矩阵的运算实例程序

矩阵的运算实例程序
矩阵的运算实例程序

设计一个矩阵相乘的程序

假设有

1 5 7 3 3 9 1 4 1 4

A= 3 6 3 9 B= 5 6 7 9 0 3

1 2 8 7 3 2 7 2 5 6

0 3 1 9 9 7 4 7 8 0

3 2 5 4

求出A*B的矩阵

程序构思:

我们所知的矩阵乘法运算的算式如下:

C ij = A ik X B kj的k从1到n 的和,那么可以用一个3层循环来运算此算式:

C(1,1)=A(1,1)*B(1,1)+A(1,2)*B(2,1)+A(1,3)*B(3,1)+A(1,4)*B(4,1) =(1*3)+(5*5)+(7*3)+(3*9)

=3+25+21+27

=76

同理

C(1,2)=A(1,1)*B(1,2)+A(1,2)*B(2,2)+A(1,3)*B(3,2)+A(1,4)*B(2,2) =(1*9)+(5*6)+(7*2)+(3*7)

=9+30+14+21

=74

依此类推,我们可以求得矩阵A与矩阵B的矩阵乘积。

void main(void)

{

int matrixa[5][4]={1,5,7,3,

3,6,3,9,

1,2,8,7,

0,3,1,9,

3,2,5,4};

int matrixb[4][6]={3,9,1,4,1,4,

5,6,7,9,0,3,

3,2,7,2,5,6,

9,7,4,7,8,0};

int matrixc[5][6];

int i,j,k;

for(i=0;i<5;i++)

for(j=0;j<6;j++)

{

matrixc[i][j]=0;

for(k=0;k<4;k++)

matrixc[i][j]+=matrixa[i][k]*matrixb[k][j];

}

printf("The matrix A:\n");

for(i=0;i<5;i++)

{

for(k=0;k<4;k++)

printf("%5d",matrixa[i][k]);

printf("\n");

}

printf("\nThe matrixb:\n");

for(k=0;k<4;k++)

{

for(j=0;j<6;j++)

printf("%5d",matrixb[k][j]);

printf("\n");

}

printf("\nMatrix C=Matrix A* Matrix B\n");

for(i=0;i<5;i++)

{

for(j=0;j<6;j++)

printf("%5d",Matrixc[i][j]);

printf("\n");

}

}

运行结果:

The Matrix A:

1 5 7 3

3 6 3 9

1 2 8 7

0 3 1 9

3 2 5 4

The Matrix B:

3 9 1

4 1 4

5 6 7 9 0 3

3 2 7 2 5 6

9 7 4 7 8 0

Matrix C=Matrix A*Matrix B:

76 74 97 84 60 61

129 132 102 135 90 48

100 86 99 87 97 58

99 83 64 92 77 15

70 77 68 68 60 48

二维数组行列互换

程序实例:

设计一个能将二维数组转换成以列为主的一维数组和以行为主的一维数组。

默认二维数组数据为:

9 7 6 6

3 5 3 3

Data = 6 6 4 7

7 5 1 4

1 2 8 0

程序构思:

依题意知道,本程序所运用的数据结构为“二维数组”,上报为进行数组以列为主和以行为主的转换。

已知该二维数组的大小为5*4

以行为主的数组转换公式为:

Data[i][j]的位置=(i*4)+j

以列为主的数组的转换公式为:

Data[i][j]的位置=(j*5)+i

声明一个大小为20的一维数组,用来存久违转换以列为主后的数据,并声明一个大小为20的一维数组,用来存久违转换后以行为主的数据。

void main(void)

{

int data[5][4]={ 9,7,6,6,

3,5,3,5,

6,6,4,7,

7,5,1,4,

1,2,8,0};

int rawdata[20];

int coldata[20];

int i,j;

printf("The Data of two dimensional array:\n");

for(i=0;i<5;i++)

{

for(j=0;j<4;j++)

printf("%4d",data[i][j]);

printf("\n");

}

for(i=0;i<5;i++)

for(j=-;j<4;j++)

rowdata[i*4+j]=data[i][j];

printf("\nThe Row Major Matrix:\n");

for(i=0;i<20;i++)

printf("%3d",rowdata[i]);

printf("\n");

for(i=0;i<5;i++)

for(j=0;j<4;j++)

coldata[j*5+i]=data[i][j];

printf("\nThe Column Major Matrix:\n");

for(i=0;i<20;i++)

&nbs

灰度共生矩阵算法

图像理解与分析中灰度共生矩阵算法1 作者:冰封蓝羽 2006-04-11 16:49:54 标签: 图像理解与分析中 灰度共生矩阵算法 周一早上图像理解与分析课上,朱启疆老师讲了灰度共生矩阵算法,回去后我编程实现了这个算法。 内容如下: 共有matrix.cpp d_matrix.h d_exept.h mat.txt四个文件 //matrix.cpp /* Visual C++ 6.0 matrix designed by bfly */ #include #include #include #include #include #include "d_matrix.h" template void outputmat(const matrix& mat); template int classifymat(const matrix& mat); template void transformmat(const matrix& formermat, matrix& lattermat); template void probablitymat(const matrix& mat,matrix& probmat);

template void typicalarguement(const matrix& mat,const matrix& probmat); using namespace std; int main() { //input matrix matrix initMat; int numRows, numCols; int i, j; ifstream fin("mat.txt"); if(!fin) { cerr << "Cannot open 'mat.txt'" << endl; exit(1); } fin >> numRows >> numCols; initMat.resize(numRows, numCols); for(i = 0; i < numRows; i++) { for(j = 0; j < numCols; j++) { fin >> initMat[i][j]; } } //transform matrix to tempMat int counter=classifymat(initMat); matrix tempMat; tempMat.resize(counter, counter); transformmat(initMat, tempMat); outputmat(tempMat); //transform matrix to probMat matrix probMat; probMat.resize(counter, counter); probablitymat(tempMat, probMat); outputmat(probMat); cout << endl; //output the typicalarguements typicalarguement(tempMat, probMat);

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

求矩阵的基本运算

求矩阵的基本运算 #include #include void jiafa() { int m,n; float a[20][20],b[20][20],c[20][20]; int i,j; printf("请输入矩阵行数:"); scanf("%d",&m); printf("请输入矩阵列数:"); scanf("%d",&n); printf("请输入第一个矩阵:"); for(i=0; i

C语言程序设计报告 矩阵运算

C程序设计报告 矩 阵 运 算 学院:地质与环境学院 专业:资源勘查工程0901 姓名:王甲 学号:0909030119

目录1.设计任务书 1.1题目 1.2设计要求 1.3程序涉及的知识点 2.功能设计 2.1算法设计 2.2部分模块流程图 3.程序代码设计 3.1源代码 3.2运行结果 4.运行结果 5.程序设计总结 6.致谢 7.参考文献

1设计任务书 1.1 题目 矩阵运算 1.2 设计要求 此程序为矩阵运算的相关程序,用来计算包括两矩阵的加、减、乘运算,求矩阵的转置矩阵、最大值元素、最小值元素及对角线元素之和等运算。 1.2 本系统涉及的知识点 此程序涉及了老师讲授的多个知识点,包括:for、if、printf及scanf 等语句,顺序、选择、循环等结构。 2功能设计 2.1 算法设计 此程序需要实现的功能要求: 利用for、if、printf及scanf 等语句来实现所需功能。 输入矩阵a和b的元素之后,依次计算: 程序一:计算a+b矩阵; 程序二:计算a-b矩阵; 程序三:计算a*b矩阵; 程序四:计算a的转置矩阵; 程序五:计算a矩阵的最小值元素;

程序六:计算a 矩阵的最大值元素; 程序七:计算a 矩阵的主对角线元素之和; 程序八:计算a 矩阵的副对角线元素之和; 程序九:计算a 矩阵的上三角元素之和; 程序九:计算a 矩阵的下三角元素之和; 2.2 部分模块流程图 3 程序源代码 3.1源代码 #include"stdio.h" void main() { int a[3][3],b[3][3],c[3][3], int i,j,k,s,max,min,sum1=0,sum2=0,sum3=0,sum4=0; printf("计算a+b 矩阵:\n"); for(i=0;i<3;i++) for(j=0;j<3;j++) c[i][j]=a[i][j]+b[i][j]; printf("%6d"); printf("\n"); printf(" 请输入a 矩阵元素:\n"); for(i=0;i<3;i++); for(j=0;j<3;j++); scanf("%4d",&a[i][j]); printf("a 矩阵:\n");

灰度共生矩阵

灰度共生矩阵(GLCM) 共生矩阵用两个位置的象素的联合概率密度来定义,它不仅反映亮度的分布特性,也反映具有同样亮度或接近亮度的象素之间的位置分布特性,是有关图象亮度变化的二阶统计特征。它是定义一组纹理特征的基础。 一幅图象的灰度共生矩阵能反映出图象灰度关于方向、相邻间隔、变化幅度的综合信息,它是分析图象的局部模式和它们排列规则的基础。 设f(x,y)为一幅二维数字图象,其大小为M× N ,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为 P(i,j)=# {(x1,y1),(x2,y2) ∈M×N ∣ f(x1,y1)=i,f(x2,y2)=j } 其中#(x)表示集合X中的元素个数,显然P为Ng×Ng的矩阵,若(x1,y1)与 (x2,y2)间距离为d,两者与坐标横轴的夹角为θ,则可以得到各种间距及角度的灰度共生矩阵P(i,j,d,。) 纹理特征提取的一种有效方法是以灰度级的空间相关矩阵即共生矩阵为基础的,因为图像中相距(ΔχΔy的两个灰度像素同时出现的联合频率分布可以用灰度共生矩阵来表示。若将图像的灰度级定为N级,那么共生矩阵为NXN矩阵,可表示为M(?X' Δy)(h,k),其中位于(h,k)的元素mhk的值表示一个灰度为h而另一个灰度为k的两个相距为(ΔχΔy的像素对出现的次数。 对粗纹理的区域,其灰度共生矩阵的mhk值较集中于主对角线附近。因为对于粗纹理,像素对趋于具有相同的灰度。而对于细纹理的区域,其灰度共生矩阵中的mhk值则散布在各处。 为了能更直观地以共生矩阵描述纹理状况,从共生矩阵导出一些反映矩阵状况的参数,典型的有以下几种: (1)能量:是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。如果共生矩阵的所有值均相等,则ASM值小;相反,

GE矩阵+计算方法+案例(一班三组)

GE矩阵法及其使用方法介绍 一、GE矩阵法概述 GE矩阵法又称通用电器公司法、麦肯锡矩阵、九盒矩阵法、行业吸引力矩阵是美国通用电气公司(GE)于70年代开发了新的投资组合分析方法。对企业进行业务选择和定位具有重要的价值和意义。GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 二、方格分析计算方法介绍: GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业 单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要 对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战 略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),

每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 绘制GE矩阵,需要找出外部(行业吸引力)和内部(企业竞争力)因素,然后对各因素加权,得出衡量内部因素和市场吸引力外部因素的标准。当然,在开始搜集资料前仔细选择哪些有意义的战略事业单位是十分重要的。 1. 定义各因素。选择要评估业务(或产品)的企业竞争实力和市场吸引力所需的重要 因素。在GE内部,分别称之为内部因素和外部因素。下面列出的是经常考虑的一些因素(可能需要根据各公司情况作出一些增减)。确定这些因素的方法可以采取头脑风暴法或名义群体法等,关键是不能遗漏重要因素,也不能将微不足道的因素纳人分析中。 2. 估测内部因素和外部因素的影响。从外部因素开始,纵览这张表(使用同一组经理), 并根据每一因素的吸引力大小对其评分。若一因素对所有竞争对手的影响相似,则对其影响做总体评估,若一因素对不同竞争者有不同影响,可比较它对自己业务的影响和重要竞争对手的影响。在这里可以采取五级评分标准(1=毫无吸引力,2=没有吸引力,3=中性影响,4=有吸引力,5=极有吸引力)。然后也使用5级标准对内部因素进行类似的评定(1=极度竞争劣势,2=竞争劣势,3=同竞争对手持平,4=竞争优势,5=极度竞争优势),在这一部分,应该选择一个总体上最强的竞争对手做对比的对象。 具体的方法是:- 确定内外部影响的因素,并确定其权重- 根据产业状况和企业状况定出产业吸引力因素和企业竞争力因素的级数(五级)- 最后,用权重乘以级数,得出每个因素的加权数,并汇总,得到整个产业吸引力的加权值 下面分别用折线图和表格两种形式来表示。

MATLAB矩阵运算基础练习题

第2章 MATLAB 矩阵运算基础 2.1 在MA TLAB 中如何建立矩阵?? ?? ??194375,并将其赋予变量a ? 2.2 请产生一个100*5的矩阵,矩阵的每一行都是[1 2 3 4 5] 2.3产生一个1x10的随机矩阵,大小位于(-5 5) 2.2 有几种建立矩阵的方法?各有什么优点? 可以用四种方法建立矩阵: ①直接输入法,如a=[2 5 7 3],优点是输入方法方便简捷; ②通过M 文件建立矩阵,该方法适用于建立尺寸较大的矩阵,并且易于修改; ③由函数建立,如y=sin(x),可以由MATLAB 的内部函数建立一些特殊矩阵; ④通过数据文件建立,该方法可以调用由其他软件产生数据。 2.3 在进行算术运算时,数组运算和矩阵运算各有什么要求? 进行数组运算的两个数组必须有相同的尺寸。进行矩阵运算的两个矩阵必须满足矩阵运算规则,如矩阵a 与b 相乘(a*b )时必须满足a 的列数等于b 的行数。 2.4 数组运算和矩阵运算的运算符有什么区别? 在加、减运算时数组运算与矩阵运算的运算符相同,乘、除和乘方运算时,在矩阵运算的运算符前加一个点即为数组运算,如a*b 为矩阵乘,a.*b 为数组乘。 2.5 计算矩阵??????????897473535与???? ??????638976242之和,差,积,左除和右除。 2.6 求?? ?? ??+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。 2.7 计算???? ??=572396a 与??????=864142b 的数组乘积。 2.8 “左除”与“右除”有什么区别? 在通常情况下,左除x=a\b 是a*x=b 的解,右除x=b/a 是x*a=b 的解,一般情况下,a\b ≠b/a 。 2.9 对于B AX =,如果??????????=753467294A ,???? ??????=282637B ,求解X 。 2.10 已知:???? ??????=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。 2.11 ??????-=463521a ,?? ????-=263478b ,观察a 与b 之间的六种关系运算的结果。

C语言矩阵的运算

C语言课程设计题目矩阵的运算 西安科技大学 二0 一一年十一月

一、设计目的 1. 综合C语言相关知识制作简单的应用程序 2. 灵活对程序代码进行利用,修改和编写; 3. 熟练将C语言所学知识和其它知识相结合 二、功能描述 编写一个矩阵运算程序,能够进行矩阵加、减、乘、转置,求矩阵的最大值,最小值,对角线元素的和等 三、流程图

定义及预处理m1=0,m2=0,m3=0,m4=0,l=0;i,j,k,d,max,min; a[M][N],b[M][N],c[N][P] 输出“输入a矩阵” j++,输入a矩阵元素 直到j>=N,i++ 直到i>=M 输出“a矩阵” j++,输出a矩阵 直到j>=N,i++,输出换行 直到i>=M 输出“输入b矩阵” j++,输入b矩阵元素 直到j>=N,i++ 直到i>=M 输出“b矩阵” j++,输出b矩阵 直到j>=N,i++,输出换行 直到i>=M 输出“输入c矩阵” j++,输入c矩阵元素 直到j>=P,i++ 直到i>=N

输出“c 矩阵” 直到i>=N 直到j>=P,i++,输出换行 j++,输出c 矩阵 输出“输入a,b 矩阵之和” 直到i>=M 直到j>=N,i++,输出换行 j++,输出a 矩阵与b 矩阵对应元素 输出“输入a,b 矩阵之差” 直到i>=M 直到j>=N,i++,输出换行 j++,输出a 矩阵与b 矩阵对应元素 输出“输入a,c 矩阵之积” 直到i>=N 直到j>=P,i++ j++,输出换行,直到k 〉=M k++,输出 a[i][k]*c[k][j]; 输出“a 矩阵的转置” 直到j>=N 直到i>=M,j++,输出换行 i++,输出a[i][j] 输出“a 矩阵的最大值” max=a[0][0] 直到i>=M 直到i>=M 直到j>=N,i++ max

线性代数论文设计(矩阵在自己专业中地应用及举例)

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重要地位,

与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ????? ???????ann an an n a a a n a a a ΛM ΛM M K Λ212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

c语言 矩阵计算器

#include #define M 20 #define N 20 float A[M][N]; //定义了含有400个浮点型数组元素的二维数组 float B[M][N]; float C[M][N]; int i,j,m,n,p,q,k; int main() { printf(" ###########################################\n"); printf(" ### 欢迎您使用矩阵计算器系统。###\n"); printf(" ### 系统功能:###\n"); printf(" ### 计算两个矩阵相加,相减; ###\n"); printf(" ### 矩阵相乘;矩阵转置; ###\n"); printf(" ### ###\n"); printf(" #########################################\n\n"); int x; do{ printf("请选择您需要的运算,若退出则选择0后按回车键结束\n"); printf("******************************************************************\n") ; printf("0,退出\n"); printf("1,矩阵相加\n"); printf("2,矩阵相减\n"); printf("3,矩阵相乘\n"); printf("4,矩阵转置\n"); printf("******************************************************************\n") ; scanf("%d",&x); switch (x) {

矩阵的运算实例程序

设计一个矩阵相乘的程序 假设有 1 5 7 3 3 9 1 4 1 4 A= 3 6 3 9 B= 5 6 7 9 0 3 1 2 8 7 3 2 7 2 5 6 0 3 1 9 9 7 4 7 8 0 3 2 5 4 求出A*B的矩阵 程序构思: 我们所知的矩阵乘法运算的算式如下: C ij = A ik X B kj的k从1到n 的和,那么可以用一个3层循环来运算此算式: C(1,1)=A(1,1)*B(1,1)+A(1,2)*B(2,1)+A(1,3)*B(3,1)+A(1,4)*B(4,1) =(1*3)+(5*5)+(7*3)+(3*9) =3+25+21+27 =76 同理 C(1,2)=A(1,1)*B(1,2)+A(1,2)*B(2,2)+A(1,3)*B(3,2)+A(1,4)*B(2,2) =(1*9)+(5*6)+(7*2)+(3*7) =9+30+14+21 =74 依此类推,我们可以求得矩阵A与矩阵B的矩阵乘积。 void main(void) { int matrixa[5][4]={1,5,7,3, 3,6,3,9, 1,2,8,7, 0,3,1,9, 3,2,5,4}; int matrixb[4][6]={3,9,1,4,1,4, 5,6,7,9,0,3, 3,2,7,2,5,6, 9,7,4,7,8,0}; int matrixc[5][6]; int i,j,k; for(i=0;i<5;i++) for(j=0;j<6;j++) { matrixc[i][j]=0; for(k=0;k<4;k++) matrixc[i][j]+=matrixa[i][k]*matrixb[k][j];

matlab中的矩阵的基本运算命令

1.1 矩阵的表示 1.2 矩阵运算 1.2.14 特殊运算 1.矩阵对角线元素的抽取 函数diag 格式X = diag(v,k) %以向量v的元素作为矩阵X的第k条对角线元素,当k=0时,v为X的主对角线;当k>0时,v为上方第k条对角线;当k<0时,v为下方第k条对角线。 X = diag(v) %以v为主对角线元素,其余元素为0构成X。 v = diag(X,k) %抽取X的第k条对角线元素构成向量v。k=0:抽取主对角线元素;k>0:抽取上方第k条对角线元素;k<0抽取下方第k条对角线元素。 v = diag(X) %抽取主对角线元素构成向量v。 2.上三角阵和下三角阵的抽取 函数tril %取下三角部分 格式L = tril(X) %抽取X的主对角线的下三角部分构成矩阵L L = tril(X,k) %抽取X的第k条对角线的下三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。函数triu %取上三角部分 格式U = triu(X) %抽取X的主对角线的上三角部分构成矩阵U U = triu(X,k) %抽取X的第k条对角线的上三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。3.矩阵的变维 矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。 (1)“:”变维 (2)Reshape函数变维 格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵B B = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×… B = reshape(A,[m n p…]) %同上 B = reshape(A,siz) %由siz决定变维的大小,元素个数与A中元素个数 相同。 (5)复制和平铺矩阵 函数repmat 格式 B = repmat(A,m,n) %将矩阵A复制m×n块,即B由m×n块A平铺而成。 B = repmat(A,[m n]) %与上面一致 B = repmat(A,[m n p…]) %B由m×n×p×…个A块平铺而成 repmat(A,m,n) %当A是一个数a时,该命令产生一个全由a组成的m×n矩阵。 1.3 矩阵分解 1.3.1 Cholesky分解 函数chol 格式R = chol(X) %如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。 [R,p] = chol(X) %不产生任何错误信息,若X为正定阵,则p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。 1.3.2 LU分解

矩阵运算程序设计

目录 1 课题分析 (1) 2 模块化分析 (1) 2.1 输入模块 (1) 2.1.1 输入模块要求 (1) 2.1.2 输入模块程序说明 (1) 2.2 判断模块 (3) 2.3 求和求差模块 (3) 2.4 乘法模块 (5) 2.4.1 求乘积模块概要 (5) 2.4.2 子程序段说明 (5) 2.4.3 乘法模块流程图 (8) 3 运行分析 (9) 4 心得体会 (11) 参考文献 (13)

矩阵运算程序设计 1 课题分析 根据给定的任务:能用键盘输入矩阵的参数(行、列及元素值),在进行运算前,先判断两个矩阵是否符合运算规则实现这两个矩阵的加,实现这两个矩阵的减,实现这两个矩阵的乘。进行模块化分析,所以程序中应该包括输入模块,保存需要处理的数据。判断模块,根据矩阵运算规则判断输入的数据能否进行矩阵加法,减法或者乘法运算,并调用相应的计算程序。计算模块,包括矩阵的加法,矩阵的减法和矩阵的乘法运算。输出模块,显示运算的结果。 2 模块化分析 2.1 输入模块 2.1.1 输入模块要求 先能用键盘输入矩阵的参数,行数和列数,然后根据输入各元素值,在输入数据之前有明显的提示信息,输入完后要保持各数据。运算完后要将各类计算的结果显示在屏幕上,并且要有明显的提示信息。 2.1.2 输入模块程序说明 输入的行列数保存到N和M中,为后来的比较和输入做准备,本程序段只是针对矩阵1的行和列,矩阵2则在此基础上经行替换即可以得到。 LEA DX,INFORMATION1 ;取信息提示地址偏移量 MOV AH,09h ;9号功能调用显示提示信息 INT 21H LEA DX,input1 ;提示输入矩阵1 的行数 MOV AH,09h ;9号功能调用显示提示信息 INT 21H

灰度共生矩阵

灰度共生矩阵 概念: 像素灰度在空间位置上的反复出现形成图像的纹理,GLCM是描述具有某种空间位置关系两个像素灰度的联合分布 含义: 就是两个像素灰度的联合直方图,是一种二阶统计量 就是两个像素点的关系。像素关系可以根据不同的纹理特性进行选择,也就是的大小可以自由选 像素的空间位置关系: 取。对于较细的纹理分析可以取像素间距为1,是水平扫描;是垂直扫描;是45度扫描;是 135度扫描(原博文有错误)。一旦位置空间确定,就可以生成灰度共生矩阵。 矩阵的物理意义: 用表示灰度共生矩阵,它是一个的矩阵(L为灰度级,就是一幅图中包含的不同灰度或者颜色的个数),是具有空间位置关系且灰度分别为i 和j的两个像素出现的次数或频率(归一化) 例如:下图是某纹理像素的放大,和对应的像素灰度矩阵 此图像只有三种灰度,故灰度级为3,灰度共生矩阵是一个3*3的矩阵

归一化形式为 改变位置空间的定义,灰度共生矩阵相应地改变: 归一化形式为: 矩阵的特征量: 从灰度共生矩阵上可以简单的看出,如果对角附近的元素有较大的值,说明图像的像素具有相似的像素值,如果偏离对角线的元素会有比较大的值,说明像素灰度在局部有较大变化。为了得到更多的纹理特征,我们还需要在进行计算: 对比度)(或反差)(contrast): 纹理沟纹越深,其对比度越大,视觉效果越清晰;反之,对比度小,则沟纹浅,效果模糊。灰度差即对比度大的象素对越多,这个值越大。灰度公生矩阵中远离对角线的元素值越大,con越大。所以con越大图像越清晰 相关度(inverse different moment): 度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。

矩阵运算实验报告

实验报告 --矩阵运算 一.实验目的。 1.通过实践加强对程序设计语言课程知识点的理解和掌握,培养对课程知识综合运用能力、实际分析问题能力及编程能力,养成良好的编程习惯。 2.通过实践进一步领会程序设计的特点和应用,提高运用C++ 语言以及面向对象知识解决实际问题的能力。 3.通过实践掌握用C++ 语言编写面向对象的实用程序的设计方法,对面向对象方法和思想增加感性的认识; 4.学会利用C++程序设计语言编写出一些短小、可靠的Windows实用程序,切实提高面向对象的程序设计能力。为后续的相关课程的学习打下基础。 二.实验要求。 1.学会建立模板类; 2.实现矩阵的“加”、“减”、“乘”、“数乘”、“转置”; 3.动态存分配并用随机数填充; 4.注意“加”、“减”、“乘”要进行条件的判断; 三.设计思路。

3.1算法基本流程 1)获取用户输入的矩阵1的行数和列数,动态生成一个一维数组 2)利用随机数生成数组成员,并利用两个循环输出数组,使其符合矩阵的格式 3)矩阵2同矩阵1的处理方法 4)通过两个矩阵的行数和列数比较来判断能否进行加减乘等运算,如不能,输出相关信息 5)如能够进行计算,则利用数组进行相应运算,并按照正确格式输出 6)通过改变一维数组中元素的顺序来实现转置并输出 3.2算法流程图

四.基本界面。

五.关键代码。 5.1关键类的声明 class CMatrixclass { public: CMatrixclass() { int m_Row = 0; //行 int m_Col = 0; //列 m_pElements = NULL; //一维数组

灰度共生矩阵

1 引言 图像识别是随计算机的发展而兴起的一门学科,现已渗透各个领域。如生物学中的色体特性研究;天文学中的望远镜图像分析;医学中的心电图分析、脑电图分析、医学图像分析;军事领域中的航空摄像分析、雷达和声纳信号检测和分类、自动目标识别等等。 当前,对图像分类识别的常用方法是先提取图像特征,再进行特征值的归类。图像特征包括几何特征、形状特征、颜色特征、纹理特征等等。本文主要针对图像的纹理特征进行提取、分析,最后实现具有显著纹理特性的图像的分类识别。 2 图像的纹理特征 纹理是景物的一个重要特征。通常认为纹理是在图像上表现为灰度或颜色分布的某种规律性,这种规律性在不同类别的纹理中有其不同特点。纹理大致可分为两类:一类是规则纹理,它由明确的纹理基本元素(简称纹理基元)经有规则排列而成,常被称为人工纹理。另一类是准规则纹理,它们的纹理基元没有明确的形状,而是某种灰度或颜色的分布。这种分布在空间位置上的反复出现形成纹理,这样的重复在局部范围内往往难以体察出来,只有从整体上才能显露。这类纹理存在着局部不规则和整体规律性的特点,常被称为自然纹理。 纹理特征可用来描述对象物表面的粗糙程度和它的方向性,也可用来分析生物材料组织,或者用来进行图像分割。纹理特征提取的方法随纹理类别的不同而不同,一般,规则纹理采用结构分析方法,准规则纹理采用统计分析方法。 3 灰度共生矩阵 由于纹理是由灰度分布在空间位置上反复出现而形成的,因而在图像空间中相隔某距离的两象素之间会存在一定的灰度关系,即图像中灰度的空间相关特性。灰度共生矩阵就是一种通过研究灰度的空间相关特性来描述纹理的常用方法。 3.1 灰度共生矩阵生成 灰度直方图是对图像上单个象素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某距离的两象素分别具有某灰度的状况进行统计得到的。 取图像(N×N)中任意一点(x,y)及偏离它的另一点(x+a,y+b),设该点对的灰度值为(g1,g2)。令点(x,y)在整个画面上移动,则会得到各种(g1,g2)。值,设灰度值的级数为,则(g1,g2)。的组合共有k2种。对于整个画面,统计出每一种(g1,g2)值出现的次数,然后排列成一个方阵,在用(g1,g2)出现的总次数将它们归一化为出现的概率P(g1,g2),这样的方阵称为灰度共生矩阵。距离差分值(a,b)取不同的数值组合,可以得到不同情况下的联合概率矩阵。(a,b)取值要根据纹理周期分布的特性来选择,对于较细的纹理,选取(1,0)、(1,1)、(2,0)等小的差分值。 当a=1,b=0时,像素对是水平的,即0度扫描;当a=1,b=0 时,像素对是垂直的,即90度扫描;当a=1,b=1时,像素对是右对角线的,即45度扫描;当a=-1,b=-1时,像素对是左对角线,即135度扫描。 这样,两个象素灰度级同时发生的概率,就将(x,y)的空间坐标转化为“灰度对” (g1,g2)的描述,形成了灰度共生矩阵。 实验中对灰度共生矩阵进行了如下的归一化:

稀疏矩阵的运算(完美版)

专业课程设计I报告(2011 / 2012 学年第二学期) 题目稀疏矩阵的转换 专业软件工程 学生姓名张鹏宇 班级学号 09003018 指导教师张卫丰 指导单位计算机学院软件工程系 日期 2012年6月18号

指导教师成绩评定表

附件: 稀疏矩阵的转换 一、课题内容和要求 1.问题描述 设计程序用十字链表实现稀疏矩阵的加、减、乘、转置。 2.需求分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 二、设计思路分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 三、概要设计 为了实现以上功能,可以从3个方面着手设计。 1.主界面设计 为了实现对稀疏矩阵的多种算法功能的管理,首先设计一个含有多个菜单项的主

控菜单子程序以链接系统的各项子功能,方便用户交互式使用本系统。本系统主控菜单运行界面如图所示。 2.存储结构设计 本系统采用单链表结构存储稀疏矩阵的具体信息。其中:全部结点的信息用头结点为指针数组的单链表存储。 3.系统功能设计 本系统除了要完成稀疏矩阵的初始化功能外还设置了4个子功能菜单。稀疏矩阵的初始化由函数i typedef int ElemType 实现。建立稀疏矩阵用void Creat()实现,依据读入的行数和列数以及非零元素的个数,分别设定每个非零元素的信息。4个子功能的设计描述如下。 (1)稀疏矩阵的加法: 此功能由函数void Xiangjia( )实现,当用户选择该功能,系统即提示用户初始化要进行加法的两个矩阵的信息。然后进行加法,最后输出结果。 (2)稀疏矩阵的乘法: 此功能由函数void Xiangcheng( )实现。当用户选择该功能,系统提示输

灰度-梯度共生矩阵数字特征的研究

灰度-梯度共生矩阵数字特征的研究 0引言 灰度共生矩阵概念最早由Haralick 于1973年提出,在1992年Ohanian P . P .通过实验证明了基于灰度共生矩阵的统计特征的有效性。洪继光于1984年在灰度共生矩阵的基础上提出了灰度-梯度共生矩阵[1],并应用该模型上的15个特征对五类白血球样本进行了分类识别,其实验结果表明,对于像细胞核边界不清晰的图像,该方法较灰度共生矩阵的分类结果好。灰度-梯度共生矩阵模型集中反映了图像中两种最基本的信息,即像素的灰度和梯度(或边缘)的相互关系。各像素的灰度是构成一幅图像的基础,而梯度则是构成图像边缘轮廓的要素。灰度-梯度空间可以很清晰地表现图像内像素灰度与梯度的分布规律,同时也体现了各像素与其邻域像素的空间关系,对图像的纹理能很好地描绘。 1灰度-梯度共生矩阵模型 灰度-梯度共生矩阵纹理分析方法是利用图像的灰度和梯度的综合信息提取纹理特征[2]。灰度-梯度共生矩阵的元素),(y x H 定义为在归一的灰度图像),(j i F 及其归一的梯度图像),(j i G 中具有灰度值x 和梯度值y 的像素数,即在集合 {} 1,,1,0,,),(),(|),(-===N j i y j i G x j i F j i 中元素的个数。其中, ]1,0[),(],1,0[),(-∈-∈g L j i G L j i F 。 对灰度-梯度共生矩阵进行归一化处理,使其各元素之和为1。如式(1)所示: ∑∑-=-=∧ = 101 ) ,() ,(),(L x L y g y x H y x H y x H (1) 而2101 ),(N N N y x H L x L y g =?=∑∑-=-=,所以上式可以表示为式(3-2): 2 ) ,(),(N y x H y x H = ∧ (2) 该灰度-梯度共生矩阵的原点在左上角,向右梯度值增加,向下灰度值增加。

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

图像的灰度共生矩阵

图像的灰度共生矩阵收藏 Gray-level co-occurrence matrix from an image 图像的灰度共生矩阵 灰度共生矩阵是像素距离和角度的矩阵函数,它通过计算图像中一定距离和一定方向的两点灰度之间的相关性,来反映图像在方向、间隔、变化幅度及快慢上的综合信息。 使用方法: glcm = graycomatrix(I) glcms = graycomatrix(I,param1,val1,param2,val2,...) [glcms,SI] = graycomatrix(...) 描述: glcms = graycomatrix(I) 产生图像I的灰度共生矩阵GLCM。它是通过计算两灰度值在图像I 中水平相邻的次数而得到的(也不必是水平相邻的次数,这一参数是可调的,可能通过Offsets来进行调整,比如[0 D]代表是水平方向,[-D D]代表是右上角45度方向,[-D 0]代表是竖直方向,即90度方向,而[-D -D]则代表是左上角,即135度方向),GLCM中的每一个元素(i,j)代表灰度i与灰度j在图像中水平相邻的次数。 因为动态地求取图像的GLCM区间代价过高,我们便首先将灰度值转换到I的灰度区间里。如果I是一个二值图像,那么灰度共生矩阵就将图像转换到两级。如果I是一个灰度图像,那将转换到8级。灰度的级数决定了GLCM的大小尺寸。你可以通过设定参数“NumLevels”来指定灰度的级数,还可以通过设置“GrayLimits"参数来设置灰度共生矩阵的转换方式。 下图显示了如何求解灰度共生矩阵,以(1,1)点为例,GLCM(1,1)值为1说明只有一对灰度为1的像素水平相邻。GLCM(1,2)值为2,是因为有两对灰度为1和2的像素水平相邻。 glcms = graycomatrix(I,param1,val1,param2,val2,...) 返回一个或多个灰度灰度共生矩阵,根据

相关文档
最新文档