天线设计

天线设计
天线设计

第五章 常用单极子天线的设计与实例

§5.1常用的单极子天线...........................................................................................................- 2 - §5.1.1单极子天线..........................................................................................................- 2 - §5.1.2单极子天线的辐射场和电特性...........................................................................- 4 - §5.1.3单极子天线的馈电方法.....................................................................................- 11 - §5.2宽频带平面单极子天线的设计......................................................................................- 13 - §5.2.1 具有切角的平面单极子天线................................................................................- 14 - §5.2.2 具有短路节加载的平面单极子天线....................................................................- 17 - 5.3 总结....................................................................................................................................- 22 -

§5.1常用的单极子天线

§5.1.1单极子天线

单极子(Monopole )天线或称为直立天线是垂直于地面或导电平面架设的天线,已广泛应用于长、中、短波及超短波波段。其基本原理结构如图5-1所示,其由长为h 的直立振子和无限大地板组成。如前所述,地面的影响可用天线的镜像来代替,这样单极子天线就可等效为自由空间内臂长为2h 的对称振子。当然,这样的等效仅对地面上的半空间等效,原因是地板以下没有辐射场。

在长波波段,大地接近理想导电体,电磁能量主要以地波形式在地面和电离层低层所限制的空间内传播;在中波波段,距离较近时也是以地波形式传播。夜间,在距天线一定距离的环形区域中,同时存在强度大体上相近的天波和地波,两者互相干扰从而产生严重的衰落现象。为了防止衰落,应设法降低高仰角(超过55度)的辐射。虽然短波以天波传播为主,但对于几十公里的近距离通信,仍主要采用地波传播的方式。

在地波传播中,水平极化波的衰减远大于垂直极化波。因此,使用垂直天线是有利的。对于接近地面的超短波移动通信,要求沿地面方向产生最大辐射。一般情况下,也要采用产生垂直极化场的单极子天线。各波段使用的典型单极子天线示于图5-2中。

(a) 单极子天线 (b) 上半空间等效天线

图5.1 单极子天线及其等效

在长、中波波段,单极子天线的主要问题是天线的高度往往受到限制。例如工作于波长为1000米的电台,天线架设高度100米,以波长衡量也仅为0.1λ,电尺寸是很小的。即使在短波波段,在移动通信中由于天线高度受到涵洞、桥梁等环境等本身结构的限制,也不能架设的太高。因为电长度小将引起下述问题: (1)辐射电阻小。

与辐射电阻相比,损耗电阻较大。这样,天线的辐射效率就较低。

(2) Q 值高。

天线的输入电阻小,但输入电抗很大,因此Q 值高。也就是说,天线的

谐振曲线很尖锐,工作频带很窄。 (3)易产生过压或烧毁现象。

当输入功率一定时,由于输入电阻小而输入电抗高,使得天线的匹配电路

图5-2 各波段典型的单极子天线

(a) T 形,(b)伞形,(c)铁塔;(d)鞭状形;(e)带辐射状金属地线的单极子天线

的电流很大。这样,输入端电压in X I U ?=就很高,天线顶端的电压更高,这是大功率电台必须注意的问题,使天线匹配电路易于产生过压现象。

上述问题在长、中波波段都需要考虑。在短波波段,由于工作频率较高,虽然相对带宽(0/2f f ?)不大,但仍可得到较宽的绝对通频带(f ?)。加之距离近、所用电台功率均较小,故主要考虑的是效率问题。若天线电尺寸很小,例如小于

λ1.0,将属于“电小天线”的范畴。

§5.1.2单极子天线的辐射场和电特性

图5-2所示是单极子接地天线,天线的另一臂可以用大地的镜像来代替。在长、中波波段,由于天线很高,除用高塔(木杆或金属)作支撑联接导线吊起以外,还倾向于直接用铁塔作辐射体;成为铁塔天线或桅杆天线。在短波及超短波波段,一般用金属棒或全属管构成天线,为携带方便,可将棒或管分为几节,节间用螺接、卡接或拉伸等方法联接。

通常情况下,单极子天线的金属接地板或网应该至少大于0.5λ。

§5.1.2.1辐射场与方向图

架设在无限大理想导电平面上的单极接地天线产生的辐射场,可直接应用自由空间对称振子的计算公式进行计算,即:

(5-1)

式中I m 为波腹电流。

将l I I m βsin /0=,h l =,(I 0为输入电流,?为

仰角,h 为单极子天线的高度)。代入上式,得:

(5-2)

亦即

(5-3)

由)(?F 可知,水平面的方向图是一个圆,即在方位面内是全向性的。垂直

平面的方向图如图5-3所示。当h 逐渐增大时,波形变尖;当h >0.5λ时,出现副辨;在h =0.625λ时,副瓣最大值发生在?=600方向上;继续加大h ,由于天线上反相电流的作用,沿?=00方向上的辐射减弱。为此,h 应限制在0.625λ之内。在中波波段,为了抗衰落,要求尽可能降低超过550的高仰角方向上的辐射,为此,h 应尽可能大一些。一般情况下,h=0.53λ左右较为适宜。

对于有限电导率的地面,在馈电点的镜像电流应为v Γ0I ,可以仿照由基本振子辐射场积分求和导出自由空间对称振子的辐射场的方法得出场的表示式为:

(5-4)

式中v Γ和v ?分别是垂直极化波反射系数的模和相角,v Γ<l 表示部分功率损耗在土壤中。应再次强调的是,在?=00方向上,v Γ=-l ,由式(5-4)可得辐射场为零。实际上,党工作频率较低时,仍有沿着地表面向外传播的电磁能量。故应按“地波传播”的方法计算辐射场,且只有在地波影响可以忽略不计的条件下才能应用式(5 - 4)。

图5-3 单极接地天线垂直平面的方向图

对于有限大接地板尺寸,其方向图最大值方向会有所上翘。

从图5-3还可以看出:

1) 通常情况下,选用4/λ的单极子天线作为标准天线。其方向图在水平面是一个圆,在俯仰面呈哑铃型分布。而且,其输入阻抗接近于50欧姆,易于和常用的特性阻抗为50欧姆的同轴线相匹配;其天线的增益为5.15dB 。

2) 实际工程中,全向天线还采用一种称作为85 λ的单极子天线,其增益

约为8.15dB ,如图5-4所示。当然,其接地板一般用几个金属杆来等效。同时,为了和50欧姆的同轴线相匹配,在天线的底部采用加载线圈来抵消输入阻抗中的容性部分。对于150MHz 的工作频段,选用2mm 直径的漆包线绕在18mm 直径的绝缘管上大约4圈左右即可。理论上,可以选用6根4/λ长的金属杆来等效代替金属接地板。

3) 如果单极天线的高度取λ/2,它就相当于自由空间的全波振子,理论上说较之h =λ/4时增益要提高1.67dB 。但是,这种天线的输入阻抗高,不便于和常用的同轴线联接,为此必须加一阻抗交换器。若采用λ/4阻抗变换器,如图5-4所示,则称为J 形天线。由于单极子和它的镜像之间的距离增大,这种天线较之h =λ/4单极子天线,理论上可将增益提高3.26dB 。匹配段两线间的距离约为5cm 或更小,馈线接在匹配段中的合适位置上,段路连接点最好能做成上下滑动以找出最佳接入位置,匹配段的底部接地以达到防雷的目的。

汽车或火车的顶蓬以及舰船的甲板均可构成良好地面。

由于它们的形状不是

图5-4 8/5λ直立单极子天线 图5-5 J 型天线及其馈电

圆对称的,单极子天线水平平面的方向图将受到顶蓬等的具体形状和安装位置的影响,造成水平平面各方位方向上辐射不相等。一般说,在偏离中心位置的相反方向上辐射最强,例如天线安装在车顶蓬的前侧,则车后方向辐射较强。

金属接地板或地平面尺寸对方向图的影响要比对阻抗的影响大得多,这是不难理解的。由于圆盘尺寸有限,因此不能形成—个完整的镜像。图5- 6示出了天线高度h =λ/4和λ/2时各种圆盘半径a 情况下的方向图,其中k 为传播常数。

从图5-6可以看到,有限地面尺寸对方向图的影响是:

(1)在仰角?=00方向上,

由于这已经处于反射线不能到达的区域,此区域内仅存在直射线和由圆盘边缘所产生的绕射线的场,这和无限大地面是不相同的。 此方向并非最大辐射方向。

(2)在一定仰角的方向上存在直射场、反射场和绕射场。一般说绕射场是较小的,如果满足直射场和反射场相位相差不大的条件,则形成波瓣的最大值。因圆盘半径愈小,最大方向的仰角愈大;

(3)由于边缘绕射线的作用,在下半空间存在—定的辐射。

§5.1.2.2 电特性

有效高度: 有效长度对于单极子天线而言即为有效高度,它可以表示天线的辐射强弱,是直立天线的重要指标。假设天线上的电流为正弦分布,β为传播常数。则依据有效高度的定义:

(5-5)

图5- 6 地板尺寸对方向图的影响

当h<<λ时,亦即0→h β,则式(5-5)可以简化为:

(5- 6)

这是必然的,当振子很短时,电流近似呈三角形分布,故有效高度为实际高度之半。当h=4/λ,πλ/5.0=e h 。

方向系数:首先讨论辐射电阻,然后可由辐射电阻计算方向系数。在无限大理想导电地上单极子天线的辐射电阻与自由空间对称振子的辐射电阻的计算方法完全相同,仅因单极天线的镜像部分并不辐射功率,故其辐射电阻为同样臂长的自由空间对称振子(l =h)辐射电阻的一半。当h=4/λ时,对于细线天线其辐射电阻是36.50欧姆。当h=8/λ时,

(5-7a)

(5-7b)

式中,R rm 和R r0分别是归于波腹电流和输入电流的辐射电阻,至于高度大于8/λ的单极子天线,辐射电阻应按式(3-1)给出电阻值的一半计算。亦即辐射电阻按下式的一半计算:

(5-8)

图5-7表示辐射电阻随天线高度的变化曲线,其横坐标以电角度表示,即

(h/λ)×3600。由图可知,当天线高度h 减小时,辐射电阻下降很快。

当?= 0时,由式(5-1)可以得到,

(5-9)

当h <<λ时,将式(5-7)及(5-9)代入方向系数计算公式:

因为

,则单极子天线的方向性系数为:

可见,电高度较低的单极天线的方向系数近似等于3。当然,电高度较高时,这一结论并不成立。

输入阻抗与阻抗带宽:单极天线的输入阻抗一般是通过测量取得的。由于它的特性阻抗较自由空间对称振子输入阻抗也小一半,因此在无限大理想地面上,单极天线的输入阻抗可用对称振子的输入阻抗公式来计算。当对称振子的臂长在

0<λ/h <0.35和0.65<λ/h <0.85范围时,可以用下式来计算,亦即:

其中,Z cA 通常表示振子的平均特性阻抗,有:

,a 为振子的半径。

由上式可知,a 越大(即振子越粗),则振子的特性阻抗Z cA 就越小。

如果当λ/h <<1,上式可进一步简化为:

应指出的是:按上式计算阻抗时,电抗部分是近似正确的,但电阻部分的误差却很大,这是由于损耗电阻在实际中往往是不能忽略的。输入到天线的功率除部分辐射外,另一部分损耗在天线导体、介质和流经大地的回路中。表5-1

中给

图5- 7 无限大地面上,单极天线辐射电阻随天线高度(以电角度表示)的变化曲线

出了不同长度时,单极子天线输入电阻的近似计算公式。

图5-8示出了输入电抗随高度的变化曲线,这是在a h /=500的条件下得出的,a 是天线导体的半径。a 愈大,特性阻抗愈低,电抗的变化也愈平缓。这就是采用较粗的振子可以获得较宽的阻抗带宽的依据,所以在实际工程中尽量采用较粗的振子!

长度为10m 的鞭形天线的输入阻抗随频率的变化曲线绘于图5-8中。当λ/h 较小时为阻容性,即具有高容抗及低电阻。而且,电阻中的主要成分是由损耗引起的。若提高天线的电高度,则辐射电阻增大,损耗电阻下降,输入容抗也变低。

效率及增益:当天线高度低于λ/4时,单极子天线的辐射电阻较低,这时,地及加载线圈的损耗就变得不可忽略了。如果没有一个良好的接地系统,其效率不超过50%,而且可能还要小得多。在长波波段,天线的电高度很低,辐射电

表5-1 输入阻抗的近似计算公式

图5-7 在理想地平面上, 单极接地天线的输入电抗

图5-8 h =10米鞭形天线的输入阻抗

阻只有零点几到几个欧姆,因此效率很低,约为10 ~ 30%;在中波波段允许天线的高度达λ/4或更高一些,效率可以高一些;在短波波段,若单极天线的高度不受限制,效率可以达到很高。但在某些对天线高度有限制的场合,例如仅允许鞭形天线高0.1λ,这时其辐射电阻约为几欧姆。如果在接地方面没有采取什么措施。则全部损耗电阻可达8 ~ 10欧姆。这样,天线的效率也不高。由于效率不高,单极天线的方向系数也不高(短天线D=3),因此增益也较低。

通常,对于电长度比较小的天线,又被称其为电小天线。特别是,在短波以下的波段中,天线的电高度低,则引起的问题是效率低、工作频带窄和容许功率低。解决这些问题的关键在于提高辐射电阻和添加阻抗匹配网络。当然,为保证天线要达到一定的效率,在提高辐射电阻的同时还,应设法降低损耗电阻。在实际使用中,可采用对天线加载的办法来提高辐射电阻,通过外加阻抗匹配网络的方法来实现天线和馈电传输线的匹配,利用人工地面(如地网)来降低损耗电阻等等。有关具体的内容,这里将不再进行深入讨论。

§5.1.3单极子天线的馈电方法

中、长波单极子天线由于其电尺寸较小,一般采用外加阻抗匹配网络来进行阻抗匹配和馈电的。匹配网络可以采用有电阻、电感和电容组成的串馈、并馈或其混合匹配网络的方式。当机房设置在天线底部,可用底部直接耦合的串联馈电。如果机房和天线相距较远,则要求天线的输入阻抗和馈线的待性阻抗相匹配以保证馈线上载行波,这样便要求在天线底部接入阻抗变换器。在既要求一定的阻抗变换比、又要求给出指定的相位关系的场合,例如广播天线阵可采用T形或π形网络;在对相位关系没有要求的场合可采用L型网络。L、T或π形网络在阻抗变换匹配网络的设计中被广泛采用。

对于电尺寸接近于四分之一波长时,常被称为四分之一波长单极子天线。此时,单极子天线的输入阻抗接近于50欧姆,可以直接和特性阻抗为50欧姆的同轴线相匹配。亦即,可以直接和同轴线相联接,用同轴线馈电。图5-9中给出了常用的λ/4单极子天线结构,天线辐射体的形状可以是线状的、面状的、体状的等等。天线的金属接地板也可以从金属平面变化到线扇状的、立体状的以及其他异型结构。天线辐射体的结构可以有千变万化,天线的接地板形状也可以有千变万化。在这些变化之中,才显示出天线这门科学的艺术魅力!

(a) 圆盘上的单极子天线 (b) 等效地面的单极子天线

(e) 片状单极子和线扇状单极子

(f) 盘锥状单极子天线 图5-9常用的单极子天线结构

(c) 印刷单极子(printed circuit board ) (d) 体状单极子

然而,不管天线的结构如何变化,其基本的电性能总是保持不变。亦即方向图的形状在H面是全向的或近似全向;E面方向图的最大辐射方向与地板的尺寸有关;无限大金属接地板时,其E面方向图最大辐射方向垂直于振子轴;有限大金属接地板时,其方向图有所上翘。

§5.2宽频带平面单极子天线的设计 平面单极天线具有频带宽、体积小、制作简单和成本低等诸多优点,在超宽带(Ultra Wide Band,缩写为UWB)通信中已得到广泛的应用。其可以满足UWB 无线系统对天线的要求,已经成为UWB天线的研究方向之一。通过对平面单极天线变型(如:修剪切角和增加短路支节),来改善和提高天线的性能。

超宽带(Ultra Wide Band,缩写为UWB)是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据,被称为无线电领域的一次革命性进展,它将成为未来短距离无线通信的主流技术。

UWB技术最初是在1960年作为军用雷达技术开发的,早期主要用于雷达技术领域;1972年UWB脉冲检测器被申请成为美国专利;1978年出现了最初的UWB通信系统;1984年UWB系统成功地进行了10公里的试验;1990年美国国防部高级计划局开始对UWB技术进行验证。

2002年2月14日,美国联邦通信委员会(FCC)正式通过了将UWB技术应用于民用的议案,定义了三种UWB系统:成像系统(Imaging system)、通信与测量系统(Communication and measurement system)、车载雷达系统(Vehicle radar system),并对三种系统的EIRP(全向有效辐射功率)分别做了规定。

FCC指定的3.1—10.6GHz频段为民用领域频段,所以UWB天线的工作频带就要满足3.1—10.6GHz。

UWB技术的一个难点是天线的设计!与其它的通信技术相比,它对天线各个参数的要求更加苛刻。同时,还要求具有宽带、全向、体积小和平坦群时延等特性。

平面单极天线具有频带宽、体积小、制作简单和成本低等诸多优点,可以满足UWB无线系统对天线的要求,已经成为UWB天线的研究方向之一。通过对平面单极天线变型(如:修剪切角和增加短路支节),来改善和提高天线的性能。

平面单极子天线是地面上的理想导体平面结构,它是细线直立单极子天线的推广,目的是展宽频带。这种平面结构可以是正方形、圆形、椭圆形或者三角形等及其变形。一般而言,矩形等平面结构的单极子天线的阻抗带宽达不到UWB 天线的要求,因此需要对此进行变形。变形措施包括切角(beveling)和加短路枝节(shorting post)。下面给出几种典型的天线结构尺寸以及性能参数。

§5.2.1 具有切角的平面单极子天线

(Saou-Wen Su,Kin-Lu Wong,and Chia-Lun Tang,ULTRA-WIDEBAND SQUARE PLANAR MONOPOLE ANTENNA FOR IEEE 802.16a OPERATION IN THE 2–11-GHz BAND,MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,Vol. 42, No. 6, September 20 2004 463~466。)

§5.2.1.1几何结构(Geometry)

图5-10给出的是正方形平面单极子天线的一种变形,亦即在正方形辐射片的下端顶点处截去尺寸为W×h的矩形片。正方形辐射片的边长为L,厚度为0.2mm。金属接地板的尺寸为100×100mm2,辐射片与金属接地板垂直,其间的距离为d。为了易于和50欧姆同轴电缆接头相连接,在贴片的馈电点处,预留

一个2mm宽的馈电

片。

对于常规的正方

形辐射片(W=h=0),

当正方形的边长在25

~ 55mm变化时,其驻

波比小于2的带宽可

以达到1 ~ 3GHz。当

然,馈电间隔d的最优

值约在2.5mm ~ 3mm。

为了进一步展宽正方形辐射片的单极子天线的阻抗带宽,可以通过适当的选取矩形片W×h的尺寸以及馈电间隙d来实现。通过Anfoft HFSS计算机仿真和优化,可以得到:当L=30 mm, w=7 mm,h=3mm,d=1.5 mm时,可以得到最大的阻抗带宽,其驻波比小于2的阻抗带宽可以达到2 ~ 12.7GHz。实验测试和计算机仿真结果示于图5-11所示,可见试验曲线和计算机仿真结果近似重合。

同时也说明,Anfoft HFSS软件的计算机仿真结果和试验结果吻合良好。从侧面也反映出,计算机仿真软件的可靠性。

图5-12 ~ 图5-15给出了相关工作频率点的方向图曲线。

Figure 5-12 (a) Measured and simulated 2D radiation patterns and (b)simulated 3D radiation patterns at 2500 MHz for the proposed antenna studied in Fig.5-10。

Figure 5-13 (a) Measured and simulated 2D radiation patterns and (b) simulated 3D radiation patterns at 5000 MHz for the proposed antenna studied in Fig. 2.

上述方向图表明,该类天线属于典型的单极子天线,具有典型的单极子天线 特性。亦即方向图的形状在H 面是全向的或近似全向;E 面方向图的最大辐射方向与地板的尺寸有关;无限大金属接地板时,其E 面方向图最大辐射方向垂直于振子轴;有限大金属接地板时,其方向图有所上翘。

图5-16中给出了测量的天线增益随工作频率的变化曲线。在低频段天线的增益接近于3dB ,在频率的高端,其增益接近于8dB 。

Figure 5-14 (a) Measured and simulated 2D radiation patterns and (b)simulated 3D radiation patterns at 7500 MHz for the

Figure 5-15 (a) Measured and simulated 2D radiation patterns and (b)simulated 3D radiation patterns at 10000 MHz for the

§5.2.2 具有短路节加载的平面单极子天线

§5.2.2.1几何结构(Geometry)

平面单极子天线是地面上的理想导体平面结构,它是细线直立单极子天线的推广,目的是展宽频带。这种平面结构可以是正方形、圆形、椭圆形或者三角形等及其变形。一般而言,矩形等平面结构的单极子天线的阻抗带宽达不到UWB 天线的要求,因此需要对此进行变形。变形措施包括切角(beveling)和加短路枝节(shorting post)。

图5-17给出的是矩形平面单极子天线的一种变形,图中是所谓切角角度,是短路枝节的宽度。

平面单极子天线一般采用同

轴线馈电,在馈电处钻一小

圆孔,安装SMA插座,芯线

穿出接地板和平面天线垂直

地焊接在一起,而SMA插座

底座和接地板焊接在一起,

馈电点一般位于平面天线底

边缘,它和接地板之间的间

隙称为馈电间隙(Feed

Gap)。图中和分别是矩形

平面单极子天线的原始尺

寸,即矩形平板的宽和高,

和分别是馈电

间隙的宽和高。加切角和

短路支节的平面单极子

天线由6个几何节点组成,节点坐标分别是:

#1——(0

#2——(0

#3——(0

#5——(0

#6——

表5.2列出了不同切角时有无短路枝节平面单极子天线2:1 VSWR带宽。

表5.2 平面单极子天线的切角度数和对应的阻抗带宽之间关系

(正方形平板的原始尺寸为25mm×25mm。)

切角度数

平面单极子天线2:1 VSWR带宽(GHz)

有切角(无短路支节)有切角和短路支

0 2.35-4.83 2.35-4.83

10 2.25-4.91 2.16-5.38

20 2.34-4.96 2.22-6.35

30 2.34-5.05 2.10-7.25

40 2.34-5.23 2.12-11.5

50 2.23-5.60 2.13-12.34

60 2.01-6.82 2.11-12.60

§5.2.2.2 Ansoft HFSS仿真

用计算机仿真软件Ansoft HFSS进行天线方针遵从以下步骤:

步骤1. 创建模型

选择平面单极子所在平面为YZ平面,根据前面给出的几何节点坐标,应用根据栏中的Draw line画出首尾相连的线段,构成平面多边形。

在YZ平面画短路支节。

在YZ平面画馈电面。

在XY平面画接地平面。

画计算区域3D空气盒子。

步骤2:设置边界和激励

给计算区域3D空气盒子设置辐射边界,设置平面单极子为PEC,设置激励

为lumped port。

步骤3. 仿真结果一——矩形平面单极子:设矩形单极子的长和宽均分别为

54mm和38mm,馈电间隙为1mm。选择馈电平面宽度为3mm。在以上模型中令切角角度。扫频范围为1-12GHz,计算所得S11随频率变化曲线如图5-18所示。

图5-18无切角时天线的反射系数( )

仿真结果二——带切角的平面单极子天线:图5-19给出不同切角时天线的S11随频率变化的曲线。

图5-19天线的反射系数随切角的变化

仿真结果三——带切角和短路支节的平面单极子:图5-20给出带短路支节,不同切角时天线的S11参数随频率变化的曲线。

图5-20天线的反射系数随切角的变化

仿真结果四——UWB平面单极子:根据以上分析思路和仿真结果,改变阵子的长和宽以及切角角度。最后,设计的UWB平面单极子天线尺寸是

, , , , , 。

图5-21给出该天线的驻波比(SVWR)随频率变化的曲线,图中也画出了测量结果。图5-22是该UWB天线辐射方向图的仿真和测量结果,图4.11是模型天线的照片。

图5-21天线驻波比的测量与仿真结果

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

9米卫星天线技术资料汇总

9.0米电动卫星通信天线 WTX9.0-6/4(14/12)型 技术说明书贵州振华天通设备有限公司(4191厂)

1、概述 WTX9-6/4和WTX9-14/12型卫星通信天线是一种具有四口线极化频谱复用馈源系统的9米改进型卡赛格伦天线系统。当天线朝天时,天线的轮廓尺寸为φ9m×10.3m。整个天线具有效率高、旁瓣低、使用维护方便、抗风能力强、造形美观,刚性好,精度高的特点。广泛用于C频段和Ku频段卫星通信地球站。 天线的主反射面均为实体铝板结构,主面直径为9m,副面直径为1.08m。 立柱式座架的设计允许方位连续转动140o,俯仰从5o~90o连续转动。方位轴和俯仰轴由马达驱动,驱动速度为0.03o/秒和0.1o/秒两种。 馈源系统的极化轴也由马达驱动,驱动速度为1.5o/秒,转动范围为180o。 步进跟踪系统由室内天线控制单元、室外马达控制器、变频器和信标接收机组成。轴角显示分辨率为0.01o,跟踪精度为0.06o,步进跟踪系统能使天线随时准确地对准卫星。 本天线的外型图见图1.1。

图1.1 2、天线的主要技术参数 天线主要技术参数与性能指标

三、天线的机械说明 WTX9-6/4和WTX9-14/12型卫星通信天线是一种改进型卡塞格伦天线系统采用高精度实体反射面及立柱式座架。方位可连续转动140°,俯仰从5°到90°连续转动。方位轴和俯仰轴均可由马达驱动,驱动速度均为0.03°/秒和0.1°/秒两种,馈源套筒上装有调整机构,能使极化轴转动±90°极化轴也由马达驱动,驱动速度为1.5°/秒。 天线上装有避雷装置,限位保护装置以及扶梯,工作平台等机构,以便于天线的安全使用。 图1.2

天线设计指南

天线设计指南?........................................................................................................................... 2 简介?...........................................................................................................................................?2 天线原理?...................................................................................................................................?3 天线类型?...................................................................................................................................?5 天线的选择?............................................................................................................................... 7 天线馈电的考量?..................................................................................................................... 13 芯片天线?.................................................................................................................................?21 各种天线的比较?..................................................................................................................... 25 环境对天线性能的影响?......................................................................................................... 25 塑料外壳的影响?..................................................................................................................... 27 调试 PCB 空板?......................................................................................................................... 32 使用塑料和人体接触来调整调试?......................................................................................... 38?

基于HFSS的天线设计

一、实验目的 ?利用电磁软件An soft HFSS设计一款微带天线。 ?微带天线要求:工作频率为2.5GHz带宽(回波损耗S11<-10dB)大于5% ?在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps于1953年提出来的,经过20年左右的 发展,Munson和Howell于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分 组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的宽度W介 质层的厚度h、介质的相对介电常数r和 损耗正切tan、介质层的长度LG和宽度WG 图1所示的微带贴片天线是 图1:微带天线的结构 采用微带天线来馈电的,本次将要设计的 矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有g/2的 改变,而在宽度W方向上保持不变,如图2 (a)所示,在长度L方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2 (b)可以看出,微带线边缘的电场可 以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

卫星通信基础知识(六)卫星天线的方位 仰角 极化角

卫星通信基础知识(六)卫星天线的方位仰角极化角 要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。 1、方位角 从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。我国处于北半球的东方,约在东经75-135度,北纬18-55度之间。所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线。卫星在地球上的投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。如亚太6号卫星的星下点是位于赤道上的东经134度的位置。我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。卫星天线的方位角计算公式是: A=arctg{tg(ψs-ψg)/sinθ}----------(1) 公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。图1是卫星的方位角示意图。方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。即可完成方位角的调整。2、仰角仰角是接收站所在地的地平面水平线于天线中心线所形成的角度, 如图2所示。仰角的计算公式是: .-----------------⑵仰角的调整最好是用量角器加上一个垂针作成的仰角调整专用工具进行调整。方位角和仰角的调整顺序是,先调整好仰角,在调整方位角。3、极化角国内或区域卫星一般都是线极化,线极化分为水平极化(以E‖表示)和垂直极化(以E⊥表示)。地面接收天线极化的定义是以卫星接收点的地平面为基准,天线馈源(或极化器)矩形波导口窄边平行于地平面,则电场矢量平行于地平面,定义为水平极化;反之馈源矩形波导口窄边垂直于地平面定义为垂直极化如图3所示。

用Sonnet Agilent HFSS设计微带天线概要

用Sonnet & Agilent HFSS设计微带天线 摘要:以一同轴线底馈微带贴片为题材,分别用Sonnet 软件及Agilent Hfss 软件进行Simulate,分析其特性。并根据结果对这两个软件作一比较。 天线模型: 天线为微带贴片天线,馈电方式为50Ω同轴线底馈,中心频率3GHz ξ=,尺寸56mm*52mm*3.175mm 基片采用Duroid材料 2.33 r Patch :30mm*30mm 馈电点距Patch中心7mm处。 参见下图。 一.Sonnet 参数设置如下图:

介质层按照天线指标予以设置: 画出Antenna Layout.

Top view Bottom view 其中箭头所指处为via,并在GND层加上via port. 即实现了对Patch的底馈。 至此,Circuit Edit完成。下一步对其进行模拟。Array模拟结果: S11,即反射系数图:

可见中心频率在3G附近,。 进一步分析电流分布: 在中心频率的附近,取3G,3.1G作表面电流分布图:

可见,在中心频率的电流分布较为对称。符合设计的要求。 远区场方向图: 选取了若干个频率点绘制远区场增益图。从中可以看到,中心频率的增益较边缘为大。 符合设计的要求。

二.Agilent Hfss Agilent Hfss (high frequency structure simulator)是AGILENT公司的一个专门模拟高频无源器件的软件。较现在广泛应用的ANSOFT HFSS功能类似,但操作简单明了。能在平面结构上建模天线不同,Agilent Hfss可以精确地定义天线的立体结构。并可将馈电部分考虑在模拟因素内,按要求设定辐射界面,等等。可能在本文的例子中,由于结构比较简单,并不能充分体现这一点,但也应可见一斑。 本例与HFSS HELP中所附带的例子较为类似,因此我参照HELP文件,在HFSS5.6环境下较为顺利的完成了模拟。 用HFSS模拟天线,主要分Draw Model、Assign Material、Define Boundary、Solve、Post Process 五个步骤: ⒈Draw Model: HFSS采用的是相当流行的AUTOCAD的ENGINE,因此绘制方法与AUTOCAD大同小异,这里不在赘述。我先分Air Box、Substrate Box、Coax Line、Patch几个部分画好模型。其中COAX LINE 包括内导体(圆柱)及外层介质及外导体(环柱);PATCH为一平面矩形,AIR BOX、SUBSTRATE BOX 为长方体。 同时,由于基板,同轴线之间会有重叠,所以应用3D OBJECTS 菜单中的Subtract命令将 重叠部分减去。

卫星天线4.5米天线说明书

SCE-450C型4.5米天线 安装、使用、维护手册精彩文档

精彩文档西安航天恒星科技股份有限公司 手册使用说明 : SCE-450C型天线是实现C波段与Ku波段共用的卫星地球站天线。使用时,只需根据不同的使用情况换上C波段馈源或Ku波段馈源即可。 《SCE-450C型4.5米天线安装、使用、维护手册》针对C波段与Ku波段的使用,除了馈源安装方式(附图13A为C波段馈源,13B 为Ku波段馈源)和天线电气特性指标不同外,其余内容全部通用。

安全方面的注意事项 安全声明:以下声明适用于本手册的全过程。 在天线安装前必须仔细阅读本手册,并切实按照规定的步 骤及方法进行操作,以保障人身及设备的安全。 1. 必须严格按照要求制作地基,只有在地基达到预定的强度后,方 可对天线进行安装。 2. 在吊装过程中,应注意人员及设备的安全;保证设备在吊装中平 稳。 3. 在无吊车情况下安装,应特别小心,以确保人身及设备的安全。 4. 在首次运行前,应对所有有润滑要求的部件进行润滑。其中,减 速器用指定的润滑油润滑;方位轴、俯仰轴用稀油注入油杯润滑; 丝杠螺母用润滑脂润滑。 5. 在调整限位器工作时,应特别注意不要使丝杠脱出减速器,尤其 是俯仰丝杠脱出减速器将造成天线严重损坏。在方位、俯仰二丝 杠的左,右(或上,下)极限位置限位器安装完毕后,首先进行试 运行,确保限位器工作无误。 6. 天线具有软件和硬件两重限位保护。为确保天线使用安全,在转动 天线时,应使用ACU,并将软件限位设置在硬件限位之前。 7. 手轮用后应取下,并装上蜗杆轴盖,切勿将手轮套在蜗杆轴上, 以免电动时,发生意外事故。 8. 应注意检查波纹喇叭封口材料是否破损或漏水,尤其是在冰雹或 大雨之后,若波纹喇叭口漏水,将影响系统正常工作,严重时造 成HPA或SSPA损坏。若封口材料破损,应及时更换。 精彩文档

HFSS 天线设计实例

HFSS 天线设计实例 这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化 设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:

2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate 介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:

1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为 ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm

7.3米卫星天线基础精编版

7.3m天线基础施工方案 1 适用范围 适用7.3天线安装。 2 作业准备 2.1 内业技术准备 2.1.1 组织人员学习图纸,了解设计意图及要求,对图纸疑点认真记录汇总,做好图纸会审,与设计和监理将图纸会审完毕。 2.1.2 完成监理组织的施工图纸会审,经设计交底后,编写有针对性的作业指导书并报监理审批。 2.1.3 建立施工档案,在工程施工中严格按照规定及时准确收齐内业资料,包括施工前期资料、设计变更、施工洽商、测量复核记录、图纸会审纪要等。 2.1.4 作业前已对参加该项作业的相关人员经行施工技术交底,交底与被交底人员进行了双签字。 2.1.5 完成对施工人员进行施工程序、施工工艺、质量标准、施工危险因素等方面内容的交底工作。 2.2 外业技术准备 施工人员在工程现场与建设单位代表共同确认《工程设计文件》是否需改动;若需改动,施工人员立即与项目管理人员及时反馈,等项目管理人员与建设单位、设计单位、监理单位协商后给出处理意见,再进行相应的更改。 3 作业人员配臵 3.1专业主管 全面负责该单位工程的技术工作。 3.2技术员 3.2.1全面负责该单位工程的技术工作,组织施工图及技术资料的学习,编制施工技术措施,主持技术交底; 3.2.2深入现场指导施工,及时发现和解决技术问题; 3.2.3制定施工方法、工艺; 3.2.4负责单位工程一级质量验收,并填写验收单; 3.2.5负责施工过程中的一切技术工作,负责一切技术资料收集; 3.2.6负责施工放线和测量资料及成果的整理工作。 3.3安全员 3.3.1在上级安全部门的领导下,全面负责安全管理工作; 3.3.2执行公司安全管理标准,遵循安全管理规程,作好施工现场的管理工作,对安全第一责任者负责; 3.3.3负责施工现场的安全检查,制止违章作业。 3.3.4做好安监违章记录,为安全评比提供直接、真实的依据; 3.4质检员 3.4.1、负责施工全过程的质量监督、检查及质保资料的搜集与整理工作; 3.4.2、有权对不能保证质量的方案提出异议,请求有关领导批准; 3.4.3、有权对可能造成质量事故的违章操作,及制止并报告有关领导处理; 4 技术要求 4.1 铁塔基础模板应安装顺直、稳固、浇筑砼过程中,应由专人监模,防止出现模板位移和出现其他事故。 4.2 所定制的模板必须要保证各部位的形状、尺寸准确,在模板进场时要进行详细的验收检查。 4.3 注意钢筋的下料长度,弯制长度,按照每片梁的实际预制长度、宽度、高度进行先放大

(整理)天线原理与设计习题集解答_第8_11章.

第八章 口径天线的理论基础(8-1) 简述分析口径天线辐射场的基本方 法。 答:把求解口径天线在远区的电场问题分为两部分: ①. 天线的内部问题; ②. 天线的外部问题; 通过界面上的边界条件相互联系。 近似求解内部问题时,通常把条件理想化,然后把理想条件下得到的解直接地或加以修正后作为实际情况下的近似解。这样它就变成了一个与外部问题无关的独立的问题了。 外部问题的求解主要有: 辅助源法、矢量法,这两种是严格的求解方法; 等效法、惠更斯原理法、几何光学法、几何绕射法,这些都是近似方法。 (8-2) 试述几何光学的基本内容及其在口径天线设计中的应用。 答:在均匀的媒质中,几何光学假设能量沿着射线传播,而且传播的波前(等相位面)处处垂直于射线,同时假设没有射线的区域就没有能量。 在均匀媒质中,射线为直线,当在两种媒质的分界面上或不均匀媒质传播时,便发生反射和折射,而且完全服从光的反射、折射定律。 B A l nds =? 光程长度: 在任何两个给定的波前之间,沿所有射线路径的光程长度必须相等,这就是光程定律。''PdA P dA = 应用: ①. 可对一个完全聚焦的点源馈电的天线系统,求出它在给定馈源功率方向图 为P(φ,ξ)时,天线口径面上的相对功率分布。 ②. 对于完全聚焦的线源馈电抛物柱面天线系统,口径上的相对功率分布也可 用同样类似的方法求解。 (8-3) 试利用惠更斯原理推证口径天线的远区场表达式。 解:惠更斯元产生的场: (1cos )2SP j r S SP jE dE e r βθλ-?= ?+?? 222)()(z y y x x r S S SP +-+-= r , r sp >>D (最大的一边)

卫星通信基础知识

卫星通信基础知识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频 电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v 表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。频率在3×1011Hz-4×1014Hz 之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,

(整理)卫星天线4.5米天线说明书.

精品文档SCE-450C型4.5米天线安装、使用、维护手册

西安航天恒星科技股份有限公司 手册使用说明 : SCE-450C型天线是实现C波段与Ku波段共用的卫星地球站天线。使用时,只需根据不同的使用情况换上C波段馈源或Ku波段馈源即可。 《SCE-450C型4.5米天线安装、使用、维护手册》针对C波段与Ku波段的使用,除了馈源安装方式(附图13A为C波段馈源,13B为Ku波段馈源)和天线电气特性指标不同外,其余内容全部通用。 精品文档

安全方面的注意事项 安全声明:以下声明适用于本手册的全过程。 在天线安装前必须仔细阅读本手册,并切实按照规定的步 骤及方法进行操作,以保障人身及设备的安全。 1. 必须严格按照要求制作地基,只有在地基达到预定的强度后,方 可对天线进行安装。 2. 在吊装过程中,应注意人员及设备的安全;保证设备在吊装中平 稳。 3. 在无吊车情况下安装,应特别小心,以确保人身及设备的安全。 4. 在首次运行前,应对所有有润滑要求的部件进行润滑。其中,减 速器用指定的润滑油润滑;方位轴、俯仰轴用稀油注入油杯润滑; 丝杠螺母用润滑脂润滑。 5. 在调整限位器工作时,应特别注意不要使丝杠脱出减速器,尤其 是俯仰丝杠脱出减速器将造成天线严重损坏。在方位、俯仰二丝 杠的左,右(或上,下)极限位置限位器安装完毕后,首先进行试 运行,确保限位器工作无误。 6. 天线具有软件和硬件两重限位保护。为确保天线使用安全,在转动 天线时,应使用ACU,并将软件限位设置在硬件限位之前。 7. 手轮用后应取下,并装上蜗杆轴盖,切勿将手轮套在蜗杆轴上, 以免电动时,发生意外事故。 8. 应注意检查波纹喇叭封口材料是否破损或漏水,尤其是在冰雹或 大雨之后,若波纹喇叭口漏水,将影响系统正常工作,严重时造 成HPA或SSPA损坏。若封口材料破损,应及时更换。 精品文档

天线理论与设计基本概念

基本电振子(赫兹偶极子) 电基本振子就是一段长度l远小于波长, 电流I等幅同相的直线电流元i(t)=I cosωt, 它就是线天线的基本组成部分, 任意线天线均可瞧成就是由一系列电基本振子构成的。 立体角: 定义:立体角就是以圆锥体的顶点为球心,半径为1的球面被锥面所截得的面积来度量的,度量单位称为“立体弧度”。与平面角的定义类似。在平面上我们定义一段弧微分S与其矢量半径r的比值为其对应的圆心角记作dθ=ds/r;所以整个圆周对应的圆心角就就是2π;与此类似,定义立体角为曲面上面积微元ds与其矢量半径的二次方的比值为此面微元对应的立体角记作dΩ=ds/r^2;由此可得,闭合球面的立体角都就是4π。 单位:steradian->sr=stereos+radian 球坐标系中计算:dΩ= ds /R2= ds=sin θ *d θ* dφ (sr) 辐射强度 定义:给定方向上单位立体角辐射的功率。 计算: 物理意义:反应在给定方向上辐射的大小 辐射功率: 定义: 辐射效率 定义:天线的输入功率仅有一部分转换为辐射功率,其余被天线及其附近结构所吸收。辐射效率定义为天线的辐射功率与净输入功率之比。 其中:为辐射电阻,为损耗电阻。 场强方向图: 定义:在固定距离r=r0的球面上,辐射电场强度随着角坐标的相对变化(函数)图形为场强方向图。方向图函数 作图二维平面图:○1极坐标图○2直角坐标图 功率方向图: 在固定距离r=r0的球面上,波印廷矢量的r分量随着角坐标的相对变化(函数关系)图形为功率方向图。方向图函数记为 按方向图特征的天线分类 各向同性天线:天线向各个方向均匀辐射。 方向性天线:天线在某些方向的辐射比其她方向的辐射强得多 全向天线:天线在某个平面内的辐射为无方向性,在其正交面具有方向性 波瓣: 半功率波瓣宽度:

卫星通信基础知识37499

卫星通信基础知识 第一节电磁波常识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是 1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视

或其他通讯。频率在3×1011Hz-4×1014Hz之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。 三、波段与频道 由于利用频率可以计算出波长,一个频率范围将对应一个波长范围,所以频段与波段具有同样的意思。两个叫法是对应的,也是通用的,在电视广播领域中,更多使用波段。 微波是指波长在微米级的无线电信号。 按照波长和用途不同,人们把无线电波又分成许多波段,如表1.1所示。 表1.1 无线电波波段的划分 频道是指传送一个信号源节目所使用的频率(或波长)范围。通常一个频段(或波段)能够再分成多个频道。 四、极化方式

基于HFSS的天线设计教材

图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、介质层的长度LG 和宽度 WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

hfss设计天线范例

第二章创建项目 本章中你的目标是: √保存一个新项目。 √把一个新的HFSS设计加到已建的项目 √为项目选择一种求解方式 √设置设计使用的长度单位 时间:完成这章的内容总共大约要5分钟。 一.打开HFSS并保存一个新项目 1.双击桌面上的HFSS9图标,这样就可以启动HFSS。启动后的程序工作环境如图:

图2-1 HFSS工作界面 1.打开File选项(alt+F),单击Save as。2.找到合适的目录,键入项目名hfopt_ismantenna。 图2-2 保存HFSS项目 二.加入一个新的HFSS设计 1.在Project菜单,点击insert HFSS Design选项。( 或直接点击图标。)一个新的工程被加入到hfopt_ismantenna项目中,默认名为HFSSModel n。

图2-3 加入新的HFSS设计 2.为设计重命名。在项目树中选中HFSSModel1,单击鼠标右键,再点击Rename项,将设计重命名为hfopt_ismantenna。 图2-4 更改设计名

三.选择一种求解方式 1.在HFSS菜单上,点击Solution Type选项. 2.选择源激励方式,在Solution Type 对话框中选中Driven Mode项。 图2-5 选择求解类型图2-6 选择源激励方式 四.设置设计使用的长度单位

1.在3D Modeler菜单上,点击Units选项. 2.选择长度单位,在Set Model Units 对话框中选中mm项。 图2-5 选择长度单位图2-6 选择mm作为长度单位 第三章构造模型 本章中你的目标是: √建立物理模型。 √设置变量。 √设置模型材料参数 √设置边界条件和激励源 √设置求解条件 时间:完成这章的内容总共大约要35分钟。

卫星天线4.5米天线说明书

SCE-450C型4.5米天线安装、使用、维护手册 西安航天恒星科技股份有限公司

手册使用说明 : SCE-450C型天线是实现C波段与Ku波段共用的卫星地球站天线。使用时,只需根据不同的使用情况换上C波段馈源或Ku波段馈源即可。 《SCE-450C型4.5米天线安装、使用、维护手册》针对C波段与Ku波段的使用,除了馈源安装方式(附图13A为C波段馈源,13B为Ku波段馈源)和天线电气特性指标不同外,其余内容全部通用。

安全方面的注意事项 安全声明:以下声明适用于本手册的全过程。 在天线安装前必须仔细阅读本手册,并切实按照规定的步 骤及方法进行操作,以保障人身及设备的安全。 1. 必须严格按照要求制作地基,只有在地基达到预定的强度后,方 可对天线进行安装。 2. 在吊装过程中,应注意人员及设备的安全;保证设备在吊装中平 稳。 3. 在无吊车情况下安装,应特别小心,以确保人身及设备的安全。 4. 在首次运行前,应对所有有润滑要求的部件进行润滑。其中,减 速器用指定的润滑油润滑;方位轴、俯仰轴用稀油注入油杯润滑; 丝杠螺母用润滑脂润滑。 5. 在调整限位器工作时,应特别注意不要使丝杠脱出减速器,尤其 是俯仰丝杠脱出减速器将造成天线严重损坏。在方位、俯仰二丝 杠的左,右(或上,下)极限位置限位器安装完毕后,首先进行试 运行,确保限位器工作无误。 6. 天线具有软件和硬件两重限位保护。为确保天线使用安全,在转动 天线时,应使用ACU,并将软件限位设置在硬件限位之前。 7. 手轮用后应取下,并装上蜗杆轴盖,切勿将手轮套在蜗杆轴上, 以免电动时,发生意外事故。 8. 应注意检查波纹喇叭封口材料是否破损或漏水,尤其是在冰雹或 大雨之后,若波纹喇叭口漏水,将影响系统正常工作,严重时造 成HPA或SSPA损坏。若封口材料破损,应及时更换。 一 第页

天线设计毕业论文

第一章绪论 一、绪论 1.1 课题的研究背景及意义 自古至今,通信无时无刻不在影响着人们的生活,小到一次社会交际中的简单对话;大到进行太空探索时,人造探测器与地球间的信息交换。可以毫不保留地说,离开了通信技术,我们的 生活将会黯然失色。近年来,随着光纤技术越来越成熟,应用范围越来越广。在广播电视领域, 光纤作为广播电视信号传输的媒体,以光纤网络为基础的网络建设的格局已经形成。光纤传输系统 具有的传输频带宽,容量大,损耗低,串扰小,抗干扰能力强等特点,已成为 城市最可靠的数字电视和数据传输的链路,也是实现直播或两地传送最经常使用的电视传送 方式。随着全球通信业务的迅速发展,作为未来个人通信主要手段的现代通信技 术引起了人们的极大关注,我国在移动通信技术方面投入了巨大的人力物力,我国很多地区的电力通信专用网也基本完成了从主干线向光纤过度的过程。目前,电力系统光纤通信网已成为我国规模较大,发展较为完善的专用通信网,其数据、语音,宽带等业务及电力生产专业业务都是由光纤通信承载,电力系统的生产生活,显然,已离不开光纤通信网。 无线通信现状另一非常活跃的通信技术当属,无线通信技术了。无线通信技术包括了移动通信技术和无线局域网( WLAN )技术等两大主要方面。移动通信就目前来讲是 3G时代,数字化和网络化已成为不可逆转的趋势。目前,移动通信已从模拟通信发展到了数字移动通 信阶段。无线局域网可以弥补以光纤通信为主的有线网络的不足,适用于无固定场所,或有线局域网架设受限制的场合,当然,同样也可以作为有线局域网的备用网络系统。WLAN ,目前广泛应用 IEEE802.11 系列标准。其中,工作于 2.4GHZ频段的 820.11可支持 11Mbps 的共享接入速率;而802.11a 采用 5GHZ 频段,速率高达 54Mbps ,它比802.11b 快上五倍,并和 820.11b兼容。给人们的生活工作带来了很大的方便与快捷。 在整个无线通信系统中,用来辐射或接收无线电波的装置成为天线,而通信、雷达、导航、广播、电视等无线电技术设备都是通过无线电波来传递信息的,均 需要有无线电波的辐射和接收,因此,同发射机和接收机一样,天线也是无线电技术设备的一个重要组成部分,其性能的优良对无线通信工程的成败起到重要作用。天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波,但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低,要能够有效地辐射或接收电磁波,天线在结构和形式上必须满足一定的要求。快速发展的移动通信系统需要的是小型化、宽频带、多功能 (多频段、多极化 )、高性能的天线。微带天线作为天线 家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来天线技术的发展方向之一,设计出具有小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。

卫星通信地基础知识

卫星通信概述 1.卫星通信的基本概念与特点 定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。卫星通信又是宇宙无线电通信形式之一,而宇宙 (1)宇宙站与地球站之间的通信;(直接通信) (2(直接通信) (3)通过宇宙站转发或反射而进行的地球站间的通信。(间接通信) 第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。 大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。静止卫星是指卫星的运行轨道在赤道平面内。轨道离地面高度约为 35800km(为简单起见,经常称36000km)。 静止卫星通信的特点 (1 a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传 输与距离无关) b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收) c 通信频带宽(带宽为500M d 信号传输质量高,通信线路稳定可靠 e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信) f 可自发自收进行监测 (2 a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。 b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两 c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断 ——(现今可通过处理缩短这种现象)

d 有较大的信号传输时延(发射和接受时间)和回波干扰。 2. 卫星通信系统的组成 (1 通常卫星通信系统是由地球站、通信卫星(前两个为主要组成,负责卫星收发)、跟踪遥测及指令系统和监控管理系统(后两个提供辅助功能,监测卫星、姿态调整等)4大部分组成的,如图所示。 (2 两个地球站通过通信卫星进行通信的卫星通信线路的组成如图所示,是由发端地球站,上、下行无线传输路径和收端地球站组成的。

相关文档
最新文档