最小油膜厚度hmin

最小油膜厚度hmin

愈小则偏心率

齿轮传动最小油膜厚度分析及改善润滑的措施

№.6 陕西科技大学学报 Dec.2009 ?84? J OU RNAL OF SHAANXI UN IV ERSIT Y OF SCIENCE &TECHNOLO GY Vol.27 文章编号:1000-5811(2009)06-0084-03 齿轮传动最小油膜厚度分析及改善润滑的措施 王宁侠1,蒋新萍2 (1.陕西科技大学机电工程学院,陕西西安 710021;2.常州轻工职业技术学院机械工程系,江苏常州 213164) 摘 要:根据弹性流体动力润滑理论,通过对齿轮传动中形成动压油膜的参数分析,得出齿面最小油膜厚度发生在小齿轮齿根与大齿轮齿顶开始啮合点的位置,认为应以此处的润滑状态作为齿面润滑状态的判断依据,同时给出了一些改善齿轮传动润滑状态的措施. 关键词:弹性流体动力润滑;起始啮合点;油膜厚度 中图分类号:T H132.41 文献标识码:A 图1 弹性流体润滑时的油膜厚度及压力分布0 引言 齿轮传动除节点外各啮合点处均有相对滑动, 因此齿面的润滑是必不可少的,而齿面的润滑状态 与齿面的失效形式密切相关.根据弹性流体润滑理 论,点、线接触的运动副其表面的润滑油膜厚度与材 料的弹性变形、流体动压和粘压关系、两接触表面的 平均速度、所受载荷大小等有关,微接触区内油膜厚 度及油压的变化如图1所示,其最小油膜厚度的计 算公式,即道森2希金森方程如下[1]:h min =2.65α0.54(η0v ) 0.7R 0.43E ′-0.03W -0.13(1 )图2 齿轮啮合的几何参数式中:α为润滑油的粘压系数;η0为大气压下的粘度;v 为两接触表面 沿相对运动方向的平均速度;R 为接触点的综合曲率半径,R =R 1R 2/ (R 1+R 2);W 为单位接触宽度上的载荷;E ′为当量弹性模量,1E ′ =12(1-ν21E 1+1-ν22E 2 ),E 1、E 2、ν1、ν2分别为两接触体材料的弹性模量和泊松比. 如图2所示的渐开线直齿圆柱齿轮传动中,两齿廓接触于任一点 K ,接触点K 处两齿廓的曲率半径分别为R 1、R 2,此时可看成是半径 分别为R 1、R 2的两圆柱体相接触,根据(1)式可分析该点处的最小油 膜厚度.齿轮的啮合传动过程是很复杂的,轮齿在传动中不断地进入 啮合、脱离、啮合,接触线在齿面上的位置不断变化,接触处的几何形 状(曲率半径)和运动速度随接触位置的变化而变化.啮合区内各点的 最小油膜厚度是变化的,那么最小油膜厚度的最小值发生在什么位 置?判断齿面润滑状态时应以哪一点的最小油膜厚度为依据?以下通过分析确定最小油膜厚度发生的位置. 3收稿日期:2009209226 作者简介:王宁侠(1963-),女,陕西省扶风县人,教授,研究方向:机械制造与设计

润滑油油膜到底有多重要

润滑油油膜的作用 润滑油油膜是保护记起内部组件减少磨损的重要性能之一,而油膜的强度主要取决于润滑油使用的基础油和添加剂,今天恒运君带你一起来看看润滑剂油膜强度的重要性及影响油膜效果的主要因素。 1、油膜的厚度 说到润滑,你会想到什么?它应该是先产生一层有厚度的膜,从而去分离两个金属表面的基础油,因为润滑油的作用就是为了避免金属间的表面接触。所以在这种需求下,油品就必须能提供摩擦表面分离的能力,这就需要三个支撑因素——相对速度、基础油粘度和负荷量。这三个因素也会受到温度、污染以及其它因素的影响。当油膜厚度平衡了这些因素,即借助于相对速度产生粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷,就称为流体动力润滑。 在具有滚动接触(可忽略的相对滑动运动)的应用中,即使具有较大的局部压力点,也可能会影响金属表面间的油膜厚度。其实这些压力点也起着重要作用。基础油的压力和粘度关系允许油品粘度因较高的压力而暂时性增加,这称为弹性流体动力润滑,尽管油膜会很薄,但依然能产生一个完整的油膜分离。

在实践当中,机器表面最理想的状态就是能实现完全分离,薄膜厚度就是为减少摩擦和磨损提供最好的保护。但是如果不具有满足这些油膜厚度的条件,例如当相对流速不足、粘度不足或负载过大时,会发生什么情况呢?其实大多数机器的设计和操作参数都允许速度 不足的情况存在,比如在启动、停止或方向运动变化时。当温度过高也会导致粘度降低,过度污染同样会使得油膜间隙中的磨粒接触。 当流体动力学或弹性流体动力学润滑的先决条件未满足时,基础油将要在所谓的边界接触条件下寻求支撑,这种支撑因素就需要寻找具有摩擦磨损控制性能的添加剂。因此,基础油和添加剂就被调和在一起生产出符合特定需求的润滑油脂产品,从而减轻预期会产生的边界润滑,该润滑剂就具有油膜强度和边界润滑性能。 2.说说油膜的作用 油膜的强度是除了油膜厚度以外,用以减轻摩擦和控制磨损的重要因素。如上所述,在流体动力学和弹性流体动力润滑中,粘度是影响油膜厚度的关键。当基础油粘度不足以克服金属间表面摩擦时,就需要基础油和添加剂产生化学协同效应,形成表面保护机理。在这些边界条件下,边界润滑也会受到机械表面化学和物理性质以及其它任何环境因素的影响,所以即使在负载较重、温度较高或相对表面速度较低时,油膜强度也会有所提高。 3.无润滑的表面相互作用

滑动轴承油膜厚度计算

1 滑动轴承的工程分析 下面是径向动压滑动轴承的一组计算公式。 1.最小油膜厚度h min h min =C-e=C(1-ε)=r ψ(1-ε) (1) 式中C=R -r ——半径间隙,R 轴承孔半径;r 轴颈半径; ε=e/C ——偏心率;e 为偏心距; ψ=C/r ——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4 , v 为轴颈表面的线速(m/s ) 设计时,最小油膜厚度h min 必须满足: h min /(R z1+R z2)≥2-3 [1] (2) 式中R z1、R z2为轴颈和轴承的表面粗糙度。 2.轴承的特性系数(索氏系数) S=μn /(p ψ2 )(3) 式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s ); n ——轴颈的转速(r/s );p ——平均压强 (N/m 2 ) 用来检验轴承能否实现液体润滑。 ε值可按下面简化式求解。 A ε2 +E ε+C=0 (4) 其中A=2.31(B/d)-2 ,E=-(2.052A +1), C=1+1.052A -6.4088S. 上式中d ——轴径的直径(m );B ——轴承的宽度(m ) 通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1] 。 3.轴承的温升 油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承的液体润滑。 油的温升为进出油的温度差,计算式为: ) 5()(v K vBd Q c f p T S ψπψρψ += ? 式中 f —摩擦系数;c —润滑油的比热,通常取1680-2100 J/kg ℃;ρ—润滑油的密 度,通常取850-900kg/m 3;Q —耗油量(m 3 /s),通常为承载区内流出的端泄量;K S —为轴承体 的散热系数[1,2] 上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按 f/ψ=0.15+1.92 (1.119-ε)[1+2.31 ( B/d )-2 (1.052-ε)] (6) Q/ψνBd=ε(0.95-0.844ε)/[(B/d)-2+2.34-2.31ε] [2] (7) 求解,上式中的B ,d 的单位均为m ,p 的单位为N/m 2 ,ν为油的运动粘度,单位为m/s. 轴承中油的平均温度应控制在 t m =t 1+△T/2≤75℃ (8) 其中t 1为进油温度;t m 为平均温度 2 径向动压滑动轴承稳健设计实例 设计过程中可供选择的参数及容差较多,在选用最佳方案时,必须考虑各种因素的影响 和交互作用。如参数B 、轴颈与轴瓦的配合公差、润滑油的粘度的变化对油膜温升及承载能

GDI喷雾撞壁附壁油膜厚度和质量的测量系统及方法与设计方案

本技术涉及GDI喷雾撞壁附壁油膜厚度和质量的测量系统及方法。测量系统包括:GDI喷油器,第一石英玻璃平板,YAG激光器,第一反射镜和匀光片,CCD相机,滤波片、第二反射镜,加热系统;所述加热系统将第一石英玻璃平板加热至157摄氏度。本技术相对于现有技术的优点是:根据标定试验得到的油膜厚度与荧光强度的关系,利用MATLAB程序将荧光强度信号转化为油膜厚度信息,并利用MATLAB程序计算得到附壁油膜的质量。 技术要求 1.GDI喷雾撞壁附壁油膜厚度和质量的测量系统,包括:位于正上方且垂直向下喷射的GDI喷油器,位于喷油器正下方的第一石英玻璃平板,YAG激光器,位于YAG激光器与第一石英玻璃平板下方之间的第一反射镜和匀光片,CCD相机,位于CCD相机与第一石英玻璃平板下方之间的滤波片、第二反射镜,加热系统;所述加热系统将第一石英玻璃平板加热至157摄氏度;其特征在于,所述加热系统包括:热电偶温度传感器、PID温控表、上金属托盘、下金属托盘、放置在上金属托盘和下金属托盘之间的加热丝、变压器、空气开关、固态继电器;所述上金属托盘上面放置第一石英玻璃平板;所述变压器的输入端连接220V交流电源,输出端一路连接在固态继电器的交流端,最后接入加热丝的其中一个电极,输出端另外一路通过空气开关最后接入加热丝的另一个电极;所述固态继电器的直流端连接温控表;所述加热丝通过传递热量给上金属托盘,然后将石英玻璃平板加热到设定的温度。

2.在权利要求1所述测量系统上实现的GDI喷雾撞壁附壁油膜厚度和质量的测量方法,其特征在于,测量方法包括如下过程: (一)燃料选择:异辛烷和3-戊酮的混合物,其中,3-戊酮的体积百分比为12%; (二)固定厚度油膜的标定: 将上石英玻璃平板、下石英玻璃平板用特定厚度的垫圈隔开,称之为第二石英玻璃平板,中部空腔充入燃料,形成固定厚度的油膜L标; 将第二石英玻璃平板替代第一石英玻璃平板,用266nm激光照射已知厚度的油膜,拍摄记录此时的荧光信号F标;记D=F标/L标; (三)油膜厚度测量: 步骤一:连接系统,加热系统将第一石英玻璃平板壁面加热至试验所需温度; 步骤二:GDI喷油器将燃料喷射在一定温度的第一石英玻璃平板上,YAG激光器发射激光束,含有波长为266nm的激光和少量波长为532nm的激光,经过第一反射镜,透射波长为532nm的激光,反射波长为266nm的激光,将少量532nm激光过滤掉,其次经过匀光片,使激光能量在截面上均匀分布,同时将激光束变大,照亮喷射在不同温度第一石英玻璃平板上的整个喷雾区域,3-戊酮在266nm激光照射下,产生峰值波长420nm的荧光信号,第二反射镜将该荧光信号反射到CCD相机中,CCD相机将该荧光信号F拍摄记录下来传输并保存至电脑;为了得到更好的试验效果,在第二反射镜和CCD相机之间的滤波片为允许波长410nm-430nm信号通过的带通滤波片,进一步过滤干扰信号; 步骤三:根据L=F/D,得到油膜的厚度L; 步骤四:利用MATLAB程序计算得到附壁油膜的体积,并在已知燃料密度的情况下计算得到附壁油膜质量。 3.在权利要求1所述测量系统上实现的GDI喷雾撞壁附壁油膜厚度和质量的测量方法,其特征在于,包括如下过程: (一)燃料选择:异辛烷和3-戊酮的混合物,其中,3-戊酮的体积百分比为12%;

高副接触弹流润滑条件下的油膜厚度分析

一高副接触弹流润滑条件下的油膜厚度分析 1 弹流润滑条件下的油膜厚度公式 1)线接触弹流润滑条件下的油膜厚度公式 线接触弹流润滑油膜厚度公式选用Dowson-Higginson 提出的油膜厚度公式【1】 ,其最小油膜 厚度公式为 13 .003.0'13 .043.07.0054.0min )(65.2w E L R u h ηα= (1-1) 式中,h min 为最小油膜厚度,m ;R 是综合曲率半径, 2 11 11R R R + =,其中R 1、R 2为两接触体在接触点处的曲率半径,m ;u 是接触点卷吸速度,2 2 1u u u += ,其中u 1、u 2为两接触体在接触点处的线速度,m/s ;η0是润滑油在大气压下的粘度,Pa ·s ,;α是粘压系数,m 2/N ;E '是综合弹 性模量,)11(2112 2 2 121'E E E μμ-+-=,其中,μ1、μ2为两接触体的泊松比,E 1、E 2为两接触体的 弹性模量,Pa ;L 是接触区域轴向长度,m ;w 是滚动体承受的载荷,N 。 从最小油膜厚度公式可以推导出中心油膜厚度公式为 13 .003.0'13 .043.07.0054.0)(53.3w E L R u h c ηα= (1-2) 最小油膜厚度公式的无量纲形式为 13 .07 .054.0min 65 .2W U G H =(1-3) 式中,min H 为无量纲最小油膜厚度,R h H /min min =;G 为无量纲材料参数,' E G α=;U 为无量纲速度参数,R E u U '0η= ;W 为无量纲载荷参数,RL E w W '= 。 从最小油膜厚度公式可以推导出中心油膜厚度公式的无量纲形式为 13 .07 .054.053.3W U G H c =(1-4) 2)点接触弹流润滑条件下的油膜厚度公式 点接触弹流润滑油膜厚度公式选用Hamrock-Dowson 提出的油膜厚度公式【2】 ,其最小油膜厚 度公式为 )1()(63.368.0073.0117.0'493.049.068.00min k e w E R u h ----=αη (1-5)

新油膜厚度在沥青混合料设计中的应用

新油膜厚度在沥青混合料设计中的应用 摘要:传统设计方法中,沥青混合料的沥青用量采用油膜厚度指标确定,但传统油膜的厚度与混合料的实际油膜厚度有误差。本文提出了新的油膜厚度指标,并进行沥青混合料的配合比设计,对该指标进行了试验检验。 关键词:油膜厚度、新油膜厚度、沥青混合料 1前言 确定沥青混合料中的最佳沥青用量是沥青混合料设计好坏的重要一环,如果沥青用量过大沥青混合料颜色黑亮,施工时易发生推移现象,同时其高温稳定性差。而沥青用量过小,沥青混合料颜色较暗,沥青混合料使用时易开裂老化,同时水稳定性差。传统的设计方法中沥青用量是用油膜厚度这个指标来衡量的,但是传统的油膜厚度的定义中[1],油膜厚度的大小只和胶结材料的用量体积有关,与矿料的颗粒分布情况和混合料的压实情况无关,也就是说沥青混合料设计中,最佳沥青用量的确定不考虑混合料的空隙率和VMA。这种假设与混合料在压实过程中的情况有很大的差别,混合料在压实过程中矿料颗粒之间空隙逐渐减小,包裹矿料颗粒的沥青厚度也会受到影响。所以用油膜厚度来确定最佳沥青用量误差较大,本文针对这种情况,采用新沥青油膜厚度对沥青混合料进行设计。 2 新油膜的概念 新油膜厚度t的定义为沥青混合料矿料的表面穿过油膜到空气的最短距离。并且假设所有矿料颗粒的新油膜是均匀的薄壳,这个薄壳就被称为“新油膜”。 传统油膜在进行建模时假设矿料包裹上油膜厚[2],矿料之间不发生接触,这样的话,每个矿料所包裹的油膜其厚度必然会相同,如矿料的粒径就没有关系了。但实际上沥青混合料的矿料颗粒并不是相互独立互补接触的状态,在沥青混合料的搅拌、运输、摊铺、压实的过程中,时刻在接触,这时,一定会出现两个矿料颗粒间的距离小于最佳油膜厚度的情况,也就是说矿料的油膜出现了重叠部分。 这种情况下,在按照传统油膜的模型就会有误差了[3],实际中的矿料油膜会相互接触的,矿料油膜厚度包括有效厚度和小于油膜厚度。为了避免计算时颗粒粒径太小,表面积计算值过大的情况,对沥青混合料矿料的最小粒径进行限制,因为纯沥青中最大的颗粒约为0.2μm,因此考虑集料的最小尺寸为0.2μm是有意义的。 3 油膜和新油膜区别计算示例 为了对比分析传统油膜和新油膜厚度的区别,现以某沥青路面混合料设计为例进行说明。该道路采用沥青AC-16作为道路上面层。其设计级配如表3-1所示。

轧机油膜轴承油膜厚度的测量方法_赵春江

收稿日期:2006207208 基金项目:国家自然科学基金资助(50575155) 作者简介:赵春江(1975-),男,讲师,在读博士,研究方向:轧钢设备与轧机轴承。 第27卷 增刊太原科技大学学报Vol .272006年9月 JOURNAL OF T A I Y UAN UN I V ERSI TY OF SC I E NCE AND TECHNOLOGY Sep.2006 文章编号:167322057(2006)S0-0037-03 轧机油膜轴承油膜厚度的测量方法 赵春江 1,2 ,王建梅2,马立峰2,姚建斌2,王国强1,黄庆学 2 (11吉林大学,长春130025;21太原科技大学,太原030024) 摘 要:在对弹流膜厚测量方法总结的基础上,介绍了与轧机油膜轴承油膜厚度的测量相关的技术方法,重点的介绍了近期发展的光纤位移传感器方法和超声共振方法。通过比较分析,得出光纤位移传感器方法虽然测量精度高,外界依赖性小,但是其透光性要求极大的限制了在轧机油膜轴承上的应用,超声共振法具有对材料的穿透能力,研究其应用有较高的实用价值。 关键词:轧机油膜轴承;油膜厚度;测量中图分类号:TG333 文献标识码:A 1 测膜厚度的测量方法 1.1 电阻法 1947年英国的B rix 测量了滑动和滚动情况下接触处的 电压和电流的关系,获得了油膜电压与油膜厚度的关系曲线。1955年,Le wicki 在详细讨论了把电阻测量值与油膜厚度联系起来的可能性后指出,不能用电阻法准确的测量膜厚。原因是油膜的电阻随油膜厚度的变化量很小,所以电阻的大小来标定油膜的厚薄很难实现。放电现象常被误解为金属微观表面凸起互相接触时出现的低阻值现象,电阻值的偶然减小并不能反映油膜厚度的减小。分析结果经过了后人的实验验证。 电阻法的优点是电路简单,不需要昂贵的测试设备。但是由于其自身所固有的特点,只能在定性分析弹流润滑状态时是一种有效的测试方法。 1.2 放电电压法 Ca mer on 和Dys on 分别用放电电压法对弹流膜厚进行 了测量。结果表明润滑剂的纯洁度对放电电压影响较大,因此测量结果并不能定量的反映油膜厚度的大小。1.3 电容法 电容法测量膜厚始于1955年Le wicki 所做的实验研究。 Dys on 做了改进使该方法得到广泛的应用。国内外的相关研 究人员做了大量的测试与验证工作,表明该方法能够准确的测量出两接触表面之间的膜厚。这种方法的局限性在于对部分膜状态下失效,且要求润滑剂应该是非极性的。 1.4 电容分压器法 这种方法的原理是把润滑膜视为电阻和电容的并联,当润滑状态从部分过度到全膜时,该方法可测量润滑状态的转化过程。但是该方法需要载波和低通滤波、信号失真很大,因而测量数据的准确率不高。 1.5 阻容振荡法、时基电路法和多谐振荡法 1998年,张鹏顺和李曙光基于文氏振荡器的自激振荡 原理,提出弹流膜厚测试的阻容振荡法。在全膜状态下,通过测量振荡频率并借助于“频率-电容-膜厚”标定曲线可测出膜厚的大小。在部分膜状态下,可利用液形分析来确定非金属接触率。这种方法集中了电阻法和电容法的优点。既可用于全膜弹流测试又可用于部分膜弹流测试,现场测试实用性强。 该方法的缺点是标定曲线的制定复杂,分布电容难于

13滑动轴承习题与参考答案

习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 A 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 B 、E 。 3 巴氏合金是用来制造 B 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, B 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 B 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 B 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措

施中,最有效的是 A 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 B 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 C 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 D 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 B 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 B ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, D 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 D 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 C 。 A. )1(min χψ-=d h B. )1(min χψ+=d h C. 2/)1(min χψ-=d h D. 2/)1(min χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 B 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 C 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 C 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制pv 值的主要目的是防止轴承 A 。

滑动轴承油膜厚度计算

稳健设计理论在液体动压滑动轴承中的应用 滑动轴承是各种传动装置中广泛采用的支承件,特别是在高速运转机械中,为了减小摩擦,提高传动效率,要求轴承与轴颈间脱离接触并具有足够的油膜厚度,以形成液体间的摩擦状态。 在滑动轴承设计中,只有当轴承尺寸、轴承载荷、相对运动速度、润滑油的粘度、轴承间隙以及表面粗糙度之间满足一定关系时,才能实现液体摩擦。任一参数取值不当,将出现非液体摩擦状态,导致液体摩擦的失效。以上参数的优化设计对轴承的使用性能及寿命有十分重要的作用。 通常,在设计中,往往对轴承的各设计参数和使用条件提出更高要求。轴承的设计参数或误差对轴承的性能的影响是非线性的,在不同的设计方案中,同样的误差程度,所产生的性能波动不尽相同。稳健设计就是找到一种设计方案,使得液体动压轴承的性能对误差不十分敏感,同时达到较宽松的加工经济精度而降低成本的目的。 本文对某液体动压滑动轴承进行稳健设计,建立相应的数学模型,并求得优化的设计方案。 1滑动轴承的工程分析 下面是径向动压滑动轴承的一组计算公式。 1.最小油膜厚度h min h min=C-e=C(1-ε)=rψ(1-ε)(1) 式中C=R-r——半径间隙,R轴承孔半径;r轴颈半径; ε=e/C——偏心率;e为偏心距; ψ=C/r——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4,

v 为轴颈表面的线速(m/s ) 设计时,最小油膜厚度h min 必须满足: h min /(R z1+R z2)≥2-3[1](2) 式中R z1、R z2为轴颈和轴承的表面粗糙度。 2.轴承的特性系数(索氏系数) S=μn /(p ψ2)(3) 式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s ); n ——轴颈的转速(r/s );p ——平均压强(N/m 2) 用来检验轴承能否实现液体润滑。 ε值可按下面简化式求解。 A ε2+E ε+C=0(4) 其中A=2.31(B/d)-2,E=-(2.052A +1),C=1+1.052A -6.4088S. 上式中d ——轴径的直径(m );B ——轴承的宽度(m ) 通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1]。 3.轴承的温升 油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承 的液体润滑。 油的温升为进出油的温度差,计算式为: )5()(v K vBd Q c f p T S ψπψρψ +=? 式中f —摩擦系数;c —润滑油的比热,通常取1680-2100J/kg ℃;ρ—润滑油的密度,通常取850-900kg/m 3;Q —耗油量(m 3/s),通常为承载区内流出的端泄量;K S —为轴承体的散热系数[1,2] 上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按

滑动轴承油膜厚度对转子稳定性的影响

滑动轴承油膜厚度对转子稳定性的影响 张艾萍 , 林圣强 (东北电力大学成教学院,吉林省吉林市132012) 摘要:近几年来,随着大型旋转机械的广泛应用,对滑动轴承的稳定性提出了更高的要求。传统研究是通过计算Reynolds 方程、或者基于Reynolds方程提出更好的计算,但都忽略很多因素,如剪切力、沿厚度方向的压力梯度等。而直接通过CFD软件计算N-S方程的方法来研究滑动轴承的油膜特性,更能真实反映实际运转中的油膜特性。通过数值模拟可以看出,不同油膜厚度对旋转机械转子稳定性起着非常重要的作用。当最小油膜为0.02mm时,油膜负压区的压力为-73kPa。当最小油膜厚度为0.03mm时,油膜负压区的压力为-33kPa。当最小油膜厚度为0.04mm时,油膜负压区的压力为-21kPa,但是此时油膜已经不是很稳定。当油膜厚度为0.08mm时,负压区很小,也就基本形成不了油楔。数值计算结果表明油膜厚度对转子稳定性起着关键的作用。 关键字:油膜厚度滑动轴承转子稳定性数值模拟 Sliding bearing oil film thickness influence the stability of rotor Zhang ai-ping Lin sheng-qiang (Northeast Dianli University ,Jilin 132012) Abstract:In recent years,Along with the wide application of large rotating machinery, the stability of sliding bearings put forward higher request.Traditional research is calculated for Reynolds equation, or based on calculated Reynolds equation developed better,but ignore many factors, such as shear force, the thickness of the direction of the pressure gradient through thickness direction, etc.And directly through the CFD software calculation N-S equations method to study the characteristics of oil film bearing, can more really reflect the actual operation of the oil film properties.through numerical simulation can realize,different oil film thickness for rotating mechanical rotor stability plays significant important role.When the minimum oil film is 0.02 mm, the pressure of the oil film negative pressure for -73 kPa.the pressure of the oil film negative pressure for-33 kPa while the minimum oil film thickness of 0.03 mm. The pressure of the oil film negative pressure for-21 kPa when the minimum oil film thickness of 0.04 mm,but this time the oil film is not stable.When oil film thickness of 0.08 mm, negative pressure area is small,and can not easy form oil wedge.Numerical results show that the oil film thickness of the rotor stability playing the key role. Key words: oil film thickness;sliding bearing;rotor stability; numerical simulation 大型旋转机械广泛使用滑动轴承,而机械旋转稳定主要取决于油膜的特性。国内外许多旋转机械油膜失稳引起的故障表明,线性化雷诺方程油膜力模型有许多局限性,线性化的油膜力与实际已经有很大的偏差,实际运行中油膜特性存在许多的非线性,而且不能被忽略。所以从八十年代起,人们开始关注非线性油膜力解析,现在很多学者研究求解Reynolds方程非线性来反映真实的油膜运动特性,提出很多的分析方法如经典方法有摄动法、平均法,KBM法等;研究参数激励的非线性系统的响应如广义谐波平衡法,L-S 法,奇异理论等。学者提出许多非线性求解的方法,但目前还无法找到适应的方法来研究[1-3]。 另一方面基于Reynolds方程非线性求解有很多的弊端。随着汽轮机的大型化和高速化,对油膜特性研究提出了更高的要求,非线性仍然满足不了高速旋转机械转子稳定性发展的需求。现在很多学者计算N-S 方程来研究滑动轴承的油膜特性,文献[4]用RNG k-s 模型修正了湍动黏度,但是不能很好的考虑好狭小通道的剪切应力。文献[5]计算的网格数目不足以精确表示油膜压力特性,也没有提出合适的湍流计算模型。文献[6]特意的应用气液两相流原理计算油膜特性,并不能很好的放映流体本身的流动特性。文献[4-6]都只用一种模型计算,没有提出最好的轴承的间隙比,不能很好的反映实际应用当中的油膜特性。随着CFD软件日益成熟和计算机的发展,在求解三维流体复杂的湍流流动已经很简便了,计算遵循流体本身的流动特性。在求解滑动轴承特性油膜特性的主要问题是选择合适的湍流模型,现在发展起来的CFD有限元软件,根据实际确定难解问题,提供许多计算不同湍流特性的模型,本文考虑了不可忽略的油膜剪切应力,用Shear Stress Transport湍流模型来计算。它可以很有考虑到狭小通道的剪切应力,而且不会过分估算漩涡的强度,可以很好的表示出油膜的实际特性。考虑到温度对油膜的影响,本文采用温度压力耦合计算,并结合转子稳定性,合理的分析油膜对转子稳定性的影响。不同的油膜厚度对油膜的稳定性有很大的关联,厚度小容易产生油膜震荡,厚度大也可能产生油膜失稳。所以油膜厚度的对转子稳定性有很重要的意义。通过对比发现Reynolds方程非线性的计算与实际之间的差异,以便更深刻了解油膜的实际特性。

相关文档
最新文档