微波硫化三元乙丙橡胶密封胶条的配方研究_王庆

微波硫化三元乙丙橡胶密封胶条的配方研究_王庆
微波硫化三元乙丙橡胶密封胶条的配方研究_王庆

三元乙丙橡胶的特性

三元乙丙橡胶主链由化学性稳定的饱和烃组成,仅在侧链中含不饱和双键,故基本上属于种饱和型橡胶。由于分子结构内无极性取代基,分子间内聚能低,故分子链可在较宽的温度范围内保持柔顺性。乙丙橡胶的化学结构使其硫化制品具有独特的性能。 1 低密度高填充性:三元乙丙橡胶是一种密度较低的橡胶,其密度为0.8 7。加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了三元乙丙橡胶生胶价格高的缺点,并且对高门尼值的三元乙丙橡胶来说,高填充后物理机械性能降低幅度不大。 2 耐老化性:乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。三元乙丙橡胶制品在1 20 ℃下可长期使用,在1 50~200 。C下可短暂或间歇使用。加入适宜防老剂可提高其使用温度。用过氧化物交联的三元乙丙橡胶可在更苛刻的条件下使用。三元乙丙橡胶在臭氧浓度50×10~,拉伸30%,可达1 50 h 以上不龟裂。 3 耐腐蚀性:由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等及矿物油中稳定性较差。在浓酸长期作用下性能也要下降。在ISO/TR7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料。刘乙丙橡胶作用程度为1级的化学品有80多种,在此不一~列举。 4 耐水蒸气:乙丙橡胶有优异的耐水蒸气性能并优于其耐热性。在230℃过热蒸汽中,近1 00 h后外观无变化。而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。 5 耐过热水性能:三元乙丙橡胶耐过热水性能亦较好,但与所用硫化系统密切相关。以二硫代二吗啡啉、TMTD为硫化系统的乙丙橡胶,在1 2 5 ℃过热水中浸泡1 5个月后,力学性能变化甚小,体积膨胀率仅0.3%。

三元乙丙胶

三元乙丙橡胶是由乙烯、丙烯经溶液共聚合而成的橡胶,再引入第三单体(ENB)。三元乙丙橡胶基本上是一种饱和的高聚物,耐老化性能非常好、耐天候性好、电绝缘性能优良、耐化学腐蚀性好、冲击弹性较好。乙丙橡胶的最主要缺点是硫化速度慢;与其它不饱和橡胶并用难,自粘和互粘性都很差,故加工性能不好。 根据乙丙橡胶的性能特点,主要应用于要求耐老化、耐水、耐腐蚀、电气绝缘几个领域,如用于轮胎的浅色胎侧、耐热运输带、电缆、电线、防腐衬里、密封垫圈、建筑防水片材、门窗密封条、家用电器配件、塑料改性等。 乙丙橡胶的性质与用途 乙丙橡胶以乙烯和丙烯为主要原材料合成,耐老化、电绝缘性能和耐臭氧发能突出。乙丙橡胶可大量充油和填充碳黑,制品价格较低,乙丙橡胶化学稳定性好,耐磨性、弹性、耐油性和丁苯橡胶接近。乙丙橡胶的用途十分广泛,可以作为轮胎侧、胶条和内胎以及汽车的零部件,还可以作电线、电缆包皮及高压、超高压绝缘材料。还可制造及鞋、卫生用品等浅色制品。 乙丙橡胶的性能与改进 一、1、低密度高填充性 乙丙橡胶的密度是较低的一种橡胶,其密度为0.87。加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了乙丙橡胶生胶价格高的缺点,并且对高门尼值的乙丙橡胶来说,高填充后物理机械能降低幅度不大。 2、耐老化性 乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。乙丙橡胶制品在120℃下可长期使用,在150- 200℃下可短暂或间歇使用。加入适宜防老剂可提高其使用温度。以过氧化物交联的三元乙丙橡胶可在苛刻的条件下使用。三元乙丙橡胶在臭氧浓度50pphm、拉伸30%的条件下,可达150h以上不龟裂。 3、耐腐蚀性 由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等)及矿物油中稳定性较差。在浓酸长期作用下性能也要下降。在ISO/TO 7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料,并规定了1-4级表示其作用程度, 腐蚀性化学品对橡胶性能的影响: 等级体积溶胀率/% 硬度降低值对性能影响 1 <10 <10 轻微或无 2 10-20 <20 较小 3 30-60 <30 中等 4 >60 >30 严重 4、耐水蒸汽性能 乙丙橡胶有优异的耐水蒸汽性能并估优于其耐热性。在230℃过热蒸汽中,近100h后外观无变化。而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。 5、耐过热水性能 乙丙橡胶耐过热水性能亦较好,但与所有硫化系统密切相关。以二硫化二吗啡啉、TMTD 为硫化系统的乙丙橡胶,在125℃过热水中浸泡15个月后,力学性能变化甚小,体积膨胀率仅0.3%。

三元乙丙橡胶(EPDM)简介之欧阳光明创编

三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,

不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 EPDM第三单体的选择第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不饱

和,以便实现硫化。第三单体的选择必须满足以下要求:最多两键:一个可聚合,一个可硫化 反应类似于两种基本的单体主键随机聚合产生均匀分布足够的挥发性,便于从聚合物中除去 最终聚合物硫化速度合适二烯烃类型和含量对聚合物特性的影响 三元乙丙生产中主要是用ENB和DCPD。 三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。在

相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增:EPM

橡胶硫化

橡胶未硫化以前,单个分子间没有产生交联,因此缺乏良好的物理机械性能,实用价值不大。当橡胶配以硫化剂经过硫化(交联)以后,由于立体结构的形式从而使性能大大改善,尤其是橡胶的定伸强度、弹性、硬度、拉伸强度等一系列物理机械性能都会大幅度提高,成为具有宝贵作用价值的硫化胶。 橡胶的硫化就是通过橡胶分子间的化学交联作用将基本上呈塑性的生胶转化成弹性的和尺寸稳定的产品,硫化后的橡胶的物性稳定,使用温度范围扩大。“硫化过程(Curing)”一词在整个橡胶工业中普遍使用,在橡胶化学中占有重要地位。橡胶分子链间的硫化(交联)反应能力取决于其结构。不饱和的二烯类橡胶(如天然橡胶、丁苯橡胶和丁腈橡胶等)分子链中含有不饱和双键,可与硫黄、酚醛树脂、有机过氧化物等通过取代或加成反应形成分子间的交联。饱和橡胶一般用具有一定能量的自由基(如有机过氧化物)和高能辐射等进行交联。含有特别官能团的橡胶(如氯磺化聚乙烯等),则通过各种官能团与既定物质的特定反应形成交联,如橡胶中的亚磺酰胺基通过与金属氧化物、胺类反应而进行交联。 不同类型的橡胶与各种交联剂反应生成的交联键结构各不相同,硫化胶性能也各有不同。 第①种是使用硫黄或硫给予体作交联剂的情况,生成的可以是单硫键(x=1)、双硫键(x=2)和多硫键(x=3~8); 第②种是使用树脂交联和肟交联的情况; 第③种是使用过氧化物交联的过氧化物硫化和利用辐射交联的辐射硫化的情况,生成碳-碳键。 多数的通用橡胶采用硫黄或硫给予体硫化,即在生胶中加入硫黄或硫给予体以及缩短硫化时间的促进剂和保证硫黄交联效率的氧化锌和硬脂酸组成的活性剂。在实际中通常按硫黄用量及其与促进剂的配比情况划分成以下几种典型的硫化体系: ①普通硫磺硫化体系由常用硫黄量(>1.5份)和常用促进剂量配合组成。使用这种硫化体系能使硫化胶形成较多的多硫键,和少量的低硫键(单硫键和双硫键)。硫化胶的拉伸强度较高,耐疲劳性好。缺点是耐热和耐老化性能较差。 ②半有效硫化体系由硫黄量0.8~1.5份(或部分硫给予体)与常用促进剂量配合所组成。使用这种硫化体系能使硫化胶形成适当比例的低硫键和多硫键,硫化胶的扯断强度和耐疲劳性适中,耐热、耐老化性能较好。 ③有效硫化体系由低硫黄量(0.3~0.5份)或部分硫给予体与高促进剂量(一般为2~4份)配合组成。使用这种硫化体系能使硫化胶形成占绝对优势的的低硫键(单硫键和双硫键),硫化胶的耐热、耐老化性能好,缺点是拉伸强度和耐疲劳性能较低。 ④无硫硫化体系不用硫黄而全部用硫给予体和促进剂配合组成。这种硫化体系与有效硫化体系的性能相似。 1. 橡胶硫化的原理及微波橡胶硫化的优点 生橡胶受热变软,遇冷变硬、发脆,不易成型,容易磨损,易溶于汽油等有机溶剂,分子内具有双键,易起加成反应,容易老化。为改善橡胶制品的性能,生产上要对生橡胶进行一系列加工过程,在一定条件下,使胶料中的生胶与硫化剂发生化学反应,使其由线型结构的大分子交联成为立体网状结构的大分子,使从而使胶料具备高强度、高弹性、高耐磨、抗腐蚀等等优良性能。这个过程称为橡胶硫化。一般将硫化过程分为四个阶段,诱导-预硫-正硫化-过硫。为实现这一反应,必须外加能量使之达到一定的硫化温度,

微波技术应用

微波技术 一概述 微波是指波长范围为1mm~1m,频率范围为30×102 ~30×105MHz,具有穿透特性的电磁波。常用的微波频率为91 5MHz和 2 450MHz。微波作为一种电磁波,通常应用于广播、电视及通信技术中,近年来,随着科学技术的发展,微波作为一种能源,已逐渐应用于食品杀菌、干燥、烘烤、膨化、解冻等方面。 微波技术在食品工业中的应用可追溯到四十年代末期,1947年由美国雷声公司马文·贝克根据微波的加热效应制成了世界上第一台用于食品加热的微波炉。鉴于微波具有在食品内部生热并迅速产生均匀温度的观点,人们开始研究将它用于工业加热技术上以其开辟新的热能源,提高热能利用率和缩短加工时间,大约经历了十余年的探索,终于在1965年由美国Cryodry Comporation 公司研制成功了世界上第一台 915MHz/50kW隧道式微波干燥设备,并在Seyfert Foods食品公司首次投入实际应用,用来干燥油炸马铃薯片。此后微波能技术在美国、日本、加拿大和欧洲等发达国家在用来解决食品工业中的多种加热干燥、烹制、杀虫灭菌和回温解冻等方面相继获得成功并表现出强大的技术优势。到七十年代,世界各国普遍推广应用。例如在气候温和潮湿的日本,微波在食品工业中的应用占整个工业应用的60%。我国自1973年由南京电子管厂率先研制成功了工业微波干燥设备以来,经过了20年的努力,也积累了比较丰富的经验。目前我国已成功地应用微波能烧烤食品、干果焙烤、牛肉干燥、蔬菜脱水、快餐面干燥、食品杀菌、饮料杀菌、白酒陈化催熟等许多领域,并取得显著进展。 二微波技术的原理及特点 综合微波技术在食品工业中的各种应用可归结为如下原理。 (一)微波加热干燥原理 微波加热技术是一种新的加热方式。它是依靠以每秒245000万次速度进行周期变化的微波透入物料内,与物料的极性分子相互作用,物料中的极性(如水分子)吸收了微波能以后,改变其原有的分子结构,亦以同样的速度作电场极性运动,致使彼此间频繁碰撞而产生了大量的摩擦热,从而使物料内各部分在同一瞬间获得热能而升温。由于微波辐射下介质的热效应是内部整体加热的,即理论上所谓的“无温度梯度加热”,基本上介质内部不存在热传导现象,因此,微波可相当均匀地加热介质。微波加热技术与传统加热方法相比,有如下特性:①穿透力强。②热惯性小。③呈现选择加热特性。④具有反射性和透射性。 微波干燥是在微波理论,微波技术和微波电子管成就的基础上发展起来的一门新技术,微波干燥已在许多领域内获得广泛的应用。它是应用微波加热的原理, 使品温度上升,达到干燥的目的。微波干燥具有如下的特点: 1 .干燥速度快、干燥时间短 由于常规加热需要加热传热介质和环境,再进入食品,故需较长时间才能达到所需加热温度。而微波加热则是加热物体直接吸收微波能,加热速度大大高于常规加热方法,此时只需一般方法的十分之一到百分之一的时间就能完成整个加热和干燥的过程。 2. 产品质量高 由于加热时间短,又非热效应配合,因此,可以保存加工原料的色、香、味,并且维生素的破坏也较少。 3. 加热均匀

微波技术在各领域的应用 (2)

微波技术在各领域的应用 发布来源:三乐微波发布时间:2014/5/30 8:57:00 一、微波原理 微波就是指波长在1mm~1000mm、频率在300MHz-300GHz范围之间的电磁波,因为它的波长与长波、中波与短波相比来说,要“微小”得多,所以称之为“微波”。 微波有着不同于其她波段的重要特点,它自被人类发现以来,就不断的得到发展与应用,19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究,仅证实了麦克斯韦的一个预言—电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4月美国科学家South Worth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个语言—电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,有提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造除了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行了探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不进系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断的完善,我国开始研究与利用微波技术实在20世界70年代初期,首先在连续波磁控管的研制方面取得重大进展,特别就是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。此后我国在微波领域迅速发展,80年代我公司生产出中国第一台微波炉,到目前为止,家用微波炉、工业微波应用

三元乙丙橡胶配方

起止日期:2009.1—2009. 配位嵌段共聚合制备乙丙橡胶的合成工艺 一、聚合方法概述 反应方程式: CH3 CH3 |︱ CH2= CH2 + CH= CH2 ( CH2--- CH2)m(—CH2)n 乙烯丙烯共聚物 CH3 | CH2= CH2 + CH= CH2 +二烯烃 CH3 ︱ (CH2--- CH2)m—(CH—CH2)n—(二烯烃)y EPDM三元共聚物 反应机理:以乙烯、丙烯为单体,用钒-铝配合物为引发剂,其聚合机理属于配位离子型聚合反应。聚合时,首先是单体上双键的∏电子在引发剂活性中心的空位上进行络合,由于R-V键变弱,以致断裂,单体分子插入R-V键,链的增长按这个方式不断重复进行。 主要用途:因乙丙橡胶分子主链为饱和结构而呈现出卓越的耐候性、耐臭氧、电绝缘性、低压缩永久变形、高强度和高伸长率等宝贵性能,其应用极为广泛,消耗量逐年增加。根据乙丙橡胶的不同系列和分子结构方面的特点,乙丙橡胶应用种类有通用型、混用型、快速硫化型、易加工型和二烯烃橡胶并用型等不同应用类型。从实际应用情况分析,乙丙橡胶在非轮胎方面得到了广泛的应用。 1.汽车工业乙丙橡胶在汽车制造行业中应用量最大,主要应用于汽车密封条、散热器软管、火花塞护套、空调软管、胶垫、胶管等。在汽车密封条行业中,

主要利用EPDM的弹性、耐臭氧、耐候性等特性,其ENB型的EPDM橡胶已成为汽车密封条的主体材料,国内生胶年消耗量已超过1万吨,但由于品种关系,其一半还依靠进口。由于热塑性三元乙丙橡胶EPDM/PP强度高、柔性好、涂装光泽度高、易回收利用的特点,在国内外汽车保险杠和汽车仪表板生产中已作为主导材料。预计到2010年仅汽车保险杠和仪表板两项产品,EPDM/PP的国内年用量可达4.5万吨。此类产品的回收利用主要采用的工艺方法是:先去掉产品表面的涂料-粉碎-清洗-再造粒-添加新料后生产新产品。这样在保险杠和仪表板生产中,就能节约大量原材料取得较好的经济效益。目前,我国乙丙橡胶在汽车工业中的用量占全国乙丙橡胶总用量的42%-44%,其中还不包括船舶、列车和集装箱密封条的乙丙橡胶用量。因乙丙橡胶的粘接性能不好,在汽车轮胎行业中在大量用料的轮胎主体和胎面部位上无法推广使用乙丙橡胶,只在内胎、白胎侧、胎条等部位少量使用乙丙橡胶。 2.建筑行业由于乙丙橡胶具有优良的耐水性、耐热耐寒性和耐候性,又有施工简便等特点,因此乙丙橡胶在建筑行业中主要用于塑胶运动场、防水卷材、房屋门窗密封条、玻璃幕墙密封、卫生设备和管道密封件等。乙丙橡胶在建筑行业中用量最大的还数塑胶运动场和防水卷材,就国内用量而言已占乙丙橡胶总用量的26%-28%。用EPDM生产的防水卷材已逐渐代替其他材料(如CMS)制作的防水卷材,尤其是用于地下建筑的防水卷材。 3.电气和电子行业在电气和电子行业中主要利用乙丙橡胶的优良电绝缘性、耐候性和耐腐蚀性,在许多电气部件中采用了此类橡胶。例如用乙丙橡胶生产电缆,尤其是海底电缆用EPDM或EPDM/PP代替了PVC/NBR制作电缆的绝缘层,电缆的绝缘性能和使用寿命有了大幅度提高。在变压器绝缘垫、电子绝缘护套方面也大量采用了乙丙橡胶制作。 4.乙丙橡胶与其他橡胶并用也是乙丙橡胶应用的一个很大的领域乙丙橡胶与其他橡胶并用在性能上可互补并改善工艺和降低成本。但由于各种配合剂对不同高聚物的亲合能力各异,共硫化性又取决于各高聚物交联效率,不同高聚物并用共混不可能达到分子级相容,而是分相存在的不均体系。配合剂的这种相间不均分配,对乙丙并用橡胶的性能有重大影响。在此简要介绍如下: (1)三元乙丙橡胶与丁基橡胶有较好的相容性和共硫化性,此两胶并用物理机械性能呈加和性,丁基橡胶可改善乙丙橡胶气密性,提高撕裂性和隔音性;而乙丙橡胶改善了丁基橡胶的耐臭氧性和耐老化性,改善了丁基橡胶压出表面光度,提高了半成品停放时的抗变形性能。 (2)三元乙丙橡胶可以不同比例与氯丁橡胶并用,以改善乙丙橡胶的耐油性能。乙丙橡胶与氯丁橡胶并用后,两种橡胶性能互补。乙丙橡胶的耐油性、耐燃性和粘着性有所改进;氯丁橡胶也改善了耐臭氧、耐化学腐蚀、耐热、耐蒸汽、耐低温屈挠等性能,并提高了氯丁橡胶的加工油及炭黑的填充量,从而降低了成本。

微波技术应用行业

山东康来机械设备有限公司Shandong Kang Lai mechanical equipment Co., Ltd. 加上设计人思想

企业介绍: 山东康来机械设备有限公司是集科、工、贸为一体,从事研发、生产微波设备的高新技术企业,创始于2009年。其前身是济南康来微波设备有限公司,2016年企业发展壮大,公司体制改革变更为股份制企业。 公司致力于微波技术在食品、制药、化工、冶金、纺织、木材、石油、橡胶、陶瓷、造纸、粮食、干果、饮料、海鲜、新能源、环保等领域的开发应用及成套设备的生产制造。所有产品按GMP、FDA标准设计制造,其各项主要技术指标居于国际先进水平。公司产品有2450MHz、915MHz两大系列50多种型号、规格,得到国内外许多食品、制药、保健品、化工等企业的支持及应用。其主导产品有:微波食品干燥灭菌设备、微波药品干燥灭菌设备、微波化工产品干燥处理设备、微波木材烘干杀虫设备、微波调味品烘干杀菌设备、微波辣椒制品干燥杀菌设备、微波五谷烘烤设备、微波陶瓷固化设备、微波茶叶杀青机、微波口服液等中成药品灭菌设备、微波橡胶硫化设备、微波纸张干燥设备、微波昆虫(黄粉虫、蝇蛆)干燥设备、微波废物消毒设备、微波烧结设备、微波真空萃取、微波真空干燥设备、微波试验炉等多种系列和品种。 公司凭借多年设计、制造微波设备的经验,可以按用户的不同要求提供最佳的设备设计方案,供用户选择。公司所供产品免费负责安装、调试、操作培训;实行“三包”,保修一年和终身技术服务。 企业宗旨:同顾客以双赢,与员工共发展,给股东以回报,对社会以贡献。 企业愿景:创行业顶级品牌,供专业实用设备。 企业精神:真诚信赖,执着追求,稳健务实,拓新致远。 经营理念:以技术为龙头,以管理打基础,以人才为根本,以品牌闯天下。 服务理念:客户满意是检验我们工作的唯一标准。 (名片夹) 联系人: 联系方式:

微波技术在各领域的应用

微波技术在各领域的应用 发布来源:三乐微波发布时间:2014/5/30 8:57:00 一、微波原理 微波是指波长在1mm~1000mm、频率在300MHz-300GHz范围之间的电磁波,因为它的波长与长波、中波和短波相比来说,要“微小”得多,所以称之为“微波”。 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断的得到发展和应用,19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究,仅证实了麦克斯韦的一个预言—电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4月美国科学家South Worth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个语言—电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,有提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造除了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行了探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不进系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断的完善,我国开始研究和利用微波技术实在20世界70年代初期,首先在连续波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。此后我国在微波领域迅速发展,80年代我公司生产出中国第一台微波炉,到目前为

几种不同硬度三元乙丙发泡配方

几种不同硬度三元乙丙发泡配方 具体配方: 硬度75三元乙丙发泡配方 原材料名称基本配置物理机械性能标准实测 三元乙丙胶100 拉伸强度(Mpa) 15.8 氧化锌 5 扯断伸长率(%)264 三氧化二睇 5 永久变形(%) 4 防老剂2246 0.5 硬度(邵氏) 75 高耐磨碳黑70 撕裂强度(KN/m) 海泊隆-20 5 脆性温度 DCP 4 合计179.5 硫化条件:160℃×30′ 混炼工艺:混炼胶→(45℃以下)→填料→软化剂→氧化锌→三氧化二睇→防老剂→DCP→薄通十次下片。 用途和性能:用于磁粉轴封、胶圈。可在-50~+150℃下长期工作,用来密封粒度为97μ以下的金属粉,工作轴起动,换向灵活,密封性良好,满足使用。该胶料耐磨性高、耐热和弹性优良。 硬度80三元乙丙发泡配方 原材料名称基本配置物理机械性能标准 实测 三元乙丙胶100 拉伸强度(Mpa) 18.5 氧化锌 5 扯断伸长率(%) 150 硬脂酸 1 永久变形(%) 7 硫磺0.5 硬度(邵氏) 80 高耐磨碳黑70 撕裂强度(KN/m) 促进剂TT 1.5 促进剂DM 2 合计180 硫化条件:160℃×30′

混炼工艺:生胶→碳黑→氧化锌、促进剂→硫磺→硬脂酸→混炼后经十次薄通下片。 用途和性能:温度:-35~+130℃,压力:10Kg/cm2 介质:耐H2S腐蚀。用于生产密封圈、垫片,耐酸、耐盐、耐辐射。 硬度82三元乙丙发泡配方 原材料名称基本配置物理机械性能标准实测 三元乙丙胶100 拉伸强度(Mpa)20.4 高耐磨碳黑80 扯断伸长率(%) 205 硬脂酸0.5 永久变形(%) 3 氧化锌 5 硬度(邵氏) 82 氧化镁 5 撕裂强度(KN/m) 促进剂TMTD 1.5 脆性温度-62 促进剂DM 0.5 100%顶伸强度MPa 85 硫磺 1.5 合计194 硫化条件:160℃×30′ 骨架经过喷砂处理后,用并酮洗净,凉干,涂一薄层γ-氨基丙基三氧基硅烷,30分钟后在涂一遍,10分钟后包胶即可硫化。 混炼工艺:生胶→碳黑→硫磺→硬脂酸→氧化锌→氧化镁→薄通下片。 用途和性能:该胶料耐特种介质密封材料,胶辊静密封用“O”型圈, 工作介质:耐N204无水肼。耐辐射、耐磨,与铝及不锈钢在介质中的结合强力>30KG/cm2. 工作温度:-40℃~120℃范围工作. 硬度57三元乙丙发泡配方 原材料名称基本配置物理机械性能标准实测三元乙丙胶100 拉伸强度(Mpa)13 硫磺0.5 扯断伸长率(%)520 过氧化二异丙苯(DCP) 6.5 永久变形(%)7 硬脂酸 1.5 硬度(邵氏)57 高耐磨碳黑20 撕裂强度(KN/m) 半补强碳黑20 脆性温度 凡士林/防老剂D 5/1.5 合计155 硫化条件:158℃×40′ 混炼工艺:生胶→碳黑→软化剂→硫磺→防老剂。

射频与微波技术原理及应用汇总

射频与微波技术原理及应用培训教材 华东师范大学微波研究所 一、Maxwell(麦克斯韦)方程 Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。其微分形式为 0 B E t D H J t D B ρ???=- ????=+??=?= (1.1) 对于各向同性介质,有 D E B H J E εμσ=== (1.2) 其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。 电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁场分布。对于规则边界条件,Maxwell 方程有严格的解析解。但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。 由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。当0,0J ρ==时,有 222200E k E H k H ?+=?+= (1.3) 其中k 为传播波数,22k ωμε=。 二、传输线理论 传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基

础。传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。 1、微波等效电路法 低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。在集总参数电路中,基本电路参数为L、C、R。由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。 射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U、电流I转化为频率f、功率P、驻波系数等,这是分布参数电路。在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。 由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。微波等效电路法的特点是:一定条件下“化场为路”。具体内容包括: (1)、将均匀导波系统等效为具有分布参数的均匀传输线; (2)、将不均匀性等效为集总参数微波网络; (3)、确定均匀导波系统与不均匀区的参考面。 2、传输线方程及其解 传输线方程是传输线理论的基本方程,是描述传输线上的电压、电流的变化规律及其相互关系的微分方程。电路理论和传输线之间的关键不同处在于电尺寸。集总参数电路和分布参数电路的分界线可认为是l/λ≥0.05。 以传输TEM模的均匀传输线作为模型,如图1所示。在线上任取线元dz来分析(dz<<λ),其等效电路如图2所示。终端负载处为坐标起点,向波源方向为正方向。 图1. 均匀传输线模型图2、线元及其等效电路根据等效电路,有

微波橡胶硫化技术原理及优点

微波橡胶硫化技术原理及优点 1. 橡胶硫化的原理及微波橡胶硫化的优点 生橡胶受热变软,遇冷变硬、发脆,不易成型,容易磨损,易溶于汽油等有机溶剂,分子内具有双键,易起加成反应,容易老化。为改善橡胶制品的性能,生产上要对生橡胶进行一系列加工过程,在一定条件下,使胶料中的生胶与硫化剂发生化学反应,使其由线型结构的大分子交联成为立体网状结构的大分子,使从而使胶料具备高强度、高弹性、高耐磨、抗腐蚀等等优良性能。这个过程称为橡胶硫化。一般将硫化过程分为四个阶段,诱导-预硫-正硫化-过硫。为实现这一反应,必须外加能量使之达到一定的硫化温度,然后让橡胶保温在该硫化温度范围内完成全部硫化反应。 橡胶硫化可以采用各种方法。传统方法是将胶料采用蒸汽或远红外加热等硫化工艺。但由于加热温度是由介质外部向内部慢慢地热传导,因为橡胶物料是不良导热材料,对橡胶来说加热依靠物料表面向里层其传热速率是很慢的,大部分时间耗费在让橡胶达到硫化温度上。所以加热时间长、效率低、硫化均匀性不好。尤其旧工艺为消除橡胶粘连而使用硅酸镁(滑石粉),致使橡胶生产车间中粉尘弥漫,空气中粉尘含量远超过国家环保部门规定的标准。而且橡胶整体硫化状态并不理想,这是因为,常规热传导情况下,被硫化胶料表面升温与里层的时间不一,出现硫化不均匀的现象。 微波加热与传统加热方式完全不同,是将微波能量穿透到被加热介质内部直接进行整体加热,因此加热迅速,高效节能,大大缩短了橡胶硫化时间,使其加热均匀性更好,硫化质量较高。可以在较短的时间内越过橡胶极易发生粘连的诱导阶段进入预硫阶段,革除了旧工艺过程中使用滑石粉的操作,达到环保要求,该生产工艺可使大多数生产工序集中在一条生产线上完成,自动化程度高,能耗低,节省人力,生产稳定,产品质量均匀等,大大改善了生产劳动条件。 2. 微波橡胶硫化技术的应用现状: 微波橡胶硫化技术自20世纪70年代问世以来得到迅速推广,特别是橡胶微波连续硫化生产线在橡胶挤出制品生产中的推广应用,其发展之迅速是史无前例的。日本是微波连续硫化技术发展较快的国家,至今已累计生产450多条微波连续硫化生产线,并向世界各国出口100余条。微波硫化技术在国外工业化国家已成为普遍的生产方式。不仅广泛用于各种挤压胶条、胶管的硫化预热,而且已用于各类轮胎的硫化预热。我国已从德国、日本、西班牙、英国等国家引进了几十条微波密封条连续硫化生产线。但进口的微波硫化生产线也存在很多问题,如价格高、维修成本高,微波箱体设计不合理、微波效率低,控制的自动化程度不够。随着国内微波能应用技术的发展,国内相继仿造和改造了多条采用微波硫化橡胶工艺的设备,有些引进设备的厂家与微波能应用厂家合作,开始着手对进口橡胶硫化设备所存在的问题进行改造,使其产品质量和产量有了较大提高。2000年以来随着多管型微波硫化设备的开发成功,使得设备成本及维修难度降低,目前橡胶的微波硫化技术已日益走向成熟,设备不断完善,向着高度自动化、省能源、减少环境污染方向努力,以满足广大用户不断提高的需求,有着巨大潜力和广阔的市场。 3 微波橡胶硫化设备及生产工艺 目前微波橡胶硫化最实用的基本工艺流程为:从挤出机挤出的成型品通过输送带或辊道传送,进入微波硫化装置,在此处橡胶迅速升温到硫化温度,然后进入二次硫化的热风槽,橡胶在热风槽内一定温度下,保持一定时间,即完成该产品的发泡及硫化过程。此时如果不用热风槽,硫化全在微波槽中进行,则太浪费能量,而与热风槽结合起来,就比较经济。 微波橡胶硫化生产线的组成包括挤出机、高温定型设备、微波硫化设备、热风硫化设备、冷却段、牵引机、裁断机、打孔机等组成。

微波技术的应用与发展

微波技术的应用与发展 近年来,随着我国国民经济快速的发展和技术的现代化,出现了各种新型技术,微波技术作为一种新的工业加工技术,他的出现解决了市场上的一些技术创新不足,品质滞后等问题,提高了产品的档次。 微波作为一种加工手段,它首先在食品行业中得到了应用。微波作用于食品,食品表里同时吸收微波能,使温度升高。细胞在微波场的作用下,其分子也被激化并作高频振动,产生热效应,这就是微波炉的原理。利用微波可对食品进行膨化、烘干、加热、杀菌脱腥等加工处理。目前已用于多种食品的生产中。 木材加工微波可对木板进行均匀、快速烘干,干燥只需十几分钟,且不开裂、变形小,同时杀死木材内部的卵虫和幼虫。此外,微波加工具有选择性,含水率高的部分吸收微波多,产生的热量大,反之则产生热量小。 在生产生活方面,微波被作为一种能源加以利用,微波对介质材料穿透深度远比红外的加热深度强,。微波加热的时间短且加热均匀,微波加热时,物体各部位都能均匀通过电磁波,产生热量,因此均匀性大大提高。 微波干燥是一种新型、节能的干燥方式。不需要燃料,不需要锅炉,无污染,无能耗,不需要热传导,加热均匀,物料内外同时提温,干燥速度奇快,对含水量在35%以下的化工产品,干燥速度可缩短数百倍。适用于化工原料、精细化工、新能源材料、橡胶制品、化学试剂产品等等。 微波杀菌是利用了微波对细菌的热效应使其蛋白质结构发生变化,从而失去生物活性,使菌体死亡或受到严重干扰而无法繁殖。微波的作用,使微生物在其生命化学过程中所产生的大量电子、离子和其它带电粒子的生物性排列组合状态和运动规律发生改变,亦即使微生物的生理活性物质发生变化。同时,电场也会使细胞膜附近的电荷分布改变,导致膜功能障碍,使细胞的正常代谢功能受到干扰破坏。使微生物细胞的生长受到抑制,甚至停止生长或使之死亡。微波能还能使微生物细胞赖以生存的水分活性降低,破坏微生物的生长环境。 微波通讯是微波技术的传统应用领域,最重要的应用之一就是多路通信。微波的频率很高,频带宽,比短波频带宽数十倍,能够承载的信息量大。

不同硬度三元乙丙橡胶配方

不同硬度三元乙丙橡胶配方 硬度57三元乙丙橡胶配方原材料名称基本配置物理机械性能标准实测 三元乙丙胶100 拉伸强度(Mpa)13 硫磺0.5 扯断伸长率(%)520 过氧化二异丙苯(DCP) 6.5 永久变形(%)7 硬脂酸 1.5 硬度(邵氏)57 高耐磨碳黑20 撕裂强度(KN/m) 半补强碳黑20 脆性温度 凡士林/防老剂D 5/1.5 合计155 硫化条件:158℃×40′混炼工艺:生胶→碳黑→软化剂→硫磺→防老剂。用途和性能:该胶料制成胶管、密封件、垫片。耐中等浓酸、有机酸、无机酸、80%H2SO4. 硬度65三元乙丙橡胶配方原材料名称 基本配置物理机械性能标准 实测三元乙丙胶100 拉伸强度(Mpa)8.8 促进剂M 0.5 扯断伸长率(%)478 促进剂TMTM 1.5 永久变形(%)22 硫磺 1.5 硬度(邵氏)65 氧化锌 5 撕裂强度(KN/m) 28 硬脂酸 1 脆性温度℃-70 高耐磨碳黑80 50#机油50 合计239.5 硫化条件:160℃×60′混炼工艺:生胶→填料、软化剂→ZnO→促进剂→S→硬脂酸,混匀后要经十次薄通。用途和性能:该胶料具有耐天候、耐臭氧、耐酸性能、耐磨、耐高低温、电绝缘和弹性等。介质:耐过热水、耐臭氧、耐辐射。温度:-40℃~160℃ 硬度70三元乙丙橡胶配方原材料名称 基本配置物理机械性能标准

实测三元乙丙胶100 拉伸强度(Mpa)13.5 氧化锌 5 扯断伸长率(%)350 硬脂酸 1 永久变形(%)8 高耐磨碳黑50 硬度(邵氏)70 聚苯硫醚10 撕裂强度(KN/m) 28 硫磺0.3 脆性温度-65 DCP 3.5 合计169.8 硫化条件:160℃×30′混炼工艺:生胶→碳黑→聚苯硫醚→氧化锌→DCP→硬脂酸,薄通十次下片。用途和性能:耐辐射剂量为1×107耐热、耐各种介质:耐乙酸。工作温度:-55~150℃,生产各种密封件、垫片。 硬度75三元乙丙橡胶配方原材料名称 基本配置物理机械性能标准 实测三元乙丙胶100 拉伸强度(Mpa)15.8 氧化锌 5 扯断伸长率(%)264 三氧化二睇 5 永久变形(%) 4 防老剂2246 0.5 硬度(邵氏)75 高耐磨碳黑70 撕裂强度(KN/m) 海泊隆-20 5 脆性温度DCP 4 合计179.5 硫化条件:160℃×30′混炼工艺:混炼胶→(45℃以下)→填料→软化剂→氧化锌→三氧化二睇→防老剂→DCP→薄通十次下片。用途和性能:用于磁粉轴封、胶圈。可在-50~+150℃下长期工作,用来密封粒度为97μ以下的金属粉,工作轴起动,换向灵活,密封性良好,满足使用。该胶料耐磨性高、耐热和弹性优良。 硬度80三元乙丙橡胶配方原材料名称 基本配置物理机械性能标准 实测三元乙丙胶100 拉伸强度(Mpa)18.5 氧化锌 5 扯断伸长率(%)150

微波技术应用

微波技术应用 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

微波技术一概述 微波是指波长范围为1mm~1m,频率范围为30×102 ~ 30×105MHz,具有穿透特性的电磁波。常用的微波 频率为 91 5MHz和 2 450MHz。微波作为一种电磁波,通常应用于广播、电视及通信技术中,近年来,随着科学技术的发展,微波作为一种能源,已逐渐应用于食品杀菌、干燥、烘烤、膨化、解冻等方面。 微波技术在食品工业中的应用可追溯到四十年代末期,1947年由美国雷声公司马文·贝克根据微波的加热效应制成了世界上第一台用于食品加热的微波炉。鉴于微波具有在食品内部生热并迅速产生均匀温度的观点,人们开始研究将它用于工业加热技术上以其开辟新的热能源,提高热能利用率和缩短加工时间,大约经历了十余年的探索,终于在1965年由美国Cryodry Comporation 公司研制成功了世界上第一台915MHz/50kW隧道式微波干燥设备,并在Seyfert Foods食品公司首次投入实际应用,用来干燥油炸马铃薯片。此后微波能技术在美国、日本、加拿大和欧洲等发达国家在用来解决食品工业中的多种加热干燥、烹制、杀虫灭菌和回温解冻等方面相继获得成功并表现出强大的技术优势。到七十年代,世界各国普遍推广应用。例如在气候温和潮湿的日本,微波在食品工业中的应用占整个工业应用的60%。我国自1973年由南京电子管厂率先研制成功了工业微波干燥设备以来,经过了20年的努力,也积累了比较丰富的经验。目前我国已成功地应用微波能烧烤食品、干果焙烤、牛肉干燥、蔬菜脱水、快餐面干燥、食品杀菌、饮料杀菌、白酒陈化催熟等许多领域,并取得显着进展。 二微波技术的原理及特点 综合微波技术在食品工业中的各种应用可归结为如下原理。 (一)微波加热干燥原理 微波加热技术是一种新的加热方式。它是依靠以每秒 245000万次速度进行周期变化的微波透入物料内,与物料的极性分子相互作用,物料中的极性 (如水分子 )吸收了微波能以后,改变其原有的分子结构,亦以同样的速度作电场极性运动,致使彼此间频繁碰撞而产生了大量的摩擦热,从而使物料内各部分在同一瞬间获得热能而升温。由于微波辐射下介质的热效应是内部整体加热的,即理论上所谓的“无温度梯度加热”,基本上介质内部不存在热传导现象,因此,微波可相当均匀地加热介质。微波加热技术与传统加热方法相比,有如下特性:①穿透力强。②热惯性小。③呈现选择加热特性。④具有反射性和透射性。 微波干燥是在微波理论,微波技术和微波电子管成就的基础上发展起来的一门新技术,微波干燥已在许多领域内获得广泛的应用。它是应用微波加热的原理, 使品温度上升,达到干燥的目的。微波干燥具有如下的特点: 1 .干燥速度快、干燥时间短 由于常规加热需要加热传热介质和环境,再进入食品,故需较长时间才能达到所需加热温度。而微波加热则是加热物体直接吸收微波能,加热速度大大高于常规加热方法,此时只需一般方法的十分之一到百分之一的时间就能完 成整个加热和干燥的过程。 2. 产品质量高 由于加热时间短,又非热效应配合,因此,可以保存加工原料的色、香、味 ,并且维生素的破坏也较少。 3. 加热均匀 常规加热是食品表面先热,然后通过热传导把热量传到内部,而微波加热是使食品表面和内部同时受热,因此 加热均匀,可以避免一般加热干燥过程中容易引起的里生外焦及不均匀等现象,提高了产品的质量。 4. 加热过程具有自动热平衡性能

三元乙丙橡胶(EPDM)特点是什么32

三元乙丙橡胶(EPDM)特点是什么 三元乙丙橡胶(EPDM)特点,性能参数与加工 三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。 (注:EPDM中文名:三元乙丙橡胶) 三元乙丙橡胶的性能与优点 三元乙丙橡胶主链由化学性稳定的饱和烃组成,仅在侧链中含不饱和双键,故基本上属于种饱和型橡胶。由于分子结构内无极性取代基,分子间内聚能低,故分子链可在较宽的温度范围内保持柔顺性。乙丙橡胶的化学结构使其硫化制品具有独特的性能。 1、低密度高填充性: 三元乙丙橡胶是一种密度较低的橡胶,其密度为0.87。加之可大量充油和加入填充剂,因而可降低橡胶制品的成本, 弥补了三元乙丙橡胶生胶价格高的缺点,并且对高门尼值的三元乙丙橡胶来说,高填充后物理机械性能降低幅度不大。 2、耐老化性: 乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。三元乙丙橡胶制品在120 ℃下可长期使用,在150~200。C下可短暂或间歇使用。加入适宜防老剂可提高其使用温度。用过氧化物交联的三元乙丙橡胶可在更苛刻的条件下使用。三元乙丙橡胶在臭氧浓度50×10~,拉伸30%,可达1 50 h以上不龟裂。 3、耐腐蚀性:

由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等及矿物油中稳定性较差。在浓酸长期作用下性能也要下降。在ISO/TR7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料。刘乙丙橡胶作用程度为1级的化学品有80多种,在此不一一列举。 4、耐水蒸气: 乙丙橡胶有优异的耐水蒸气性能并优于其耐热性。在230℃ 过热蒸汽中,近100h后外观无变化。而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。 5、耐过热水性能: 三元乙丙橡胶耐过热水性能亦较好,但与所用硫化系统密切相关。以二硫代二吗啡啉、TMTD为硫化系统的乙丙橡胶,在125 ℃过热水中浸泡1 5个月后,力学性能变化甚小,体积膨胀率仅0.3%。 6、电性能: 三元乙丙橡胶具有优异的电绝缘性能和耐电晕性,电性能优于或接近丁苯橡胶、氯磺化聚乙烯、聚乙烯和交联聚乙烯。 7、弹性: 三元乙丙橡胶分子结构中无极性取代基,分子内聚能低,分子链可在较宽范围内保持柔顺性,仅次于天然橡胶和顺丁橡胶,并在低温下仍能保持。 8、黏接性: 三元乙丙橡胶由于分子结构中缺少活性基团,内聚能低,加上胶料易于喷霜,自黏性和互黏性很差。 分子结构和性能 三元乙丙是乙烯,丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不

相关文档
最新文档