矩阵及其运算测试题

矩阵及其运算测试题
矩阵及其运算测试题

第二章 矩阵及其运算测试题

一、选择题

1.下列关于矩阵乘法交换性的结论中错误的是( )。 (A)若A 是可逆阵,则1A -与1A -可交换; (B)可逆矩阵必与初等矩阵可交换;

(C)任一n 阶矩阵与n cE 的乘法可交换,这里c 是常数; (D)初等矩阵与初等矩阵的乘法未必可交换。 2.设n (2n ≥)阶矩阵A 与B 等价,则必有( )

(A) 当A a =(0a ≠)时,B a =; (B)当A a =(0a ≠)时,B a =-; (C) 当0A ≠时,0B =; (D)当0A =时,0B =。 3.设A 、B 为方阵,分块对角阵00A C B ??=

???

,则*

C =( )。 (A) **00

A B ??

??? (B) **||00

||A A B B ??

??? (C) **||00||B A A B ?? ??? (D) **||||0

0||||A B A A B B ?? ???

4.设A 、B 是n (2n ≥)阶方阵,则必有( )。 (A)A B A B +=+ (B)kA k A = (C)

A

A B B

=-g (D) AB A B = 5.设4阶方阵 44(),()||,ij A a f x xE A ?==-其中E 是4阶单位矩阵,则()f x 中3

x 的系数为( )。

(A)11223344()a a a a -+++ (B)112233112244223344113344a a a a a a a a a a a a +++ (C) 11223344a a a a (D)11223344a a a a +++

6.设A 、B 、A B +、11A B --+均为n 阶可逆矩阵,则1()A B -+为( )。 (A) 11A B --+ (B) A B + (C) 111()A B ---+ (D)11111()B A B A -----+

7.若12312,,,,αααββ都是4维列向量,且4阶行列式

()()12311223,,,,,,,m n αααβααβα==

则4阶行列式()32112,,,(

)αααββ+=。

(A)m n + (B)mn (C)n m - (D)m n -

8.设A 、B 、C 均为可逆矩阵,且ABC E =,则必有( )。 (A)BCA E = (B)CBA E = (C)BAC E = (D)ACB E =

9.设A 是n 阶可逆方阵,将A 的第1列加到第2列得到的矩阵记为B ,*A 、*B 分别为A 、B 的伴随矩阵,则( )。 (A)将*A 的第1列加到第2列得到*B ; (B)将*A 的第1行加到第2行得到*B ;

(C)将*A 的第2列乘以(-1)加到第1列得到*B ; (D)将*A 的第2行乘以(-1)加到第1行得到*B 。

10.设A 是n 阶方阵,E 是n 阶单位矩阵,且A E +可逆。下列各式中,哪一个不正确的( )。

(A)22()()()()A E A E A E A E +-=-+ (B)()()()()T T A E A E A E A E +-=-+ (C)11()()()()A E A E A E A E --+-=-+ (D)**()()()()A E A E A E A E +-=-+

二、填空:

1.设矩阵A 、B ,若AB 有意义,则A 、B 的行数和列数需满

足 ;[]21123????-??????= ,431512325701????

????-????????????

= 。 2.矩阵120132A ??

=?

?-??

的转置矩阵是 。 3.设矩阵4321A ??=?

???,B 1123B -??=????1123-??????

,则2T AB A B -= ,

2T B A E -= 。

4.设矩阵A 是n 阶方阵,0,A a =≠则*A = 。

5.方阵A=111221

22a a a a ??

?

???

的伴随矩阵为*A = ,已知det()A A =,det(2)A = 。 6.设1225A ??

=????

,则1A -= ,520

02

10

000120

011B ??????=??

-??

??

,则1B -= 。 7.设矩阵A 、B 均可逆,O A X B O ??

=??

??

,则1X -= 。 8.设100220345A -??

??=??

????,则*1()A -= 。 9.设300140003A ??

??=??

????

,则1(2)A E --= 。 10.A 是3阶方阵,1

2

A =,则1*(3)2A A --= 。

三、计算题

1.已知11

(1,2,3),(1,,),,23

T A αβαβ===求n A 。

2.设100101010A ??

??=??

????

,证明当3n ≥时,恒有22n n A A A E -=+-,并求100A 。 3.1

P AP -=Λ,其中1411P --??=????,1002-??

Λ=??

??

,求11A 。 4.设210120001A ??

??=??

????

,矩阵B 满足**2ABA BA E =+,求B 。 四、证明题

1.设矩阵A 、B 都是对称矩阵,证明AB 是对称矩阵的充要条件是AB BA =。

2.设0k A =(k 为正整数),证明:121()...k E A E A A A ---=++++。

3.设方阵A 满足,220A A E --=,

证明:A 及A+2E 都可逆,并求1A -及1(2)A E -+。

矩阵分析实验报告

矩 阵 分 析 实 验 报 告 学院:电气学院 专业:控制工程 姓名:XXXXXXXX 学号:211208010001

矩阵分析实验报告 实验题目 利用幂法求矩阵的谱半径 实验目的与要求 1、 熟悉matlab 矩阵实验室的功能和作用; 2、 利用幂法求矩阵的谱半径; 3、 会用matlab 对矩阵分析运算。 实验原理 理念 谱半径定义:设n n A C ?∈,1λ,2λ,3λ, ,j λ, n λ是A 的n 个特征值,称 ()max ||j j A ρλ= 为关于A 的谱半径。 关于矩阵的谱半径有如下结论: 设n n A C ?∈,则 (1)[]()()k k A A ρρ=; (2)2 2()()()H H A A AA A ρρ==。 由于谱半径就是矩阵的主特征值,所以实验换为求矩阵的主特征值。 算法介绍 定义:如果1λ是矩阵A 的特征值,并且其绝对值比A 的任何其他特征值的绝对值大,则称它为主特征值。相应于主特征值的特征向量1V 称为主特征向量。 定义:如果特征向量中最大值的绝对值等于单位值(例如最大绝对值为1),则称其为是归一化的。

通过形成新的向量' 12=c n V (1/)[v v v ],其中c=v 且1max {},j i n i ≤≤=v v 可将特 征向量 '12n [v v v ]进行归一化。 设矩阵A 有一主特征值λ,而且对应于λ有唯一的归一化特征向量V 。通过下面这个称为幂法(power method )的迭代过程可求出特征对λ,V ,从下列向量开始: []' 0=111X (1) 用下面递归公式递归地生成序列{}k X : k k Y AX = k+11 1 k k X Y c += (2) 其中1k c +是k Y 绝对值最大的分量。序列{}k X 和{}k c 将分别收敛到V 和λ: 1lim k X V =和lim k c λ= (3) 注:如果0X 是一个特征向量且0X V ≠,则必须选择其他的初始向量。 幂法定理:设n ×n 矩阵A 有n 个不同的特征值λ1,λ2,···,,λn ,而且它们按绝对 值大小排列,即: 123n λλλλ≥≥≥???≥ (4) 如果选择适当的X 0,则通过下列递推公式可生成序列{[() ()( ) ]}12k k k k n X x x x '=???和 {}k c : k k Y AX = (5) 和: 11 1k k k X Y c ++= (6) 其中: () 1k k j c x +=且{} ()()1max k k j i i n x x ≤≤= (7) 这两个序列分别收敛到特征向量V 1和特征值λ1。即: 1lim k k X V →∞ =和1lim k k c λ→∞ = (8) 算法收敛性证明 证明:由于A 有n 个特征值,所以有对应的特征向量V j ,j=1,2,···n 。而且它们是

MATLAB中的矩阵与向量运算

4.1 数组运算和矩阵运算 从外观形状和数据结构来看,二维数组和数学中的矩阵没有区别.但是,矩阵作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则.而数组运算是MATLAB软件所定义的规则,其目的是为了数据管理方面,操作简单,指令形式自然和执行计算有效.所以,在使用MATLAB时,特别要明确搞清数组运算和矩阵运算的区别.表 4.1.1 数组运算和矩阵运算指令形式和实质内涵 数组运算矩阵运算 指令含义指令含义 A.'非共轭转置A'共轭转置 A=s把标量s赋给数组A的每个元素 s+B把标量s分别与数组B的每个元素相加s-B, B-s标量s分别与数组B的元素之差 s.*A标量s分别与数组A的元素之积s*A标量s分别与矩阵A的元素之积 s./B, B.\s标量s分别被数组B的元素除s*inv(B)矩阵B的逆乘标量s A.^n数组A的每个元素的n次方A^n A为方阵时,矩阵A的n次方 A+B数组对应元素的相加A+B矩阵相加 A-B数组对应元素的相减A-B矩阵相减 A.*B数组对应元素的相乘A*B内维相同矩阵的乘积 A./B A的元素被B的对应元素除A/B A右除B B.\A一定与上相同B\A A左除B(一般与右除不同) exp(A)以e为底,分别以A的元素为指数,求幂expm(A) A的矩阵指数函数 log(A) 对A的各元素求对数logm(A) A的矩阵对数函数 sqrt(A) 对A的积各元素求平方根sqrtm(A) A的矩阵平方函数 从上面可以看到,数组运算的运算如:乘,除,乘方,转置,要加"点".所以,我们要特别注意在求"乘,除,乘方,三角和指数函数"时,两种运算有着根本的区别.另外,在执行数组与数组运算时,参与运算的数组必须同维,运算所得的结果数组也是总与原数组同维. 4.2 数组的基本运算 在MATLAB中,数组运算是针对多个数执行同样的计算而运用的.MATLAB以一种非常直观的方式来处理数组. 4.2.1 点转置和共轭转置 . ' ——点转置.非共轭转置,相当于conj(A'). >> a=1:5; >> b=a. ' b = 1 2 3 4 5 >> c=b. ' c = 1 2 3 4 5 这表明对行向量的两次转置运算便得到原来的行向量. ' ——共轭转置.对向量进行转置运算并对每个元素取其共轭.如: >> d=a+i*a

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

MATLAB实验二 矩阵基本运算(一)答案

实验一 矩阵基本运算(一) (1)设A 和B 是两个同维同大小的矩阵,问: 1)A*B 和A.*B 的值是否相等? ????? ?? =763514432A ???? ? ??=94 525 313 4B A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A*B, A.*B ans = 37 37 44 44 37 51 65 67 78 ans = 8 9 4 12 5 10 15 24 63 2)A./B 和B.\A 的值是否相等? A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A./B, B./A

ans = 0.5000 1.0000 4.0000 1.3333 0.2000 2.5000 0.6000 1.5000 0.7778 ans = 2.0000 1.0000 0.2500 0.7500 5.0000 0.4000 1.6667 0.6667 1.2857 3)A/B和B\A的值是否相等? A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A/B, B/A ans = -0.3452 0.5119 0.3690 0.7857 -0.7857 0.6429 -0.9762 1.3095 0.5952 ans = 110.0000 -15.0000 -52.0000

92.0000 -13.0000 -43.0000 -22.0000 4.0000 11.0000 4)A/B和B\A所代表的数学含义是什么? 解: A/B是B*A的逆矩阵 B\A是B*A的逆矩阵 (2)写出完成下列操作的命令。 1)将矩阵A第2—5行中第1,3,5列元素赋给矩阵B。 A=[0.9501 0.4565 0.9218 0.4103 0.1389 0.0153 0.2311 0.0185 0.7382 0.8936 0.2028 0.7468 0.6068 0.8214 0.1763 0.0579 0.1987 0.4451 0.4860 0.4447 0.4057 0.3529 0.6038 0.9318 0.8913 0.6154 0.9355 0.8132 0.2722 0.4660 0.7621 0.7919 0.9169 0.0099 0.1988 0.4186] B=A(2:5,[1,3,5]) A = 0.9501 0.4565 0.9218 0.4103 0.1389 0.0153 0.2311 0.0185 0.7382 0.8936 0.2028 0.7468 0.6068 0.8214 0.1763 0.0579 0.1987 0.4451 0.4860 0.4447 0.4057 0.3529 0.6038 0.9318 0.8913 0.6154 0.9355 0.8132 0.2722 0.4660 0.7621 0.7919 0.9169 0.0099 0.1988 0.4186 B = 0.2311 0.7382 0.2028 0.6068 0.1763 0.1987 0.4860 0.4057 0.6038 0.8913 0.9355 0.2722 2)删除矩阵A的第7号元素。 A=rand(6,6); >> A(7)=[inf] A = 0.8385 Inf 0.1730 0.1365 0.2844 0.5155

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆矩 阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问

他们的总产出分别为多少? 三.实验过程 1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码

y=[50;150;100]; n=size(y,1); W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为 Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB 代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167

matlab中的矩阵的基本运算命令范文

1.1 矩阵的表示 1.2 矩阵运算 1.2.14 特殊运算 1.矩阵对角线元素的抽取 函数diag 格式X = diag(v,k) %以向量v的元素作为矩阵X的第k条对角线元素,当k=0时,v为X的主对角线;当k>0时,v为上方第k条对角线;当k<0时,v为下方第k条对角线。 X = diag(v) %以v为主对角线元素,其余元素为0构成X。 v = diag(X,k) %抽取X的第k条对角线元素构成向量v。k=0:抽取主对角线元素;k>0:抽取上方第k条对角线元素;k<0抽取下方第k条对角线元素。 v = diag(X) %抽取主对角线元素构成向量v。 2.上三角阵和下三角阵的抽取 函数tril %取下三角部分 格式L = tril(X) %抽取X的主对角线的下三角部分构成矩阵L L = tril(X,k) %抽取X的第k条对角线的下三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。函数triu %取上三角部分 格式U = triu(X) %抽取X的主对角线的上三角部分构成矩阵U U = triu(X,k) %抽取X的第k条对角线的上三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。3.矩阵的变维 矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。 (1)“:”变维 (2)Reshape函数变维 格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵B B = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×… B = reshape(A,[m n p…]) %同上 B = reshape(A,siz) %由siz决定变维的大小,元素个数与A中元素个数 相同。 (5)复制和平铺矩阵 函数repmat 格式 B = repmat(A,m,n) %将矩阵A复制m×n块,即B由m×n块A平铺而成。 B = repmat(A,[m n]) %与上面一致 B = repmat(A,[m n p…]) %B由m×n×p×…个A块平铺而成 repmat(A,m,n) %当A是一个数a时,该命令产生一个全由a组成的m×n矩阵。 1.3 矩阵分解 1.3.1 Cholesky分解 函数chol 格式R = chol(X) %如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。 [R,p] = chol(X) %不产生任何错误信息,若X为正定阵,则p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。 1.3.2 LU分解

MATLAB矩阵实验报告

MATLAB 程序设计实验 班级:电信1104班 姓名:龙刚 学号:1404110427 实验内容:了解MA TLAB 基本使用方法和矩阵的操作 一.实验目的 1.了解MA TLAB 的基本使用方法。 2.掌握MA TLAB 数据对象的特点和运算规则。 3.掌握MA TLAB 中建立矩阵的方法和矩阵的处理方法。 二.实验内容 1. 浏览MATLAB 的start 菜单,了解所安装的模块和功能。 2. 建立自己的工作目录,使用MA TLAB 将其设置为当前工作目录。使用path 命令和工作区浏览两种方法。 3. 使用Help 帮助功能,查询inv 、plot 、max 、round 等函数的用法和功能。使用help 命令和help 菜单。 4. 建立一组变量,如x=0:pi/10:2*pi ,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y 。 5. 分多行输入一个MA TLAB 命令。 6. 求表达式的值 ()6210.3424510w -=+? ()22tan b c a e abc x b c a ππ++ -+=++,a=3.5,b=5,c=-9.8 ()220.5ln 1t z e t t =++,21350.65i t -??=??-?? 7.已知 1540783617A --????=??????,831253320B -????=????-?? 求 A+6B ,A 2-B+I A*B ,A.*B ,B*A A/B ,B/A [A,B],[A([1,3], :); B^2]

8.已知 23100.7780414565532503269.5454 3.14A -????-??=????-?? 输出A 在[10,25]范围内的全部元素 取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 分别求表达式E

GE矩阵+计算方法+案例(一班三组)

GE矩阵法及其使用方法介绍 一、GE矩阵法概述 GE矩阵法又称通用电器公司法、麦肯锡矩阵、九盒矩阵法、行业吸引力矩阵是美国通用电气公司(GE)于70年代开发了新的投资组合分析方法。对企业进行业务选择和定位具有重要的价值和意义。GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 二、方格分析计算方法介绍: GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业 单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要 对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战 略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),

每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 绘制GE矩阵,需要找出外部(行业吸引力)和内部(企业竞争力)因素,然后对各因素加权,得出衡量内部因素和市场吸引力外部因素的标准。当然,在开始搜集资料前仔细选择哪些有意义的战略事业单位是十分重要的。 1. 定义各因素。选择要评估业务(或产品)的企业竞争实力和市场吸引力所需的重要 因素。在GE内部,分别称之为内部因素和外部因素。下面列出的是经常考虑的一些因素(可能需要根据各公司情况作出一些增减)。确定这些因素的方法可以采取头脑风暴法或名义群体法等,关键是不能遗漏重要因素,也不能将微不足道的因素纳人分析中。 2. 估测内部因素和外部因素的影响。从外部因素开始,纵览这张表(使用同一组经理), 并根据每一因素的吸引力大小对其评分。若一因素对所有竞争对手的影响相似,则对其影响做总体评估,若一因素对不同竞争者有不同影响,可比较它对自己业务的影响和重要竞争对手的影响。在这里可以采取五级评分标准(1=毫无吸引力,2=没有吸引力,3=中性影响,4=有吸引力,5=极有吸引力)。然后也使用5级标准对内部因素进行类似的评定(1=极度竞争劣势,2=竞争劣势,3=同竞争对手持平,4=竞争优势,5=极度竞争优势),在这一部分,应该选择一个总体上最强的竞争对手做对比的对象。 具体的方法是:- 确定内外部影响的因素,并确定其权重- 根据产业状况和企业状况定出产业吸引力因素和企业竞争力因素的级数(五级)- 最后,用权重乘以级数,得出每个因素的加权数,并汇总,得到整个产业吸引力的加权值 下面分别用折线图和表格两种形式来表示。

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

数学实验矩阵的运算doc资料

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆 矩阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为 50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问他们的总产出分别为多少? 三.实验过程

1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码 y=[50;150;100]; n=size(y,1);

W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167 根据上述结果可知,当农业的外部需求增加1个单位时,农业、制造业、服务业的总产出分别增加

矩阵运算实验报告

实验报告 --矩阵运算 一.实验目的。 1.通过实践加强对程序设计语言课程知识点的理解和掌握,培养对课程知识综合运用能力、实际分析问题能力及编程能力,养成良好的编程习惯。 2.通过实践进一步领会程序设计的特点和应用,提高运用C++ 语言以及面向对象知识解决实际问题的能力。 3.通过实践掌握用C++ 语言编写面向对象的实用程序的设计方法,对面向对象方法和思想增加感性的认识; 4.学会利用C++程序设计语言编写出一些短小、可靠的Windows实用程序,切实提高面向对象的程序设计能力。为后续的相关课程的学习打下基础。 二.实验要求。 1.学会建立模板类; 2.实现矩阵的“加”、“减”、“乘”、“数乘”、“转置”; 3.动态存分配并用随机数填充; 4.注意“加”、“减”、“乘”要进行条件的判断; 三.设计思路。

3.1算法基本流程 1)获取用户输入的矩阵1的行数和列数,动态生成一个一维数组 2)利用随机数生成数组成员,并利用两个循环输出数组,使其符合矩阵的格式 3)矩阵2同矩阵1的处理方法 4)通过两个矩阵的行数和列数比较来判断能否进行加减乘等运算,如不能,输出相关信息 5)如能够进行计算,则利用数组进行相应运算,并按照正确格式输出 6)通过改变一维数组中元素的顺序来实现转置并输出 3.2算法流程图

四.基本界面。

五.关键代码。 5.1关键类的声明 class CMatrixclass { public: CMatrixclass() { int m_Row = 0; //行 int m_Col = 0; //列 m_pElements = NULL; //一维数组

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵乘法的并行化实验报告

科技大学计算机与通信工程学院 实验报告 实验名称: 学生: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验容与步骤 实验1,矩阵乘法的串行实验 (1)实验容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

MATLAB基本矩阵运算

Basic Matrix Operations 一、实验目的 1、掌握向量和矩阵的创建方法; 2、掌握向量和矩阵元素的索引方法; 3、掌握向量和矩阵的基本操作; 4、利用MATLAB编写程序进行矩阵运算。 二、基础知识 1、常见数学函数 函数名数学计算功能函数名数学计算功能 Abs(x) 实数的绝对值或复数的幅值floor(x) 对x朝-∞方向取整 Acos(x) 反余弦arcsin x gcd(m,n)求正整数m和n的最大公约数 acosh(x) 反双曲余弦arccosh x imag(x) 求复数x的虚部 angle(x) 在四象限内求复数 x 的相角lcm(m,n) 求正整数m和n的最小公倍数 asin(x) 反正弦arcsin x log(x) 自然对数(以e为底数) asinh(x) 反双曲正弦arcsinh x log10(x) 常用对数(以10为底数) atan(x) 反正切arctan x real(x) 求复数x的实部 atan2(x,y) 在四象限内求反正切Rem(m,n) 求正整数m和n的m/n之余数 atanh(x) 反双曲正切arctanh x round(x) 对x四舍五入到最接近的整数 ceil(x) 对x朝+∞方向取整sign(x) 符号函数:求出x的符号 conj(x) 求复数x的共轭复数sin(x) 正弦sin x cos(x) 余弦cos x sinh(x) 反双曲正弦sinh x cosh(x) 双曲余弦cosh x sqrt(x) 求实数x的平方根:x exp(x) 指数函数xe tan(x) 正切tan x fix(x) 对x朝原点方向取整tanh(x) 双曲正切tanh x 2、常量与变量 系统的变量命名规则:变量名区分字母大小写;变量名必须以字母打头,其后可以是任意字母,数字,或下划线的组合。此外,系统内部预先定义了几个有特殊意义和用途的变量,见下表: 特殊的变量、常量取值

Matlab常用函数数组及矩阵的基本运算

实验一 Matlab 常用函数、数组及矩阵的基本运算 一、 实验目的 1. 了解Matlab7.0软件工作界面结构和基本操作; 2. 掌握矩阵的表示方法及Matlab 常用函数; 3. 掌握数组及矩阵的基本运算. 二、 实验内容 1. 了解命令窗口(command widow)和变量空间(workspace)的作用,掌握清 除命令窗口(clc )和变量空间(clear)的方法.掌握查询函数(help)的方法. 2. 掌握保存和加载变量的方法. 加载变量:load 变量名. 3. 掌握掌握矩阵的表示方法: 给a,b,c 赋如下数据: ]6,46,23,4,2,6,3,8,0,1[,356838241248 7,278744125431-=??????????--=??????????=c b a 4. 求a+b,a*b,a.*b,a/b,a./b,a^2,a.^2的结果. 5. 将str1=electronic; str2 = information; str3 = engineering; 三个字符串连接 在一起成str = electronic information engineering. 6. 求矩阵a 的逆矩阵a -1,行列式计算。 (inv(a),det(a)) 三、 实验要求 1.上机操作,熟练掌握清除命令窗口和变量空间的方法、查询变量的方法、加载变量的方法。 2.第2道题请写出步骤。 3.对实验内容中第3-6项,写出指令,上机运行. 记录运行结果(数据)。 4.写出实验报告。 四、 实验结果 2. 用save 函数,可以将工作空间的变量保存成txt 文件或mat 文件等. 比如: save peng.mat p j 就是将工作空间中的p 和j 变量保存在peng.mat 中. 用load 函数,可以将数据读入到matlab 的工作空间中. 比如:load peng.mat 就是将peng.mat 中的所有变量读入matlab 工作空间中。

矩阵的运算实例程序

设计一个矩阵相乘的程序 假设有 1 5 7 3 3 9 1 4 1 4 A= 3 6 3 9 B= 5 6 7 9 0 3 1 2 8 7 3 2 7 2 5 6 0 3 1 9 9 7 4 7 8 0 3 2 5 4 求出A*B的矩阵 程序构思: 我们所知的矩阵乘法运算的算式如下: C ij = A ik X B kj的k从1到n 的和,那么可以用一个3层循环来运算此算式: C(1,1)=A(1,1)*B(1,1)+A(1,2)*B(2,1)+A(1,3)*B(3,1)+A(1,4)*B(4,1) =(1*3)+(5*5)+(7*3)+(3*9) =3+25+21+27 =76 同理 C(1,2)=A(1,1)*B(1,2)+A(1,2)*B(2,2)+A(1,3)*B(3,2)+A(1,4)*B(2,2) =(1*9)+(5*6)+(7*2)+(3*7) =9+30+14+21 =74 依此类推,我们可以求得矩阵A与矩阵B的矩阵乘积。 void main(void) { int matrixa[5][4]={1,5,7,3, 3,6,3,9, 1,2,8,7, 0,3,1,9, 3,2,5,4}; int matrixb[4][6]={3,9,1,4,1,4, 5,6,7,9,0,3, 3,2,7,2,5,6, 9,7,4,7,8,0}; int matrixc[5][6]; int i,j,k; for(i=0;i<5;i++) for(j=0;j<6;j++) { matrixc[i][j]=0; for(k=0;k<4;k++) matrixc[i][j]+=matrixa[i][k]*matrixb[k][j];

相关文档
最新文档