ ,则在斜坡信号作用下的稳态误差为_________。 3、某控制系统的方框图如图所示,试求(16分) (1)该系统的开环传递函数) (s G k 、闭环传递函数 ) ( ) ( s R s C 和误差传递函数 ) ( ) ( s R s E 。 (2)若保证阻尼比0.7 ξ=和单位斜坡函数的稳态误差为0.25 ss e=,求系统参数K和τ。(3) 计算超调量和调节时间。 1、已知单位反馈系统的开环传递函数为 * ()() (2)(3) K G s H s s s s ,试绘制闭环系统的根轨迹,并判断使系统稳定的* K范围。 R(s)C(s) - 2 K s N(s) 1 K 5.图4 6.在二阶系统中引入测速反馈控制会使系统的开环增益________________。 7.已知单位反馈系统的开环传递函数 100 () (0.11)(5) G s s s = ++ ,则在斜坡信号作用下的稳态误差为________________。 8.闭环系统的稳定性只决定于闭环系统的________________。

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

第四章 根轨迹法 习题

第四章 根轨迹法 4-1试粗略画出对应反馈控制系统具有以下前向和反馈传递函数的根轨迹图: ()()() ()s s H s s s K s G 6.01,01.01.02 +=++= 4-2 试粗略地画出反馈系统函数 ()()()() 2 411+-+= s s s K s G 的根轨迹。 4-3 对应负反馈控制系统,其前向和反馈传递函数为 ()()() ()1,42) 1(2 =+++= s H s s s s K s G 试粗略地画出系统的根轨迹。 4-4 对应正反馈重做习题4-3,试问从你的结果中得出什么结论? 4-5 试画出具有以下前向和反馈传递函数的,正反馈系统根轨迹的粗略图。 ()()()()1,412 2=++= s H s s K s G 4-6 试确定反馈系统开环传递函数为 ()()()()() 5 284) 2(2 +++++= s s s s s s K s H s G 对应-∞

根轨迹分析法 参考答案

习题 已知下列负反馈的开环传递函数,应画零度根轨迹的是:(A) A *(2)(1)K s s s -+ B *(1)(5)K s s s -+ C *2(31)K s s s -+ D *(1)(2) K s s s -- 若两个系统的根轨迹相同,则有相同的:(A) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应 己知单位负反馈控制系统的开环传递函数为 * ()()(6)(3)K G s H s s s s = ++ (1) 绘制系统的根轨迹图(*0K <<∞); (2) 求系统临界稳定时的*K 值与系统的闭环极点。 解:系统有三个开环极点分别为10p =、23p =-、36p =-。 系统有3条根轨迹分支,分别起始于开环极点,并沿渐进线终止于无穷远。 实轴上的根轨迹区段为(],6-∞-、[]3,0-。 根轨迹的渐近线与实轴交点和夹角分别为 ()()36 33a σ-+-==-,() (0) 321 (1)3 (2)3 a k k k k π ?ππ ?=?+?===???-=? 求分离点方程为 111036 d d d ++=++ 经整理得2660d d ++=,解方程得到1 4.732d =-、2 1.268d =-。显然分离点位于实轴上 []3,0-间,故取2 1.268d =-。 求根轨迹与虚轴交点,系统闭环特征方程为 32*()9180D s s s s K =+++= 令j s ω=,然后代入特征方程中,令实部与虚部方程为零,则有 [][]2* 3 Re (j )(j )190 Im (j )(j )1180 G H K G H ωωωωωωω?+=-+=??+=-+=?? 解之得 *00K ω=??=? 、*162 K ω?=±??=?? 显然第一组解是根轨迹的起点,故舍去。根轨迹与虚轴的交点为s =±,对应的根轨迹增益*162K =为临界根轨迹增益。根轨迹与虚轴的交点为临界稳定的2个闭环极点,第 三个闭环极点可由根之和法则求得 1233036λλλλ--=++=+ 解之得39λ=-。即当*162K =时,闭环系统的3 个特征根分别为1λ= 、 2λ=-39λ=-。系统根轨迹如图所示。

利用MATLAB绘制系统根轨迹

利用MATLAB绘制系统根轨迹

————————————————————————————————作者:————————————————————————————————日期:

第4章 利用MATLAB 绘制系统根轨迹 一、 利用MATLAB 绘制系统根轨迹相关知识 假设闭环系统中的开环传递函数可以表示为: ) ()())(()())(()(021********s KG p s p s p s z s z s z s K den num K a s a s a s b b s b s K s G n m n n n n m m m m k =+???+++???++==++???++++???++=---- 则闭环特征方程为: 01=+den num K 特征方程的根随参数K 的变化而变化,即为闭环根轨迹。控制系统工具箱中提供了rlocus()函数,可以用来绘制给定系统的根轨迹,它的调用格式有以下几种: rlocus(num ,den) rlocus(num ,den ,K) 或者 rlocus(G) rlocus(G ,K) 以上给定命令可以在屏幕上画出根轨迹图,其中G 为开环系统G 0(s)的对象模型,K 为用户自己选择的增益向量。如果用户不给出K 向量,则该命令函数会自动选择K 向量。如果在函数调用中需要返回参数,则调用格式将引入左端变量。如 [R ,K]=rlocus(G) 此时屏幕上不显示图形,而生成变量R 和K 。 R 为根轨迹各分支线上的点构成的复数矩阵,K 向量的每一个元素对应于R 矩阵中的一行。若需要画出根轨迹,则需要采用以下命令: plot(R ,11) plot()函数里引号内的部分用于选择所绘制曲线的类型,详细内容见表1。控制系统工具箱中还有一个rlocfind()函数,该函数允许用户求取根轨迹上指定点处的开环增益值,并将该增益下所有的闭环极点显示出来。这个函数的调用格式为: [K ,P]=rlocfind(G) 这个函数运行后,图形窗口中会出现要求用户使用鼠标定位的提示,用户可以用鼠标左键点击所关心的根轨迹上的点。这样将返回一个K 变量,该变量为所选择点对应的开环增益,同时返回的P 变量则为该增益下所有的闭环极点位置。此外,该函数还将自动地将该增益下所有的闭环极点直接在根轨迹曲线上显示出来。 例4.1 已知系统的开环传递函数模型为: )() 2)(1()(0s KG s s s K s G k =++= 利用下面的MATLAB 命令可容易地验证出系统的根轨迹如图4-1所示。 >> G=tf(1,[conv([1,1],[1,2]),0]); rlocus(G); grid title(1Root_Locus Plot of G(s)=K/[s(s+1)(s+2)]1) xlabel(1Real Axis 1) % 给图形中的横坐标命名。

根轨迹分析法

第四章根轨迹分析法 一、主要内容 <1)根轨迹法的基本概念 <2)绘制180o根轨迹的基本法则 <3)绘制0o根轨迹的基本法则 <4)参变量系统的根轨迹 <5)非最小相位系统的根轨迹 <6)控制系统的根轨迹分析 二、基本要求 <1)理解根轨迹法、根轨迹、根轨迹方程、180o根轨迹和0o根轨迹等概念。 <2)掌握180o根轨迹的绘制方法,理解和熟记根轨迹的绘制法则,会用幅值方程求对应的<或)值。 <3)了解闭环零、极点分布和系统阶跃响应的定性关系,掌握系统根轨迹分析的基本思路。 <4)掌握0o根轨迹、参变量系统根轨迹和非最小相位系统根轨迹绘制的方法。 三、内容提要 1、根轨迹法的基本概念

<1)根轨迹:当系统开环传递函数中某参数<如根轨迹增益)在某一范 围内<如)连续变化时,闭环特征根在S平面上移动的轨迹,称为根轨迹。b5E2RGbCAP <2)根轨迹方程 幅值方程: 相角方程:。 相角方程是根轨迹的充分必要条件,而幅值方程的作用主要用来确定对应点的增益。 2、绘制180o根轨迹的基本法则 法则1:根轨迹的起点和终点 根轨迹起始于系统的开环极点<包括重极点),m条根轨迹终止于开环零点,条根轨迹分支终止于无穷远处。 法则2:根轨迹的连续性和分支数 根轨迹具有连续性,且对称于实轴。 法则3:根轨迹的分支数 根轨迹的分支数等于,即系统的阶数。 法则4:根轨迹的渐近线 有条渐近线,渐近线与实轴正方向的夹角为:

, 渐近线与实轴的交点为: 法则5:实轴上根轨迹的分布 实轴上某区域,若其右边的开环零点和开环极点个数之和为奇数,则该区域必是根轨迹。 法则6:根轨迹的分离<会合)点 根轨迹的分离<会合)点实质上闭环特征方程的重根,因而可以用求解方程式重根的方法来确定其在复平面上的位置。p1EanqFDPw 设系统闭环特征方程为: 满足以下任何一个方程,且保证为正实数的解,即是根轨迹的分离<会 合)点。 法则7:根轨迹与虚轴的交点 根轨迹与虚轴的交点,实质上就是闭环系统的临界稳定工作点。 方法1:在闭环特征方程中,令,得到,将 分为实部和虚部,即

控制系统的根轨迹分析

实验报告 课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________ 实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验十一 控制系统的根轨迹分析 一、实验目的 1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。 2、熟练掌握 Simulink 仿真环境。 二、实验原理 1、根轨迹分析方法 所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特 征方程的根就是闭环传递函数的极点。 根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性 当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K 值就是临界稳定开环增益。 (2) 稳态性能 开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能 当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。 同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。 专业:_____________________ 姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

【免费下载】实验 五 用MATLAB绘制系统根轨迹(1)

自动控制原理 课程验证性实验报告实验名称用MATLAB 绘制系统根轨迹 实验时间2013年 05月04日学生姓名实验地点070312同组人员无专业班级电技1101B 1、实验目的1)熟练掌握使用MATLAB 绘制控制系统零极点图和根轨迹图的方法; 2)学会分析控制系统根轨迹的一般规律; 2、实验主要仪器设备和材料:计算机一台 matlab 软件2010a 版本 3、实验内容和原理:原理:1)根轨迹与稳定性;2)二阶系统根轨迹的一般规律:若闭环极点为复数极点,系统为欠阻尼系统,单位阶跃响应为阻尼振荡过程,且超调量将随K 值的增大而加大,但调节时间的变化不显著;若闭环两个实数极点重合,系统为临界阻尼系统,单位阶跃响应为非周期过程,但是响应速度较过阻尼快;若所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周期过程。内容:1)绘制系统的零极点图,MATLAB 提供pzmap()函数来绘制系统的零极点图,其调用格式为pzmap(num,den)或[p,z]= pzmap(num,den)。 已知系统的开环传递函数,绘制系统的零极点图。()()()()2255122s s G s H s s s s s ++=+++2)绘制控制系统的根轨迹图并分析根轨迹的一般规律MATLAB 提供rlocus()函数来绘制系统的根轨迹图,其调用格式为rlocus(num,den) %直接在s 平面上绘制系统的根轨迹图,[k,r]=rlocfind(num,den) %在作好的 根轨迹图上,确定被选的闭环极点位置的增益值k 和此时的闭环极点r(向量)的值。在作出根轨迹图后,再执行该命令,命令窗口会出现提示语,“Select a point in the graphics windows”,此时将鼠标移至根轨迹图并选定位置,单击左键确定,出现“+”标记,在MATLAB 窗口上即得到该点的根轨迹开环增益K 值和对应的所有闭环根r(列向量)。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

实验二根轨迹的绘制及系统分析

《自动控制原理》 实验报告 题目:根轨迹的绘制及系统分析 专业:电子信息工程 班级: : 学号:

实验二 根轨迹的绘制及系统分析 一、实验目的 1.熟练掌握使用MATLAB 软件绘制根轨迹图形的方法; 2.进一步加深对根轨迹图的了解; 3.利用所绘制根轨迹图形分析系统性能。 二、实验容 本实验中各系统均为负反馈控制系统,系统的开环传递函数形式为: 1 1 () ()()() m i i n j j K s z G s H s s p ==-= -∏∏ (一)已知系统开环传递函数分别为如下形式: (1)()()(1)(2)K G s H s s s = ++ (2)(3) ()()(1)(2)K s G s H s s s += ++ (3)(3) ()()(1)(2)K s G s H s s s -= ++ (4)()()(1)(2)(3)K G s H s s s s = +++ (5)()()(1)(2)(3) K G s H s s s s = ++- 1、绘制各系统的根轨迹; 2、根据根轨迹判断系统稳定性;如果系统是条件稳定的(有根轨迹分支穿越虚轴),试确定稳定条件(K 值取值围);

(1)代码及截图 num=[1]; den=conv([1 1],[1 2]); rlocus(num,den) -2.5 -2-1.5-1-0.500.5 -0.8-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 Root Locus Real Axis I m a g i n a r y A x i s 根轨迹全部落在左半S 平面上,该系统稳定。 (2)代码及截图 num=[1 3]; den=conv([1 1],[1 2]); rlocus(num,den)

第4章-根轨迹分析法-参考答案

习题 4.1 已知下列负反馈的开环传递函数,应画零度根轨迹的是:(A) A *(2)(1)K s s s -+ B *(1)(5)K s s s -+ C *2(31)K s s s -+ D *(1)(2) K s s s -- 4.2 若两个系统的根轨迹相同,则有相同的:(A) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应 4.3 己知单位负反馈控制系统的开环传递函数为 * ()()(6)(3)K G s H s s s s = ++ (1) 绘制系统的根轨迹图(*0K <<∞); (2) 求系统临界稳定时的*K 值与系统的闭环极点。 解:系统有三个开环极点分别为10p =、23p =-、36p =-。 系统有3条根轨迹分支,分别起始于开环极点,并沿渐进线终止于无穷远。 实轴上的根轨迹区段为(],6-∞-、[]3,0-。 根轨迹的渐近线与实轴交点和夹角分别为 ()()36 33a σ-+-==-,() (0) 321 (1)3 (2)3 a k k k k π ?ππ ?=?+?===???-=? 求分离点方程为 111036 d d d ++=++ 经整理得2660d d ++=,解方程得到1 4.732d =-、2 1.268d =-。显然分离点位于实轴上 []3,0-间,故取2 1.268d =-。 求根轨迹与虚轴交点,系统闭环特征方程为 32*()9180D s s s s K =+++= 令j s ω=,然后代入特征方程中,令实部与虚部方程为零,则有 [][]2* 3 Re (j )(j )190 Im (j )(j )1180 G H K G H ωωωωωωω?+=-+=??+=-+=?? 解之得 *00K ω=??=? 、*162 K ω?=±??=?? 显然第一组解是根轨迹的起点,故舍去。根轨迹与虚轴的交点为s =±,对应的根轨迹增益*162K =为临界根轨迹增益。根轨迹与虚轴的交点为临界稳定的2个闭环极点,第 三个闭环极点可由根之和法则求得 1233036λλλλ--=++=+ 解之得39λ=-。即当*162K =时,闭环系统的3 个特征根分别为1λ= 、 2λ=-39λ=-。系统根轨迹如图4.1所示。

相关文档
最新文档