Vitallium Alloy 钴铬钼基铸造合金

Vitallium Alloy 钴铬钼基铸造合金
Vitallium Alloy 钴铬钼基铸造合金

镍基高温合金性能

镍基高温合金 镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势见图1。

镍基高温合金的发展趋势 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B 型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。 镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。 ·固溶强化型合金 具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大(每平方毫米几公斤力,见表1)的部件,如燃气轮机的燃烧室。 ·沉淀强化型合金 通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐蚀性能,可用于制作高温下承受应力较高(每平方毫米十

对钛合金及钛合金车架知识的几个误导

对钛合金及钛合金车架知识的几个误导----纠正篇 8月份的时候,我就想起草一篇小短文了,想讲下车友们对钛合金车架普遍存在的一些误解。或者说是一些传闻造成的误导。时间拖到现在,一个人的忙的昏天暗地,失去了闲暇。直到接近月尾的时候才抽出时间来完成这个小短文。写这个短文的目的,不是为了让人们不要买钛车,也不是把钛合金吹嘘到神的位置,而是通过实践比对,总结经验,让更多人认识钛合金。 随着国家实力的日益强大,人们的消费水平和对物质的认识程度都越来越高,原来主要销往欧美发达国家的钛合金自行车架在国内的销量也开始日渐增多。网络上和实体车店里的钛合金车架出现的频率比5年前高了40倍。卖的多了,买的也多了。这是一股潜流,慢慢会形成一种趋势。当然,距离普及还远远不是时候。 然而,无奈的发现,不论买的还是卖的,对钛合金的了解都还不够全面,甚至有些人云亦云的信息,存在了不少误导。有的是夸大,有的是歪曲,有的甚至是无知的妄谈。毕竟在国内实际10年以上使用钛架的人并不多,对国内国外钛合金车架生产状况全面了解的人更不多。有不少人在网店内销售钛合金车架,只是抄袭别人的描述,自己根本没用过,甚至对自行车也不甚了解。这样的其实不在少数。今天,我抛开门户之见,不提及任何品牌,从实际经验和原始数据开始,来破除几个对钛合金车架以及钛材料的误解。并希望这些知识能帮到别人,并逐渐被你的实践来验证。 这些误解,包括我自己也曾经有过,能把这些误区总结出来,是用我多年来对钛合金材料以及车架的经验来说话的,很欢迎有实际经验的人一起来探讨和鉴证。 误导一:钛合金很轻,比铝轻,跟碳纤维差不多的重量。 我暂时没有碳纤维的准确数据,先抛开。我们看下常用在自行车上的三种金属材料: 钢,铝,钛的比重吧。 同样体积的3种材料,用这3个数字计算可以得出,钛约为钢的重量的57.4%,铝约为钢重量的34.4%。所以铝是最轻的,简单说,同样体积的铝材比钛合金轻了40%,比钢轻了65%。 同时,另外一个经常在网上出现的说辞也会被戳破。钛是钢的一半重量。准确地说,应该是57%以上才对。 误导二:钛是稀有金属,所以比较贵。

骨科内固定的材料主要有哪些

骨科内固定的材料主要有哪些 骨科内固定材料是许多骨折病人手术时需要用到的手术器材。目前在临床上应用的传统骨科内固定材料主要有不锈钢系列、钴铬钼合金、钛和钛合金等,这些都是永久性植入材料。 (1)不锈钢系列:均为奥氏体的铁基合金。以奥氏体不锈钢为基础,再加入钛元素,使材料具有较高的抗腐蚀性能。加入了钼元素,并相应地减少硫、磷等杂质,从而提高了材料的硬度和耐腐蚀性。镍在不锈钢中的主要性能是防锈、抗腐蚀、提高材料的韧性。316、316L、317、3l7L牌号的不锈钢,惰性好、耐蚀性强。它的机械性能也适合制作内固定器材,是目前国际选用最广的医用不锈钢材料。 (2)钴、铬、钼合金:钴的硬度大,耐腐蚀性好;钼在合金中含量较不锈钢系列高,故合金的硬度大、具有良好的耐腐蚀性。缺点是钴对细胞的毒性较大.植入人体后也可能引起过敏反应,甚至有致癌作用。而且价格昂贵,制品加工困难,现已少用。 (3)钛及钛合金:包括纯钛和钛基合金两大类。 钛元素较活泼,晶体表面极易氧化。材料表面氧化后形成一层钝性氧化膜,性质稳定、惰性大、耐酸、耐腐蚀性和组织相容性好,对细胞的毒性极低。而且质量轻,抗拉强度和屈服强度均较不锈钢、钴铬钼合金低。弹性模量接近人体皮质骨,作为骨折内固定材料有其优点,并有广泛应用价值。 纯钛的硬度低、质轻、不耐磨。如在真空800摄氏度氮化炉中经表面氮化处理后,可增加它的硬度、耐磨性和惰性。 常用的钛合金内固定材料有两种。 a.T-6A1—4V:国产牌号为TC4。其硬度和耐腐蚀性大于纯钛.而且质轻,是目前较为常用的内固定金属材料之一。 b.镍钛形状记忆合金:材料的组织相容性好,耐腐蚀性强。它在低温下可产生可塑性变形,当温度升高后又能恢复原来形状,故可制作特殊需要的内固定用品,如特殊形状的钉和Ender针等。但记忆复形的机械强度有限,目前尚不能广泛应用,还须进一步研究。

钛及钛合金牌号和化学成分汇总

《钛及钛合金牌号和化学成分》(2009/11/30 15:05) (引用地址:未提供) 目录:行业知识 浏览字体:大中小 《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗 TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。

钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。

钛合金的十大性能

的十大性能来源: 作者:中国钛业联盟时间:2007-05-04 点击: 26 Tag:性能十大金属强度腐蚀合金氧化振动介 质 一、密度小,比强度高 金属钛的密度为4.51g/cm3,高于铝而低于钢、铜、镍,但比强度位于金属之首。 二、耐腐蚀性能 钛是一种非常活泼的金属,其平衡电位很低,在介质中的热力学腐蚀倾向大。但实际上钛在许多介质中很稳定,如钛在氧化性、中性和弱还原性等介质中是耐腐蚀的。这是因为钛和氧有很大的亲和力,在空气中或含氧的介质中,钛表面生成一层致密的、附着力强、惰性大的氧化膜,保护了钛基体不被腐蚀。即使由于机械磨损也会很快自愈或重新再生。这表明了钛是具有强烈钝化倾向的金属。介质温度在315℃以下钛的氧化膜始终保持这一特性。 为了提高钛的耐蚀性,研究出氧化、电镀、等离子喷涂、离子氮化、离子注入和激光处理等表面处理技术,对钛的氧化膜起到了增强保护性作用,获得了所希望的耐腐蚀效果。针对在硫酸、盐酸、甲胺溶液、高温湿氯气和高温氯化物等生产中对金属材料的需要,开发出钛-钼、钛-钯、钛-钼-镍等一系列耐蚀钛合金。钛铸件使用了钛-32钼合金,对常发生缝隙腐蚀或点蚀的环境使用了钛-0.3钼-0.8镍合金或钛设备的局部使用了钛-0.2钯合金,均获得了很好的使用效果。 三、耐热性能好 新型钛合金可在600℃或更高的温度下长期使用。 四、耐低温性能好 钛合金TA7(Ti-5Al-2.5Sn),TC4(Ti-6Al-4V)和Ti-2.5Zr-1.5Mo等为代表的低温钛合金,其强度随温度的降低而提高,但塑性变化却不大。在-196-253℃低温下保持较好的延性及韧性,避免了金属冷脆性,是低温容器,贮箱等设备的理想材料。 五、抗阻尼性能强 金属钛受到机械振动、电振动后,与钢、铜金属相比,其自身振动衰减时间最长。利用钛的这一性能可作音叉、医学上的超声粉碎机振动元件和高级音响扬声器的振动薄膜等。 六、无磁性、无毒 钛是无磁性金属,在很大的磁场中也不会被磁化,无毒且与人体组织及血液有好的相溶性,所以被医疗界采用。

镍基高温合金

镍基高温合金 浏览: 文章来源:中国刀具信息网 添加人:阿刀 添加时间:2007-06-28 以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗 氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60 年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内, 镍基高温合金的发展趋势

镍基合金的工作温度从 700℃提高到1100℃,平均每年提高10℃左右。镍基高温合 金的发展趋势见图1。 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的 A 3B 型金属间化合物 '[Ni 3(Al ,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中 Cr

钛及钛合金标准与钛十大性能

钛 作者:商占法介绍 钛是一种金属元素,灰色,原子序数22,相对原子质量47.87。能在氮气中燃烧,熔点高。钛的密度为4.54g/cm3,比钢轻43% ,比久负盛名的轻金属镁稍重一些。机械强度却与钢相差不多,比铝大两倍,比镁大五倍。钛耐高温,比黄金和钢都高的多。钝钛和以钛为主的合金是新型的结构材料,主要用于航天工作和航海工业,在石油化工行业也有较多的应用。 钛的硬度与钢铁差不多,而它的重量几乎只有同体积的钢铁的一半,钛虽然稍稍比铝重一点,它的硬度却比铝大2倍。现在,在宇宙火箭和导弹中,就大量用钛代替钢铁。据统计,目前世界上每年用于宇宙航行的钛,已达一千吨以上。极细的钛粉,还是火箭的好燃料,所以钛被誉为宇宙金属,空间金属。 钛的耐热性很好,熔点高达1660℃℃。在常温下,钛可以安然无恙地躺在各种强酸强碱的溶液中。就连最凶猛的酸——王水,也不能腐蚀它。钛不怕海水,有人曾把一块钛沉到海底,五年以后取上来一看,上面粘了许多小动物与海底植物,却一点也没有生锈,依旧亮闪闪的。现在,人们开始用钛来制造潜艇——钛潜艇。由于钛非常结实,能承受很高的压力,这种潜艇可以在深达4500米的深海中航行 在常温下,钛不会被稀盐酸、稀硫酸、硝酸或稀碱溶液所腐蚀;只有氢氟酸、热的浓盐酸、浓硫酸等才可对它作用。钛合金有好的耐热强度、低温韧性和断裂韧性,故多用作飞机发动机零件和火箭、导弹结构件。钛合金还可作燃料和氧化剂的储箱以及高压容器。现在已有用钛合金制造自动步枪,迫击炮座板及无后座力炮的发射管。在石油工业上主要作各种容器、反应器、热交换器、蒸馏塔、管道、泵和阀等。钛可用作电极和发电站的冷凝器以及环境污染控制装置。钛镍形状记忆合金在仪器仪表上已广泛应用。在医疗中,钛与人体有很好的相容性,可作人造骨头和各种器具。钛还是炼钢的脱氧剂和不锈钢以及合金钢的组元。钛白粉是颜料和油漆的良好原料。碳化钛,碳(氢)化钛是新型硬质合金材料。氮化钛颜色近于黄金,在装饰方面应用广泛。纯钛是银白色的金属,它具有许多优良性能。 钛具有可塑性,高纯钛的延伸率可达50-60%,断面收缩率可达70-80%,但强度低,不宜作结构材料。钛中杂质的存在,对其机械性能影响极大,特别是间隙杂质(氧、氮、碳)可大大提高钛的强度,显著降低其塑性。钛作为结构材料所具有的良好机械性能,就是通过严格控制其中适当的杂质含量和添加合金元素而达到的。 工业纯钛的杂质含量较化学纯钛要多,因此其强度、硬度也稍高,其力学性能及化学性能与不锈钢相近,比起钛合金纯钛强度较好,在抗氧化性方面优于奥氏体不锈钢,但耐热性较差,TA1、TA2、TA3依次杂质含量增高,机械强度、硬度依次增强,但塑性韧性依次下降。 钛的十大性能 密度小,比强度高金属钛的密度为4.54g/cm3,高于铝而低于钢、铜、镍,但比强度位于金属之首。 耐腐蚀性能钛是一种非常活泼的金属,其平衡电位很低,在介质中的热力学腐蚀倾向大。但实际上钛在许多介质中很稳定,如钛在氧化性、中性和弱还原性等介质中是耐腐蚀的。这是因为钛和氧有很大的亲和力,在空气中或含氧的介质中,钛表面生成一层致密的、附着力强、惰性大的氧化膜,保护了钛基体不被腐蚀。即使由于机械磨损也会很快自愈或重新再生。

镍基高温合金溅射NiCrALY涂层盐腐蚀行为

第一章绪论 1.1. 铸造高温合金的发展 自从20世纪40年代初期第一台航空喷气发动机采用第一个铸造涡轮工作叶片以来,铸造高温合金的发展经历了一段曲折而又辉煌的历程。半个世纪以来,航空发动机涡轮前温度从40年代的730℃提高到90年代的1677℃,推重比从大约3提高到10,这一巨大进展固然离不开先进的设计思想、精湛的制造工艺以及有效的防护涂层,但是高性能的铸造高压涡轮叶片合金的应用更是功不可没。在这世纪之初回顾铸造高温合金发展的历程,不能不提到如下几件使人难忘的重大事件[1]。美国GE公司为其J33航空发动机选用了钴基合金HS 21制作涡轮工作叶片,代替原先用的锻造高温合金Hasteelloy B。,从此开创了使用铸造高温合金工作叶片的历史。到60年代初,由于发动机工作温度提高,要求叶片合金的热强性能进一步提高,使高温合金合金化程度不断提高,于是出现了复杂合金化与压力加工困难的矛盾,并且越来越尖锐,加之这一时期铸造技术进步,使合金性能和叶片质量提高,出现了大批复杂合金化的高性能合金,使铸造高温合金叶片的应用越来越广泛。我国第一个铸造高温合金是北京航空材料研究院于1958年研制的K401合金,用作WP6发动机的导向叶片。我国第一个铸造涡轮工作叶片是60年代初在黎明发动机厂研制的WP6S发动机一级涡轮叶片(K406合金)。70年代中期,由中科院金属研究所研制成功的K417镍基铸造高温合金制作涡轮叶片用于WP-7型发动机,投入生产,成为我国最先服役于航线的铸造涡轮叶片合金。70年代之后,由于定向凝固和单晶合金的出现,使得所有国家的先进新型发动机几乎无一例外地选用铸造高温合金制作最高温区工作的叶片,从此确立了铸造高温合金叶片的稳固地位[2]。 1.2镍基高温合金的发展 早在60年代,国内外就开始对从高温合金诞生的金属间化合物(Ni3Al、NiAl、Ti3Al、TiAl)为基的合金进行了广泛的研究,因为这些化合物具有诱人的低密度、高模量和良好的抗氧化性,认为是有发展前景的替换材料。70年代中期,美国Howmet公司发展了高温合金细晶铸造法,从而在合金凝固过程的晶粒控制方面

钛合金的种类

钛及钛合金的种类、用途、市场分析及预测 一、钛和钛合金的种类及特点 1.1钛的起源及特点 钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有比强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了广泛应用。 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/立方厘米,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。钛是同素异构体,熔点为1668℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方晶格结构,称为β钛。 1.2钛合金的种类及特点 1.2.1钛合金的种类 钛是同素异构体,熔点为1668℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方晶格结构,称为β钛。钛合金是以钛为基础加入其他元素组成的合金,利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温

度及相分含量逐渐改变而得到不同组织的钛合金(titanium alloys)。室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB 表示,另外钛铝金属间化合物(TixAl,此处x=1)作为一种特殊的钛合金也被广泛的应用。 1.2.1.1α钛合金 它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 1.2.1.2β钛合金 它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。 1.2.1.3α+β钛合金 它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。

K417镍基铸造高温合金材料报告

K417镍基铸造高温合金材料报告 K417是高强度的镍基铸造高温合金,其成分中的铝和钛含量较高,形成约占合金重量67%的γ′强化相,因而高温强度较高、塑性较好,加之其密度较低(7.8g/cm3),故特别适宜制作高温转动件。但它的组织稳定性较差,特别是当成分偏上限或铸造工艺参数控制不当时,零件在850~950℃长期工作中,有析出片状σ相的倾向。它的耐热腐蚀性能也较差,若长期高温使用,需用保护涂层 . 化学成分 Typical values(Weight %) Cr Ni Co Mo Al Ti 8.50-9.5 余14.0-16.0 2.50-3.20 4.80-5.70 4.50-5.00 Fe C Mn Si P S ≤1.0 0.13-0.22 ≤0.50 ≤0.50 ≤0.015 ≤0.010 力学性能 θ/℃持久性能拉伸性能 σb/ MPa t/h σb/ MPa δБ/% W / % 900 315 ≥70 635 6 8 物理性能 密度:7.8 g/m3 熔点:1260℃-1340℃ 磁性能:无 相近牌号 美国:IN100 技术标准 HB 5161—1988 物理数据 温度 ℃热导率W/mk 温度 ℃线膨胀系数10-6/K 132 10.87 200 13.2 419 14.23 431 13.5 661 19.25 679 13.5 760 25.94 759 14.7 947 38.49 868 15.7 1076 35.98 956 16.8 1109 41.42 1000 17.3 成形性能 用熔模铸造法可铸成壁厚小至1mm的薄壁零件也可铸造整体涡轮 焊接性能 可以进行氩弧堆焊 零件热处理工艺 1. 零件在铸态下使用; 2. 也可进行渗铝和消除应力的退火处理,处理温度低于1120℃。 表面处理工艺

国内外医用钛及钛合金标准及性能

国内外医用钛及钛合金标准及性能 发布时间:2010-4-17 10:20:42 中国废旧物资网 一、钛在医学中的应用 1、钛作为一种新兴的材料在我国及世界制药工业、手术器械、人体植入物等领域使用已有几十年的历史,并已取得了极大地成功。 2、人体内应外伤、肿瘤造成的骨、关节损伤,采用钛及钛合金可制造人工关节、接骨板和螺钉现已广泛用于临床。还用于髋关节(包括股骨头)、膝关节、肘关节、掌指关节、指间关节、下頜骨、人造椎体(脊柱矫形器)、心脏起搏器外壳、人工心脏(心脏瓣膜)、人工种植牙、以及钛网在头盖骨整形等方面。 3、 对于植入物材料的要求可以归为三个方面:材料与人体的生物相容性、材料在人体环境中的耐腐蚀性和材料的力学性能,作为长期植入材料有下列七项具体要求: ①、耐蚀性; ②、生物相容性; ③、优越的力学性能和疲劳性能; ④、韧性; ⑤、低的弹性模量; ⑥、在组合体中有好的耐磨性; ⑦、令人满意的价格; 4、外科植入物材料主要有:金属、聚合物、陶瓷等,金属材料又包括不锈钢、鈷基合金和钛基合金。 材料性能与骨性能的比较和植入物材料的特性比较见表一和表二。从表二可以看出,不锈钢价格低廉,易于加工,但耐蚀性和生物相容性不如钛合金;鈷鉻合金的耐磨性比钛合金好,但密度较大,太重;钛及钛合金由于比强度高,生物相容性好及耐体液腐蚀性好等特点正日益受到重视。钛合金的不足之处识是耐磨性差、难于铸造,加工性能也差。 二、国内外外科植入物用钛及钛合金加工材标准情况 1、国外外科植入物用加工材标准 纯钛:国际标准化组织 ISO 5832/2 1999E《外科植入物-纯钛加工材》 美国标准:ASTM F67 2006a 《外科植入物用纯钛》 TC4: 国际标准化组织 ISO 5832/3 1996Z 《外科植入物-金属材料-Ti-6Al-4V加工材》ASTM F1472 2002 《外科植入物用Ti-6Al-4V合金加工材》 TC4ELI: ASTM F136 2002a 《外科植入物用Ti-6Al-4VELI(超低间隙)加工材规范》

K435镍基铸造高温合金抗拉强度、屈服强度、K435执行标准

K435镍基铸造高温合金抗拉强度、屈服强度、K435执行标准 , 『常见问题』:铸造高温合金系列有哪些?铸造高温合金是什么材质?铸造高温合金执行标准是什么?铸造高温合金抗拉强度是什么?铸造高温合金是什么价格?铸造高温合金屈服强度是什么?铸造高温合金对应什么牌号?铸造高温合金硬度是什么? 『为用户提供形态』 K435铸造高温合金棒材,K435铸造高温合金板材,K435铸造高温合金无缝管材,K435铸造高温合金带材,K435铸造高温合金卷材,K435铸造高温合金盘丝,K435铸造高温合金扁条,K435铸造高温合金圆棒,K435铸造高温合金厚板,K435铸造高温合金光棒,K435铸造高温合金圆钢,等可定制 高温合金在航空发动机和各种工业燃气轮机中有广泛的应用。热端零部件,即涡轮叶片、导向叶片、涡轮盘、燃烧室等四大零件,几乎都由高温合金制成。跟着发动机推力和推重比的增大,涡轮入口温度不断提高,要求相应零件所用高温合金的力学性能不断提高,只有经过发展和改善高温合金的成分和工艺,使高温合金的承温能力不断提高,才能确保航空航天用发动机和工业燃气轮机的不断发展。K435镍基铸造

高温合金用于制作先进燃气轮机的导向叶片,最高工作温度可达900度。对K435合金室温旋转曲折疲惫行为进行了研讨;对K435合金的高温蠕变行为及其变形机制进行了详细报道,但在较宽温控条件下的瞬时拉伸变形特征及其断裂机理方面的研究并不多见。本文说明了K435合金的铸态组织,进行标准热处理后,测定在不同温度(室温到950)下该合金的拉伸性能,并对该温度区间的拉伸性能和断口形貌进行对比分析,为进一步提高该合金性能及实际应用提供理论依据。 1实验方法K435母合金通过500kg真空感应炉熔炼。取10kgK435合金在真空条件下重熔并经熔模浇注成直径为14mm、长为66mm、最细处直径为5mm的漏斗形试棒用于拉伸性能测试。在进行力学性能测试前需对合金进行热处理,工艺过程为:11604h,空冷+10504h,空冷+85016h,空冷。分别采用AG-5000A型材料试验机和DCX-25T 型高温试验机对K435镍基铸造高温合金进行室温和高温拉伸性能测试。实验温度从室温到950,变形速率为2s-1。实验期间,炉温精度控制在3以内。金相组织与断口观察在光学显微镜和配备能谱仪的S360型扫描电子显微镜(SEM)上进行。 2实验结果和分析 2.1热处理对K435高温合金组织的影响进行力学性能测试前对合金进行热处理。热处理主要包括固溶处理、中间处理和时效三部分。固溶处理是为了溶解基体内碳化物、'相等以得到均匀的过饱和固溶体,便于时效重新析出颗粒细小、分布均匀的碳化物和'等强化相,同时消除由于冷热加工产生的应力,避免合金发生再结晶;同时,固溶处理是

钛及钛合金牌号和化学成分汇总

(2009/11/30 15:05) 《钛及钛合金牌号和化学成分》(引用地址:未提供) ★阿里同摘目录:行业知识 小浏览字体:大中《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗TiCI4->精制->纯TiCI4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方 法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制 成各种形状的零件、部件。. 钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值咼、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。

故钛和钛合金的加工工艺必须考虑它们的这些特点 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。 钛材生产的原则流程 钛材除了纯钛外,目前世界上已经生产出近30 种牌号的钛合金。 使用最广泛的钛合金是Ti-6AI-4V, Ti-5AI— 2.5Sn等 医用钛标准(2008/05/29 23:54) 外科植入物用钛及钛合金加工材执行标准GB/T 13810—1997 1 范围本标准规定了外科植入物用钛及钛合金加工材的技术要求、试验方法、检验规则标志、包装、运输、储存。

带大家认识一下医用金属材料!

带大家认识一下医用金属材料! 金属医用材料是人类最早利用的医用材料之一,其应用可以追溯到公元前400~300年,腓尼基人将金属丝用于修复牙缺失。随后,经历了漫长岁月的发展,直至19世纪后期,人类成功利用贵金属银对患者的膝盖骨进行缝合(1880年)。人类利用镀镍钢螺钉进行骨折治疗(1896年)后,才开始了对金属医用材料的系统研究。20世纪30年代,随着钴铬合金、不锈钢和钛及合金的相继开发成功并在齿科和骨科中得到广泛的应用,逐步奠定了金属医用材料在生物医用材料中的重要地位。70年代,Ni-Ti形状记忆合金在临床医学中的成功应用以及金属表面生物医用涂层材料的发展,使生物医用金属材料得到了极大的发展。医用金属材料也被称为外科植入金属材料,主要用于诊断、治疗,以及替换人体中的组织或增进其功能。近20年来,虽然金属医用材料相对于高分子材料、复合材料以及杂化和衍生材料等生物医用材料的发展缓慢,但其具有高的强度、良好的韧性及抗弯曲疲劳强度、优异的加工性能等许多其它几类医用材料不可替代的优良性能,是临床应用中最广泛的承力植入材料。尤其随着金属3D打印技术的发展,金属医用材料得到了更广泛的应用,最重要的应用有:骨折内固定板、螺钉、人工关节和牙根种植体等。

常用金属医用材料 临床应用的医用金属材料主要有不锈钢、钴合金、钛合金、形状记忆合金、贵金属以及纯金属钽、铌、锆等。 不锈钢 医用不锈钢(Stainless Steel as Biomedical Material)为铁基耐蚀合金,是最早开发的生物医用合金之一,其特点是易加工、价格低廉,耐蚀性和屈服强度可以通过冷加工提高,避免疲劳断裂。不锈钢按显微组织可分为:奥氏体不锈钢、铁素体不锈钢、马氏体不锈钢、沉淀硬化型不锈钢等,被用以制作医疗器械:刀、剪、止血钳、针头,同时被用以制作人工关节、骨折内固定器、牙齿矫形、人工心脏瓣膜等器件。其中,医用应用最多的是奥氏体超低碳不锈钢316L和317L。1987年,316L和317L两种合金已于纳入国际标准ISO 5832和ISO 7153中。1990年,我国制定了相应的国家标准GB 12417,并于1991年开始实施。医用不锈钢钳 医用不锈钢的生物相容性及相关问题,主要涉及到不锈钢植入人体后由于腐蚀或磨损造成金属离子溶出所引起的组织 反应等。大量的临床资料显示,医用不锈钢的腐蚀造成其长期植入的稳定性差,加之其密度和弹性模量与人体硬组织相距较大,导致力学相容性差。由于腐蚀会造成金属离子或其它化合物进人周围的组织或整个机体,因而可在机体内引起某些不良组织学反应,如出现水肿、感染、组织坏死等,从

中外钛合金对照表

中外钛合金对照表 中国美国俄罗斯 TA1 工业纯钛Grade1 1号钛BT1-00 工业纯钛 TA2 工业纯钛Grade2 2号钛BT1-0 工业纯钛 TA3 工业纯钛Grade3 3号钛 TA4 工业纯钛Grade4 4号钛 TC4 TI-6AL-4V Grade5 TI-6AL-4V BT6 TI-6AL-4V TA7 TI-5AL-2.5Sn Grade6 TI-5AL-2.5Sn BT5-1 TI-5AL-2.5Sn TA9 TI-0.2 Pd Grade7 TI-0.2 Pd TA18 TI-3AL-2.5V Grade9 TI-3AL-2.5V 3B TI-3AL-2.5V TA9-1 TI-0.2 Pd ELI Grade11 TI-0.2 Pd ELI TA10 TI-0.3Mo-0.8Ni Grade12 TI-0.3Mo-0.8Ni TC4 ELI TI-6AL-4V ELI Grade23 TI-6AL-4V ELI BT6C TI-6AL-4V ELI TB5 Ti-15V-3Sn-3Cr TI15333 15V-3Sn-3Cr-3Al 钛材性能表 牌号钛及钛合金板 GB/T3621-2007 钛及钛合金棒 GB/T2965-2007 室温力学性能不小于室温力学性能不小于 抗拉强度屈服强度伸长率% 抗拉强度屈服强度伸长率% 收缩率% TA1 240 140-310 30 240 140 24 30 TA2 400 275-450 25 400 275 20 30 TA3 500 380-550 20 500 380 18 30 TA9 400 275-450 20 370 250 20 25 TB5 705-945 690-835 10-12 TC4 895 830 8-12 895 825 10 25

ASTM F799-02 外科移植用热机加工钴铬钼合金(UNS R31537, R31538, R31539)

Designation:F 799–02 Standard Speci?cation for Cobalt-28Chromium-6Molybdenum Alloy Forgings for Surgical Implants (UNS R31537,R31538,R31539)1 This standard is issued under the ?xed designation F 799;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon (e )indicates an editorial change since the last revision or reapproval. 1.Scope* 1.1This speci?cation covers requirements of cobalt-28chromium-6molybdenum alloy (UNS R31537,R31538,R31539)high-strength forgings for the manufacture of surgical implants.The properties speci?ed in this document speci?cally apply to ?nished or semi?nished parts that receive no subse-quent thermomechanical processing. 1.2The values stated in inch-pound units are to be regarded as the standard.The SI equivalents of the inch-pound units may be approximate. 1.3Wrought material to be used as forging stock in the manufacture of forgings conforming to this speci?cation,typically hot worked and unannealed with a surface ?nish suitable for forging,shall be fabricated and supplied in accordance with F 1537. 2.Referenced Documents 2.1ASTM Standards: E 8Test Methods for Tension Testing of Metallic Materials 2E 18Test Methods for Rockwell Hardness and Rockwell Super?cial Hardness of Metallic Materials 2 E 112Test Methods for Determining Average Grain Size 2E 165Test Method for Liquid Penetrant Examination 3 E 930Test Methods for Estimating the Largest Grain Ob-served in a Metallographic Section (ALA Grain Size)2 F 75Speci?cation for Cast Cobalt-Chromium-Molybdenum Alloy for Surgical Implant Applications 4 F 601Practice for Fluorescent Penetrant Inspection of Me-tallic Surgical Implants 4 F 981Practice for Assessment of Compatibility of Bioma-terials for Surgical Implants with Respect to Effect of Materials on Muscle and Bone 4 F 1537Speci?cation for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants 4 2.2ISO Standards:5 ISO 6892Metallic Materials—Tensile Testing at Ambient Temperature 2.3American Society for Quality Standard:6 ASQ C1Speci?cation of General Requirements for a Qual-ity Program 3.Ordering Information 3.1Inquiries and orders for material under this speci?cation shall include the following information:3.1.1Quantity, 3.1.2ASTM designation,date of issue,and alloy number,3.1.3Mechanical properties,3.1.4Form, 3.1.5Applicable dimensions or drawing number,3.1.6Condition, 3.1.7Special tests,if any,and 3.1.8Other requirements. 4.Materials and Manufacture 4.1Materials for forgings shall be bar,rod,or wire fabri-cated in accordance with Speci?cation F 1537. 4.2The material shall be forged by hammering,pressing,rolling,extruding,or upsetting,and shall be processed,if practicable,so as to cause metal ?ow during the hot-working operation to be in the most favorable direction for resisting stresses encountered in service,as may be indicated to the supplier by the purchaser. 4.3Forgings shall be free of splits,scale,cracks,?aws,and other imperfections not consistent with good commercial practice. 4.4Optional indenti?cation marks,including the purchas-er’s logo,material designation,heat code number,and impres-sion number,may be placed upon each forging,the method and location of which shall be as speci?ed by the purchaser. 1 This speci?cation is under the jurisdiction of ASTM Committee F04on Medical and Surgical Materials and Devices and is the direct responsibility of Subcommittee F04.12on Metallurgical Materials. Current edition approved Apr.10,2002.Published June 2002.Originally published as F 799–https://www.360docs.net/doc/2217233818.html,st previous edition F 799–99.2 Annual Book of ASTM Standards ,V ol 03.01.3 Annual Book of ASTM Standards ,V ol 03.03.4 Annual Book of ASTM Standards ,V ol 13.01. 5 Available from American National Standards Institute,25W.43rd St.,4th Floor,New York,NY 10036.6 Available from American Society for Quality,600N.Plankinton Ave.,Milwaukee,WI 53203. 1 *A Summary of Changes section appears at the end of this standard. Copyright ?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States. 准标网 https://www.360docs.net/doc/2217233818.html, 免费下载 The standard is downloaded from https://www.360docs.net/doc/2217233818.html,

相关文档
最新文档