单克隆抗体和重组治疗性蛋白质的聚体分析

单克隆抗体和重组治疗性蛋白质的聚体分析
单克隆抗体和重组治疗性蛋白质的聚体分析

单克隆抗体和重组治疗性蛋白质的聚体分析

生物制品中的聚体的来源,类型和大小不同,并且是由多种因素引起的。监管机构特别关注的是具有增强免疫应答从而引起不良临床反应的蛋白质聚体,或可能损害抗体或蛋白药物产品安全性和功效的聚体。在动物和临床研究中已经报道了蛋白质聚体可以增强免疫反应。尽管可以预期对人外源蛋白物质的免疫反应,但免疫系统可能会通过耐受性分解机制对具有内源性的聚集蛋白制品产生强烈反应。在耐受性破坏机制中,蛋白质聚体可在蛋白质复合物的形成中充当促进剂,这些蛋白质复合物可触发B细胞针对该蛋白质抗体的产生,而与T辅助细胞无关。这类反应的基础来自免疫原概念,其中抗原具有多于半抗原的聚合结构形式存在,在病毒样颗粒组织中间隔5-10nm,大小超过100kDa,可以克服免疫力。这种情况可能解释了内源性蛋白质的意外中和,并且产生了深远的临床效果。这种类型的机制最受关注的是高分子量(HMW)聚集体,这些聚体保留了其单体对应物的大多数天然构型,并且可以以这种方式使抗原成核。另外,显示非天然蛋白质构象的聚体可能被免疫系统视为新抗原,这可能会触发抗抗体形成。在这里我们提供了有关蛋白质药物中的聚体的表征,检测方法以及药物制造商已实施的各种控制措施的监管观点。

抗体或蛋白聚体的分类

聚体的分类是一项复杂的任务,目前还没有全面的分类方法。分类的困难在于可以对聚合进行多个类别的分组。下表1列出了生物制

药中最常见的聚体类别。为了有助于理解所讨论的聚体类型,常见的聚体类型有:二聚体,可逆聚体,共价聚体和颗粒,这些都是蛋白聚集中常见的形式。聚体的其他分类可以基于聚体的大小,因为这可能与潜在的不良临床反应直接相关。聚体的大小范围从可溶性二聚体和其他多聚体(表观球状直径约5-10nm),包括高分子量(HMW)聚集体到可溶或不溶的有核聚集体,到较大的不溶性物质(被识别为亚可见和可见)颗粒(表观球状直径约20–50μm)。在可溶性聚集体组中,较大的聚集体(例如HMW物)可能更能引发产生不良临床后果的免疫原性应答。就其分子量而言,大小大于10的二次方kDa的聚体潜在的不良免疫原性反应潜力,值得更仔细的评估。

聚体除大小外,聚体随时间的大小变化率是一个有用的参数,可以提供聚体的功能特征,其中时间对应蛋白质产品的有效期。聚体最初可以小二聚体或碎片的形式存在,并朝着更大的聚集结构变化,例如亚可见或可见颗粒(如果这种转变在热力学上温度变得快速)。在任何给定的时刻,蛋白质可能在有利于蛋白质单体或天然构型的热力学状态与有利于展开的天然蛋白质构型状态之间转变。在某些的条件下,未折叠的蛋白质可能与其他天然和非天然形式形成复合物,在获得足够的自由能以转变为可能成为新蛋白质实体而形成稳定状态的聚体。科学家Lumry和Eyring在1960年代研究了这些转变的基础,他们提出了溶液中蛋白质聚体的动力学转变,并在干扰素-γ聚集的情况下进一步转变为一级转变反应动力学。评估药品聚体总增长率的

过程很复杂。单一药物产品通常具有不均匀的聚体混合物(如上表1)。稳定的蛋白制品具有异质性溶液中存在的聚体,但与更不稳定的制品相比,其生长速率很小。聚体的增长速度加快的更加令人担忧,可能需要更积极的控制和聚体控制最小化策略。

蛋白质聚集的来源

蛋白质药品的聚体可以有多种来源,并且各种类型的聚体可以存在于所分装的药品瓶中。蛋白质聚体形成的潜力存在于蛋白质药物制造的各个阶段。从蛋白质序列和特征开始,每种蛋白质将具有可使其或多或少的稳定物理化学特征。例如,游离巯基水平升高而发现在培养物中会产生聚集的CHO细胞表达的单克隆抗体(MAb)的聚集情况,如果将硫酸铜添加到培养物中,则可以防止这种情况的发生。随着多种蛋白质形式与其环境相互作用的可能性增加,蛋白质异质性也可能是蛋白质聚集的一个促成因素。对于依帕珠单抗,二硫键会有利于共价聚体的形成。

治疗性单克隆抗体通常以高浓度配制,这也有利于增加分子相互作用的发生率,因此有可能形成聚体。因此,药物制造商花费大量时间和精力来开发一种制剂,制剂将使蛋白质药物产品在其有效期内保持稳定,无论是在溶液中还是冻干产品。例如,将蔗糖添加至白介素-1受体激动剂或冻干MAb制品以抑制或减少聚体的形成。

生产、保存、运输中的大量冷冻对蛋白的质稳定制备提出了挑战,因为在溶液冷冻期间会发生溶质浓缩作用。理想的策略是在–80℃下同时冻结整个溶液,并迅速冻结,这样可以最大程度地减少热变迁(例如低共熔)和玻璃化转变。此策略对于大批量解决方案不切实际。大量冷冻期间溶质浓度和pH的变化也可促进蛋白质聚集。大量的解冻也带来这方面的挑战,这主要与冰-液界面的表面吸附有关。当需要大量冷冻和解冻时,适当的制剂配方就变得至关重要,而赋形剂可以作为蛋白质冷冻保护剂来使用。

分装和生产工操作可能会由于剪切力而使蛋白质发生机械变性,或者会引入杂质,这些杂质会作为蛋白质聚体的成核源。例如,某些活塞式泵类似于汽车发动机活塞与润滑油相互作用的方式与蛋白质药物产品相互作用。蛋白药物产品和活塞杆之间的紧密接触会破坏原本稳定的药物产品。对于抗体药物产品来说就是这种情况,使用吸光度和光遮蔽方法确定其聚体颗粒的水平随着泵送次数的增加而增加。在活塞脱落的情况下,不锈钢钝化可以降低将不锈钢沉积物引入最终药物中的风险,这种情况可能会导致蛋白质异核化。

新的输送系统增加了容器兼容性,并增加了形成蛋白质聚体的可能性。小瓶中的玻璃,塞子中的橡胶,塞子和注射器中的硅树脂以及注射器中的钨这些异物,它们可能会进入蛋白质药物产品。这些异物中许多都是带静电的,因此有可能与蛋白质,蛋白质聚集体和蛋白质

聚体的前体发生相互作用,形成异核。对于预填充的注射器来说就是这样,其中包含在注射器针筒制造过程中脱落的钨颗粒,这些钨颗粒用作聚体的形成。

蛋白质聚体的研究

基于聚体动力学模型,蛋白质聚体可能比其单体更具疏水性。这是因为当蛋白质转变为天然的、部分展开的状态并暴露其疏水残基时,可能会发生蛋白质聚集。研究表明,聚体比单体使用硫酸铵沉淀效果更好,并且它们与聚偏二氟乙烯(PDVF)膜的结合更牢固。

通常,通过将蛋白质溶液暴露于高温、pH、湿度和光入射的极端条件下来研究聚集体,这就是所谓的强制降解和光降解研究。基本原理是基于这样的期望:蛋白质以这种方式降解反映了蛋白质药物的有效期中所经历的降解途径。这些参数在建立稳定性研究程序时也是非常有价值的。

蛋白质聚集研究的另一个重要部分是评估聚体的生物学活性。与单体蛋白质活性相比,聚体的生物活性的差异会深刻影响蛋白质药物的功效。在这种情况下,产品功效可能会受到影响。通常,基于风险的聚体评估可能需要进行特定的研究,以帮助阐明哪种类型的聚体更令人担忧。对药品在其有效期中所处的不同环境进行全面调查,包括制造、存储、运输、冷冻和解冻周期、氧气暴露、光照和物理作用力

等等。

蛋白质聚体的检测

生物制药工业中可用于检测,表征,定量和监测生物制药蛋白产品中聚体的分析方法数量在不断的增加。下表2列出了用于检测,监视和研究聚体的最常用方法。尽管表述并不全面,但表2提供了分析方法的一般概念及其主要优点和局限性。可用的测试方法可以分为两类:检测小聚集体的方法,例如二聚体,LMW,HMW,可溶性聚体和蛋白质片段(表2的第一部分),以及检测大聚集体的方法,例如不溶的亚可见和可见的颗粒(表2的第二部分)。在用于检测小聚集体的一组测试方法中,体积排阻色谱法(SEC)通常用于批次放行期间的常规检测和聚体监测。不适合批量生产的方法可以用其他表征或验证来测试。

尺寸排阻高压液相色谱法是对二聚体,LMW和HMW物等蛋白质聚体使用最广泛的分析方法。该方法适具有高灵敏度、精密度、分离度、准确性,可以高通量进行分析测试。但是,作为色谱方法,它也可能导致聚集,导致样品制备过程中现有聚集物被去除,或者在无法区分或回收HMW物时低估了聚集物的存在。SEC的主要局限性可能是需要以低浓度(例如1mg/mL)进样。对于治疗性蛋白质,这通常意味着稀释100倍,导致可逆的可溶性聚集体分解。这种担忧导致了更普遍的问题,例如,总体概况的相关性如何?它代表最终药品中存在的聚

集体吗?如其他地方所述,没有一种能够评估给定蛋白质溶液中存在的所有聚集体的分析方法。通常需要几种方法的组合来覆盖可能存在的聚集体的微观和宏观范围。另外,由于每种方法的局限性,可能需要正交实验来确认方法。例如,SEC结果可能需要使用其他正交方法(例如分析超速离心(AUC))进行确认。AUC可以用作确认方法,因为它提供了良好的聚体分离,并且不需要样品稀释或样品制备。

在用于聚体表征的方法中,场流分离(FFF)和动态光散射(DLS)能够直接评估溶液中的聚集体(无需稀释)。FFF的检测范围比SEC 的检测范围宽,但是可以解决浓缩样品的数据分析困难的问题。DLS 是一种很好的定量方法,读数与表面积成正比,因此,如果大小差异不够大,大聚体可以掩盖小聚体的检测。热量法对于评估蛋白质溶液的稳定性非常有用,因为它可以检测蛋白质的解离和折叠。某些方法可以组合使用,以拥有更强大的分析工具,例如质谱联用色谱法,可提供有关化学和物理降解的信息。

此外,根据美国药典(USP),通常使用显微镜和光遮盖法检测和计数亚可见颗粒)<788>章。两种测试都适用于小批量和大批量产品,但通常在此类测试中使用多个药品瓶样品。样品首先通过光遮蔽法进行测试。如果样品未达到规定的限值,则可以使用显微分析方法。但是,如果有技术原因或正在测试的产品产生干扰,使光遮蔽方法不合适或结果无效,则显微镜方法可能是唯一的测试方法。浊度法根据参

考标准测量溶液的乳浊度或透明度。光遮蔽,比浊法和DLS的组合已用于评估蛋白质溶液中颗粒形成的过程。当这些方法与检测到的聚体的表观球状尺寸相关时(如下图1),用于检测和监测直径在几纳米到50纳米之间的小聚体方法的能力就存在差距,这种差距可能会造成因为检测,测量和评估某些小聚体以及较大聚体前体的运动能力可能无法在蛋白质聚体控制策略中实现。实际上,已经指出表观球状直径约为0.5 μm的聚集体没有得到常规跟踪和分析。

蛋白质聚体的控制

制药商采用了各种方法来控制蛋白质药物中的聚体,这取决于聚体的性质和水平,以及它们对特定蛋白质产品的安全性、质量、稳定性的潜在影响。尽管蛋白质药物产品可能包含的性质和大小与通过适当监控无法控制的某些聚体,但某些聚体可能需要根据其风险评估要求采取积极的控制策略。在某些情况下,控制措施是为了减少或抑制聚体的形成。有时,各种条件的改变可以提高易于聚集的蛋白质产品的稳定性,例如在冻融过程中的控制策略也可能包括添加赋形剂。重组人血小板活化因子就是这种情况,重组人血小板活化因子在储存时通过与二氧化硅颗粒异核形成聚体。表面活性剂普罗尼克酸F68的添加或配制药物产品的pH值的变化也减少了异核的形成。在其他情况下,控制策略的重点是加强对总量水平的限值和规格的监测以及聚体的评估。液体Remicade产品就是这种情况,其浊度比冻干产品的浊

度更高。采取的措施是增加浊度指标限值,并通过凝胶过滤HPLC加强单体指标的监测。

蛋白质聚体限度的控制

研究产品聚集的程序能够为产品聚集水平建立标准和限制。聚体总量是否是特定药品的稳定性指标,还是存在于药品中的混合物被确定为低风险指标,积累足够的数据以支持我们最终的结论都是很重要的。这样做的理由是,在产品开发的临床前和临床阶段积累足够的数据,以及对蛋白质降解途径的研究,将有助于更好地理解聚体对药品安全性和质量的影响。

对于蛋白质药物聚体的最大允许限量尚无共识,因为某些聚体水平,某些蛋白质仍可能在很大程度上稳定且安全,而对于其他蛋白质,聚体水平的很小变化可能会深刻影响蛋白质的稳定性甚至安全性。直到拿到申请许可证时,药物制造商将收集足够的数据来证明控制策略的合理性。这些数据包括临床批次的结果、体内和体外研究的信息、产品稳定性、聚体的类型及其对产品安全性和质量的潜在影响。通常,允许进行正式分析,从而可以预测产品整个有效期内预期的聚体含量。

聚体的最大可允许极限的唯一标准为USP <788>是基团亚可见粒子。一些制造商已开始努力优化评估亚可见颗粒的替代方法,以减少

所需的样品量,以及USP <788>建议使用光遮蔽和显微镜方法分析高浓度,高粘度蛋白溶液时可能会遇到的限制。但是,USP对亚可见颗粒的测试旨在减轻与可注射溶液中外来颗粒的存在有关的风险,这些外来颗粒可能会导致血管闭塞,并且解决与大型蛋白质聚体有关的安全性问题。根据USP <788>,可见颗粒仅具有定性规格,这表明注射用无菌溶液应基本不含可通过目测观察到的颗粒物质。由于外观检查的主观性,制造商在进行可见颗粒的常规分析时必须小心。

蛋白质聚体的监管指导建议

目前尚无有关生物制药蛋白质聚体的具体监管指南文件。国际协调会议(ICH)提出了有关药品和原料药杂质的指南(ICH Q5C,Q6B,Q1AR)。稳定性指南将杂质评估作为长期,压力,加速和光暴露(ICH Q1系列)期间稳定性计划的一部分,而可比性指南则考虑了制造变更期间的杂质(ICHQ5e)。这些指南提供了杂质评估的一般指南,但并未将聚体作为蛋白质药物制造中的单独问题专门解决。

通常,制造商强烈依赖其研发小组制定的综合计划,以评估其在药物特性,制造和存储过程中的聚体。此外,监管机构鼓励实施总体标准评估,并已看到制造商根据其产品总体的合理分析而提供的相关信息激增。在拿到许可申请时,制造商应该能够为其汇总级别的规范提供数据支持的依据。

结论

评估聚体时,有一些重要的考虑因素。蛋白质药物中的聚体可以看作是动态地经历过渡平衡状态的各种类型(大小)的不断发展的混合物。在任何给定时间,此类混合物的数量可能会达到新的平衡,并朝更多的聚体结构发展。蛋白质聚体混合物的动力学非常复杂,需要多种分析方法进行检测,评估和监控。

制剂仍然是实现蛋白质稳定的关键方面,也是蛋白质聚集最小化的重要步骤。与伴侣蛋白协助内源蛋白维持其折叠状态相同的方式,赋形剂,pH和温度的正确组合可防止蛋白药物处于聚体状态。

蛋白质药物中聚体的评估取决于科学方法,基于风险的管理程序,该程序可评估蛋白质的稳定性,并确定给定的聚体混合物在药品有效期内的安全性和有效性的影响。对蛋白质在其货架期内每次环境暴露中可能遇到的潜在降解途径的了解,为良好的蛋白质产品奠定了基础。这些知识应与临床前,临床和制造经验相关联,以更好地了解聚体类型和数量。

蛋白质复性方法

包涵体表达的蛋白的复性 摘要综述了包涵体形成、包涵体分离和溶解、包涵体折叠复性的方法、复性产率低下的主要因素以及通过分子伴侣、低分子量添加物等的应用而提高了蛋白质复性产率。 关键词包涵体蛋白质复性 Abstract Strategies for decreasing the formation of inclusion bodies, isolation and resolution of inclusion bodies, refolding of inclusion body proteins and the cause of decreased refolding yields were included. Renaturation yield of recombinant protein have been improved by using some additives, such as molecular chaperone, small molecules. Key words inclusion body , protein , renaturation 外源基因在大肠杆菌中的高表达常常导致包涵体的形成,虽然包涵体具有富集目标蛋白质、抗蛋白酶、对宿主毒性小等优点,但包涵体蛋白质的复性率一般都很低,而分子伴侣、低分子量添加物等在复性过程中的应用及新的复性方法的建立都大大提高了重组蛋白质复性产率。

一、包涵体: 包涵体的定义、组成与特性: 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为,具有很高的密度(约ml),无定形,呈非水溶性,只溶于变性剂如尿素、盐酸胍等。NMR 等新技术的应用表明包涵体具有一定量的二级结构,他们可能在复性的启动阶段中具有一定的作用。[1] 包涵体的形成: 主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。 1.2.1、基因工程菌的表达产率过高,超过了细菌正常的代谢水平,由于细菌的δ因子的蛋白水解能力达到饱和,使之表达产物积累起来。研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以

单克隆抗体和重组治疗性蛋白质的聚体分析

单克隆抗体和重组治疗性蛋白质的聚体分析 生物制品中的聚体的来源,类型和大小不同,并且是由多种因素引起的。监管机构特别关注的是具有增强免疫应答从而引起不良临床反应的蛋白质聚体,或可能损害抗体或蛋白药物产品安全性和功效的聚体。在动物和临床研究中已经报道了蛋白质聚体可以增强免疫反应。尽管可以预期对人外源蛋白物质的免疫反应,但免疫系统可能会通过耐受性分解机制对具有内源性的聚集蛋白制品产生强烈反应。在耐受性破坏机制中,蛋白质聚体可在蛋白质复合物的形成中充当促进剂,这些蛋白质复合物可触发B细胞针对该蛋白质抗体的产生,而与T辅助细胞无关。这类反应的基础来自免疫原概念,其中抗原具有多于半抗原的聚合结构形式存在,在病毒样颗粒组织中间隔5-10nm,大小超过100kDa,可以克服免疫力。这种情况可能解释了内源性蛋白质的意外中和,并且产生了深远的临床效果。这种类型的机制最受关注的是高分子量(HMW)聚集体,这些聚体保留了其单体对应物的大多数天然构型,并且可以以这种方式使抗原成核。另外,显示非天然蛋白质构象的聚体可能被免疫系统视为新抗原,这可能会触发抗抗体形成。在这里我们提供了有关蛋白质药物中的聚体的表征,检测方法以及药物制造商已实施的各种控制措施的监管观点。 抗体或蛋白聚体的分类 聚体的分类是一项复杂的任务,目前还没有全面的分类方法。分类的困难在于可以对聚合进行多个类别的分组。下表1列出了生物制

药中最常见的聚体类别。为了有助于理解所讨论的聚体类型,常见的聚体类型有:二聚体,可逆聚体,共价聚体和颗粒,这些都是蛋白聚集中常见的形式。聚体的其他分类可以基于聚体的大小,因为这可能与潜在的不良临床反应直接相关。聚体的大小范围从可溶性二聚体和其他多聚体(表观球状直径约5-10nm),包括高分子量(HMW)聚集体到可溶或不溶的有核聚集体,到较大的不溶性物质(被识别为亚可见和可见)颗粒(表观球状直径约20–50μm)。在可溶性聚集体组中,较大的聚集体(例如HMW物)可能更能引发产生不良临床后果的免疫原性应答。就其分子量而言,大小大于10的二次方kDa的聚体潜在的不良免疫原性反应潜力,值得更仔细的评估。 聚体除大小外,聚体随时间的大小变化率是一个有用的参数,可以提供聚体的功能特征,其中时间对应蛋白质产品的有效期。聚体最初可以小二聚体或碎片的形式存在,并朝着更大的聚集结构变化,例如亚可见或可见颗粒(如果这种转变在热力学上温度变得快速)。在任何给定的时刻,蛋白质可能在有利于蛋白质单体或天然构型的热力学状态与有利于展开的天然蛋白质构型状态之间转变。在某些的条件下,未折叠的蛋白质可能与其他天然和非天然形式形成复合物,在获得足够的自由能以转变为可能成为新蛋白质实体而形成稳定状态的聚体。科学家Lumry和Eyring在1960年代研究了这些转变的基础,他们提出了溶液中蛋白质聚体的动力学转变,并在干扰素-γ聚集的情况下进一步转变为一级转变反应动力学。评估药品聚体总增长率的

重组蛋白包含体的复性

重组蛋白包含体的复性 [摘要]:重组蛋白在大肠杆菌中的高表达往往导致形成包含体。不可溶、无生物活性的包含体必须经过体外变复性才可得到生物活性蛋白。变复性实验是建立在蛋白质体外折叠机制的基础上的。近年来,随着对蛋白质折叠机制的认识,发展了不少促进蛋白折叠和二硫键氧化来提高活性蛋白产率的复性办法。 [关键词]:蛋白折叠、包含体、复性、二硫键形成 Abstract:Expression of recombinant proteins in Escherichia coli often results in the formation of insoluble inclusion bodies. Active protein can be recovered by solubilization of inclusion bodies followed by renaturation of the solubilized protein. The process of renaturation is established in the understanding to the mechanism of protein folding in vitro. In recent years, With the understanding of mechanisms of protein folding, many renaturation methods were developed, which can increase the yield of active proteins. Key word: protein folding、inclusion body 、renaturation 、the forming of disulfide bond 大肠杆菌表达系统以其操作简便,遗传背景清楚,大规模发酵成本低成为目前最常用的外源蛋白表达系统。它为许多具有药用和工业应用价值的真核生物蛋白质的获得提供了方便。但是,重组蛋白的高表达往往导致形成不溶的、没有生物活性的包含体(如人生长激素、人胰岛素和尿激酶)。 包含体的形成意味可溶性重组蛋白质的重大损失,必须经过体外变复性才能得到生物活性蛋白。如果能解决包含体的复性问题,它将是大量生产重组蛋白的最有效的途径之一。近年来对蛋白质折叠过程的深入研究使重组蛋白的体外复性取得了一系列的新进展。文章中,我们在蛋白质折叠机制的基础上,简述了重组蛋白体外复性的研究进展。 1. 蛋白质的体内折叠 细胞内的新生肽链的折叠是分阶段的,从相邻氨基酸的相互作用开始,多肽链的出现引起二级结构的形成,最后形成三级结构。Baldwin综述了蛋白质折叠起始的三种可能因素:疏水作用,二级结构及某些特殊作用力(如二硫键)[1]。实验证明,细胞内二硫键的形成速度要明显快于细胞外,而且在翻译结束之前二硫键也能够形成[2]。 近年来的一些研究表明,很多真核蛋白质的折叠和装配受到其他蛋白或酶的严格调控。在真核细胞中,蛋白可能与分子伴侣(chaperon)或折叠酶(foldase)共表达且表达量很低;也可能进行翻译后修饰分泌出去。现在已知的参与新生肽链折叠的蛋白有两类:一类是催化蛋白特定异构化的酶,限制蛋白质折叠的速度,如催化正确二硫键形成的二硫键异构酶(PDI蛋白)[3]、催化脯氨酸异构反应的脯氨酸顺反异构酶(PPI)[4]等,它们称为折叠酶,另一类辅助蛋白能与多肽链短暂暴露疏水区结合,从而防止不正确的聚集作用和错误的装配,称为分子伴侣。 重组蛋白在大肠杆菌中的折叠环境迥异于它们的天然环境--真核细胞。蛋白酶、氧化还原电位、PH和蛋白浓度等性质都不同[5],而且,原核细胞不具备糖基化的功能,也没有

蛋白质、包涵体复性

目录 一、脲和盐酸胍在包涵体蛋白质纯化中的作用 二、包涵体变复性 三、包涵体洗涤纯化——7~10 四、包涵体提出、纯化和复性

一、

二、包涵体变复性 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等。 基本信息 中文名称 包涵体变复性 复性方法 稀释复性 原因 基因工程菌的表达产率过高 包涵体变性 破菌洗涤溶解 目录 1包涵体 2包涵体变性 3包涵体复性 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1μm,具有很高的密度(约1.3mg/mL),无定形,呈非水溶性,只溶于变性剂如尿素、盐酸胍等。NMR等新技术的应用表明包涵体具有一定量的二级结构,他们可能在复性的启动阶段中具有一定的作用。 包涵体的形成原因 主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。 1.基因工程菌的表达产率过高,超过了细菌正常的代谢水平,由于细菌的δ因子的蛋白水解能力达到饱和,使之表达产物积累起来。研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。 2.重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。 3.重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。 4.重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类和辅助因子,如折叠酶和分子伴侣等,致使中间体大量积累,容易形成包涵体沉淀。

单克隆抗体药物

浅谈单克隆抗体药物 摘要:单克隆抗体药物是生物医药领域中最耀眼的明珠。该类药物具有靶向性强、特异性高和毒副作用低等特点,代表了药品治疗领域的最新发展方向,在肿瘤、自身免疫性疾病的治疗手段不断升级过程中,单抗药物扮演着不可替代的角色,已经成为全球靶向治疗药物的主流。在刚刚兴起的细胞免疫治疗中,单抗药物同样是位列第一的品类,单抗产业是目前乃至未来医药行业中极具投资价值的细分行业。本文从单克隆抗体简介,常见的单克隆抗体药物、国内外单克隆抗体药物的研发现状,及对单抗药物的展望几个方面做一简介。 关键词:单克隆抗体单抗药物研发现状 1单克隆抗体 抗体是由B淋巴细胞转化而来的浆细胞分泌的,每个B淋巴细胞株只能产生一种它专有的、针对一种特异性抗原决定簇的抗体。这种从一株单一细胞系产生的抗体就叫单克隆抗体,简称单抗。这些抗体具有相同的结构和特性。抗体与特异性表达的肿瘤细胞表面蛋白质结合,从而阻碍蛋白质的表达,起到抗肿瘤作用。抗体还可使B淋巴细胞产生免疫反应,诱导癌细胞凋亡。早期单抗为鼠源性单抗,易被人体免疫系统识别,应用受到限制。后来采用基因工程的方法生产人源或人鼠嵌合型单抗,广泛应用于临床。 2常见的单克隆抗体药物 2.1利妥昔单抗(Rituximab)-美罗华-CD20单抗 第一个被美国食品药物管理局(FDA)批准用于临床治疗的单抗,是一种针对CD20抗原的人鼠嵌合型单克隆抗体,能特异性地与CD20结合,导致B淋巴细胞溶解的免疫反应,抑制其增殖,诱导成熟B淋巴细胞凋亡和提高肿瘤细胞对化疗的敏感性。90%以上的B淋巴细胞淋巴瘤细胞均有CD20表达,不表达于非定向干细胞或浆细胞。本药可使耐药淋巴瘤细胞对VP-16、顺铂重新敏感,用于CD20表达的复发或化疗耐药的惰性B淋巴细胞淋巴瘤,有效率46%。利妥昔单抗+CHOP 方案为治疗弥漫大B淋巴细胞淋巴瘤标准方案,可使全完缓冲(CR)率、生存时间明显延长[2-3]。 2.2曲妥珠单抗-赫赛汀-HER-2单抗 为重组DNA人源化的抗p185蛋白(癌基因)单克隆抗体-IgG抗体。进入人体后能选择性地与由细胞核内表皮生长因子2基因调控的p185糖蛋白结合。本

蛋白质变复性

变复性的过程 E.coli 中表达的蛋白常常以包涵体的形式沉积于细胞内,表现为无活性的不溶性聚集物。 生产研究中为了得到较高的目的蛋白的表达量,通常会采用较强的启动子(如λPL 、T7 或串联启动子) ,使外源基因可在胞内获得高效表达,一般占细菌总蛋白的10 %~50 %. 然而胞内表达的最大问题是产物形成不溶性的包涵体,虽然这可为后续的分离纯化带来方便,但包涵体必须经过体外复性才有可能获得生物活性 .绝大部分高表达的重组蛋白质往往聚集成不溶的、无活性的包涵体形式, 极大地影响到后续的结构分析和活性研究工作, 开展对这些包涵体的复性工作已成为一个重要的研究方向。 包涵体是由蛋白质折叠中间体的聚集而形成的,任何影响中间体稳定的因素(如pH 值、离子强度、温度等) 都可导致包涵体的形成. 包涵体形成原因 1. 表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。 2. 重组蛋白的氨基酸组成,一般说来含硫氨基酸越多越容易形成包涵体。 3. 重组蛋白所处的环境,发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。 4. 重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物中翻译后修饰所需酶类,致使中间 体大量积累,容易形成包涵体沉淀。 5. 有报道认为,丰富的培养基有利于活性蛋白质的表达,当培养条件不佳时,容易形成包涵体。 蛋白复性的必要性 细胞中的生物学活性蛋白质常以可融性或分子复合物的形式存在,功能性的蛋白质总是折叠成特定的三维结构型。包涵体内的蛋白是非折叠状态的聚集体,不具有生物学活性,因此要获得具有生物学活性的蛋白质必须将包涵体溶解,释放出其中的蛋白质,并进行蛋白质的复性。复性过程是变性蛋白的重折叠过程。 对包涵体蛋白复性,应先对包涵体进行分离纯化及去折叠(即变性溶解) ,然后采用合适的复性方法促进变性,蛋白再折叠进而恢复活性. 一.包涵体的分离纯化 ①含包涵体的宿主菌细胞的破碎; ②将破碎液离心除去可溶蛋白(9000r 15min 4℃),获得包涵体; ③洗涤包涵体,以除去包涵体上粘附的杂质,如膜蛋白或核酸,应用洗涤液洗涤包涵体,通常用低浓度的变性剂,过高浓度的尿素或盐酸胍会使包涵体溶解,如2M尿素在50mM Tris pH7.0-8.5左右,1mM EDTA中洗涤,温和去垢剂TritonX-100等洗涤包涵体,然后离心(12000r 5min 4℃)取上清洗涤后包涵体的主要成分为聚合态的目的蛋白。

蛋白质复性方法及其注意事项

蛋白质复性方法及其注意事项 蛋白前期准备 (1)查阅目标蛋白相关文献,了解其等电点,标签等注意点。 (2)如果目标蛋白易降解,可在纯化时加1-2mMDTT,全程低温,及时处理。(3)透析Buffer的选择可参考文献。 蛋白复性 包涵体:在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体(Inclusion Bodies,IB)。 在E.coli中累积的重组蛋白会迅速地以包涵体形式被沉淀出来,这些包涵体蛋白是丧失生物活性的不可溶的错误折叠蛋白的聚集体。 包涵体的处理一般包括这么几步:包涵体的洗涤、溶解、纯化及复性。 如果过表达蛋白在包涵体中,那么通常有两个选择可以考虑:(1)退一步,优化表达条件;(2)接受包涵体并采取策略来将蛋白溶解以及复性。这里主要考虑第二种方案。 包涵体的洗涤 破碎细胞都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入蛋白酶抑制剂等,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。 洗涤Buffer:50mM Tris-HCl(pH8.0), 2mM EDTA, 2mM DTT,150mM NaCl, 1% Triton X-100, 1mg/ml Leupeptin, 1mg/ml Pepstatin,1mM TCEP。 超声时用40-60ml裂解液,因为我们的超声仪很适合用100ml小烧杯,装 40-60ml裂解液,这样能让超声头离液面不高不低,不会洒出来.菌多就延长超声时间(全程冰浴)。 包涵体的溶解

单克隆抗体药物综述

单克隆抗体药物综述 摘要: 通过淋巴细胞杂交瘤技术或基因工程技术制备单克隆抗体药物,已经成为生物制药领域的一个重要方面,由于单克隆抗体药物专一性强、疗效显著,因此成为近年来研究的热点药物之一。此文就单抗药物的分类、应用进行了综述,并对其应用前景及存在的不足作了概述。 关键词:单克隆抗体抗体药物靶向联用 自1975 年Koeh ler 和M ilstein 首先报道利用小鼠杂交瘤细胞制备单克隆抗体以来, 经过近30 年的发展, 单抗技术在生命科学研究及医学实践方面作出了杰出的贡献, 已经成为了现代生物技术产业的支柱之一。 然而, 尽管单抗推动了生物诊断技术的革命, 但是在将单抗应用于人体疾病的治疗方面, 却在长时间内迟迟没有进展。早期的临床试验结果都不尽人意, 这是因为鼠源单抗应用于人体有许多限制]. 现今上市的单抗药物, 治疗的领域主要集中在肿瘤、自身免疫疾病、器官移植排斥及病毒感染等领域。由于单抗具有明确的作用位点, 与靶位点亲和力高, 而且通过改造的抗体其免疫原性大大减弱, 这些因素使得单抗在临床治疗中具有特异性强、见效快、副作用较低等优点, 因而单抗治疗有着广阔的前景。目前, FDA 批准上市的17 个单抗药物中即有8 个是用于治疗淋巴细胞肿瘤、乳腺癌及结直肠癌等, 而在开发阶段的单抗也有一半以上是与治疗各种癌症相关。可以预见, 在未来几年来将有更多的治疗性单抗药物上市, 其市场份额将进一步扩大。 目前, 单抗类药物的市场销售逐年提升的年均增长幅度在20%以上, 表现强劲。用于治疗非霍奇金淋巴瘤的单抗药物R ituxan 已成为世界第一的抗肿瘤药物, 2003 年销售为14 . 89亿美元, 2002 年为11 . 63 亿美元, 在2002 年全球最畅销前50位商标名处方药中排名43 位。用于治疗关节炎的单抗药物Rem icade, 2002 年销售额为12 . 97 亿美元, 当年全球药物销售排名第37 位。2000 年世界单抗药物的销售额为22 . 05 亿美元, 据 F ro st&Sullivan 预测, 到2003 年销售额将达到47 亿美元。 下面就单克隆抗体药物的研究进展作一综述。 1单克隆抗体药物的分类 单抗药物一般分为:治疗疾病(尤其是肿瘤)的单抗药剂、抗肿瘤单抗偶联物、治疗其他疾病的单抗。单抗药剂针对的靶点通常为细胞表面的疾病相关抗原或特定的受体。如:最早被美国FDA批准用于治疗肿瘤的单抗药物利妥昔单抗;抗肿瘤单抗偶联物,或称免疫偶联物( Immunoconjugate) , 由单抗与有治疗作用的物质(如:放射性核素、毒素和药物等)两部分构成,其中包括放射免疫偶联物、免疫毒素、化学免疫偶联物,此外还有酶结合单抗偶联物、光敏剂结合单抗偶联物等。 2作为肿瘤治疗药剂的单克隆抗体药物 表1概括了近年来美国FDA 批准上市的5 个治疗肿瘤的单克隆抗体药物的基本情况,下面具体加以介绍。 2. 1利妥昔单抗

包涵体的复性

外源基因在大肠杆菌中的高表达常常导致包涵体的形成,虽然包涵体具有富集目标蛋白质、抗蛋白酶、对宿主毒性小等优点,但包涵体蛋白质的复性率一般都很低,而分子伴侣、低分子量添加物等在复性过程中的应用及新的复性方法的建立都大大提高了重组蛋白质复性产率。 一、包涵体: 1.1包涵体的定义、组成与特性: 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1um,具有很高的密度(约1.3mg/ml),无定形,呈非水溶性,只溶于变性剂如尿素、盐酸胍等。NMR等新技术的应用表明包涵体具有一定量的二级结构,他们可能在复性的启动阶段中具有一定的作用。[1] 1.2包涵体的形成: 主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。 1.2.1、基因工程菌的表达产率过高,超过了细菌正常的代谢水平,由于细菌的δ因子的蛋白水解能力达到饱和,使之表达产物积累起来。研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。 1.2.2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。 1.2.3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。 1.2.4、重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类和辅助因子,如折叠酶和分子伴侣等,致使中间体大量积累,容易形成包涵体沉淀。 1.2.5、蛋白质在合成之后,于中性pH或接近中性pH的环境下,其本身固有的溶解度对于包涵体的形成比较关键,即是说,有的表达产率很高,如Aspartase和Cyanase,表达产率达菌体蛋白的30%,也不形成包涵体,而以可溶形式出现。[2] 1.2.6、在细菌分泌的某个阶段,蛋白质分子间的离子键、疏水键或共价键等化学作用导致了包涵体的形成。 1.3包涵体破菌、分离、洗涤及溶解 1.3.1基因工程菌发酵液,经离心浓缩后,可用:机械破碎、超声破碎:单纯超声破碎,在小规模下且菌量较少的情况下效果较好,由于能量传递和局部产热等原因,很难用于大体积细胞悬液的破碎,这样部分未破碎细胞与包涵体混在一起,给后期纯化带来困难。因此,在较大规模纯化时先用溶菌酶破碎细菌的细胞膜,再结合超声破碎方法,可显著提高包涵体的纯度和回收率。以及化学方法破碎使细菌裂解,然后以5000-20000g 15min离心,可使大多数包涵体沉淀,与可溶性蛋白分离。 1.3.2洗涤:为了除去包涵体上粘附的杂质,如膜蛋白或核酸,应用洗涤液洗涤包涵体,通常用低浓度的变性剂,过高浓度的尿素或盐酸胍会使包涵体溶解,如2M尿素在50mM Tris pH7.0-8.5左右,1mM EDTA中洗涤。此外可以用温和去垢剂TritonX-100洗涤去除膜碎片和膜蛋白。[3] 1.3.3溶解:一般用强的变性剂如尿素(6-8M)、盐酸胍(GdnHCl 6M),通过离子间的相互作用,打断包涵体蛋白质分子内和分子间的各种化学键,使多肽伸展,一般来讲,盐酸胍优于尿素,因为盐酸胍是较尿素强的变性剂,它能使尿素不能溶解的包涵体溶解,而且尿素分解的异氰酸盐能导致多肽链的自由氨基甲酰化,特别是在碱性pH值下长期保温时。或用去垢剂,如SDS、正十六烷基三甲基铵氯化物、Sarkosyl等,可以破坏蛋白内的疏水键,也可溶解一些包涵体蛋白质。Kandula Suntha等人用TritonX-100来溶解Zymononas mobilis levansucrase包涵体蛋白。另外,

重组蛋白质复性

重组包涵体蛋白质复性 邹平 基因工程技术的发展掀开了人类生命科学研究的崭新篇章,开辟了现代生物工业发展的新纪元。重组DNA技术为大规模生产目标蛋白质提供了可能,E.coli以其易于操作、遗传背景清楚、发酵成本低和蛋白表达水平高等优点,是生产重组蛋白的首选表达系统。但外源基因在E.coli中的高表达常常导致包涵体的形成,如何高效地复性包涵体蛋白是基因工程技术面临的一个难题。随着人类基因组计划的完成和蛋白组计划的实施,人们将会更多地面临这一问题的挑战。 一、包涵体蛋白 1、包涵体的形成 包涵体主要是因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,而无法形成正确的次级键等原因形成的;也可能是外源基因合成速度太快,没有足够的时间进行折叠、二硫键不能正确的配对、过多的蛋白间的非特异性结合、蛋白质无法达到足够的溶解度等;重组蛋白质的一级结构也与包涵体形成有关,一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关;重组蛋白所处的环境不适,发酵温度高或胞内pH接近蛋白的等电点时易形成包涵体。 2、减少包涵体形成的策略 降低重组菌的生长温度,是减少包涵体形成的最常用的方法。低生长温度降低了无活性聚集体形成的速率和疏水相互作用;细菌生长缓慢溶氧水平低,也可减少包涵体的形成。 在培养重组菌中供给丰富的培养基,创造最佳培养条件,如供氧充足、合适pH等,以减少包涵体的形成。 添加可促进重组蛋白质可溶性表达的生长添加剂,增加细胞的渗透压。 在低的诱导剂条件下培养重组菌,减少重组蛋白表达量,也可减少包涵体的形成。 利用硫氧还蛋白融合表达或与目标蛋白共表达,得到可溶性目的蛋白。筛选合适的宿主菌,使表达的重组蛋白可溶。 3、包涵体破菌、分离、洗涤 常用高压匀化或机械、化学和酶相结合的方法破碎含包涵体的宿主菌细胞 ,再将破碎液通过低速离心或过滤除去可溶蛋白后获得包涵体。包涵体中除了目的蛋白外还含有脂类、脂多糖、核酸和杂蛋白等成分,而这些成分会影响包涵体蛋白的复性,故去折叠前应洗涤包涵体,以去除杂质。 4、包涵体的溶解去折叠 一般用强的变性剂如尿素、盐酸胍,通过离子间的相互作用,打断包涵体蛋白质分子内和分子间的各种化学键,使多肽伸展。盐酸胍优于尿素,因为盐酸胍是较尿素强的变性剂,

重组抗人PD-1人源化单克隆抗体说明书

K E X I N科昕生物 北京科昕生物科技有限公司 重组抗PD-1全人单克隆抗体(细胞培养级别) Recombinant anti-Human PD-1 Functional Monoclonal Antibody (Cell Culture Grade) 产品说明: PD1 全人单抗可以有效地封闭PDL1 和PD1 的结合,并且不会引起 HAMA 反应(人抗鼠抗体反应)。PD1 的抗体已作为广谱性抗肿瘤药物被接受,也可能成为最有效地平衡细胞治疗的工具。PD1 是激活的T细胞、B 细胞以及髓样细胞膜表面重要的免疫调控受体。与配体PDL1和PDL2 结合,抑制T 细胞增殖和细胞因子分泌,影响细胞治疗的效果。近来研究发现,DC 细胞含有PDL1,DC‐CIK 联合治疗时,PDL1 可能是潜在的细胞治疗的负调节因素。PD‐1 主要在活化的T、B 和NK 等细胞上呈诱导性表达,PD‐1 有PD‐L1(B7‐H1,CD274)和PD‐L2(B7‐DC,CD273)两个配体。PD‐L1 广泛组成性表达于多种实质器官组织、免疫细胞以及多种类型的肿瘤细胞上,而PD‐L2 仅表达于活化的巨噬细胞、树突状细胞、骨髓来源的基质细胞和个别肿瘤细胞株。PD‐1 随T 细胞活化程度逐步上调表达,与PD‐L 结合后引发抑制信号的产生,致使效应性T 细胞失能并及时进入凋亡。 本产品系由单克隆细胞株表达并高度纯化后的抗体经超滤换液分装制成。 本产品为无菌澄明液体,由含有 10mM PBS pH为 7.2的蛋白溶液经0.2um过滤后分装。 规格参数: 货号:kx10-1 体积:50ul/500ul/1ml 浓度:1mg/ml. 质量控制: 纯度:经高效液相色谱(SEC-HPLC)和SDS-PAGE检测,纯度大于98.0%. 内毒素:小于1EU/mg. 使用说明: 建议长期-80℃分装保存,无菌条件下操作,避免污染。 具体用量需通过预实验确定。

包涵体蛋白溶解和纯化复性

IFN-α重组蛋白包涵体溶解和蛋白纯化复性 一、表达产物处理 1、表达菌液8000rpm 4℃离心10min 2、菌体沉淀按10:1(菌重5g,加50ml)裂解缓冲液,冰上超声至清亮(250W,超声5s,间歇5s,功率35%) 3、取样取100ul 超声菌液并离心,标记超声上清,超声沉淀 4、12000g 4℃离心15min,上清备用,标记超声上清 5、超声沉淀用含2M 尿素的裂解缓冲液,以20:1 比例重悬,继续超声5min 6、12000g 4℃离心20min 7、超声沉淀用含1% Triton X-100 的裂解缓冲液重悬,4℃放置10min 8、12000g 4℃离心15min,获得包涵体 9、获得包涵体用Binding Bufer 重悬,4℃放置过夜 二、包涵体的纯化 1、放置过夜包涵体4℃高速离心,收集上清备用 2、取样取离心上清,标记柱前 3、使用Ni-NTA 基质进行纯化,用Binding Buffer 平衡Ni 柱,柱子平衡后低流速上样,整个上样过程使样品处于冰上,上样后用3~5 个柱体积的Wash Buffer 进行漂洗,最后用Elution Buffer 洗脱 4、取样取柱后,标记柱后 三、包涵体复性 1、透析袋处理方法:把透析袋剪成适当长度(10~20cm)小段,在大体积的2% (W/V)NaHCO 3 和1mM EDTA (PH8.0)中将透析袋煮沸10min。用蒸馏水彻底清洗透析袋。放在1mM EDTA(PH8.0)中将之煮沸10min。冷却后存放于4℃,必须确保透析袋始终浸没在溶液内。从此时起取用透析袋时必须戴手套保持清洁,用前在透析袋内装满水然后排出,将之清洗干净 2、复性采用梯度透析法,纯化后包涵体用含4M 尿素的透析缓冲液稀释蛋白浓度至约

重组蛋白的表达

重组蛋白的概述 1.概述 分离纯化组成了基因工程的下游处理(downstream processing)阶段,这一过程又和上游过程紧密相联系,上游过程的诸方面影响到下游的分离纯化,所以在进行目标蛋白质表达纯化时要统一考虑和整体设计,并充分考虑上游因素对下游的影响,如是否带有亲和标签,是否进行分泌表达。目前应用最广泛的表达系统有三大类,分别是大肠杆菌表达系统、酵母表达系统和CHO细胞表达系统,不同的表达系统和培养方法显著影响下游的处理过程,目标蛋白表达是否形成包涵体,目标蛋白表达的定位(胞内、细胞内膜、周质空间和胞外),蛋白表达的量都依赖于所选择的表达系统。选择将所表达的蛋白分泌到细胞外或周质空间可以避免破碎细胞的步骤,并且由于蛋白质种类少,目标蛋白容易纯化;而在细胞质内表达蛋白,可能是可溶性表达,可能形成包涵体,可溶性的蛋白往往需要复杂的纯化步骤,而包涵体易于分离,纯度较高,但回收具有生物活性的蛋白却变的相当困难,需要对聚集的蛋白进行变复性,通常活性蛋白的得率比较低,表1列出了不同策略对表达、纯化的影响,对于其中的有些缺点可以通过一定的方法进行克服和避免,如利用DNA重组技术给外源蛋白加上一个亲和纯化的标签,有助于可溶性外源蛋白的选择性纯化,并能保护目标蛋白不被降解(96)。 表 1 重组蛋白不同表达策略的优点和缺点 表达策略优点缺点 分泌表达至细胞外增强正确二硫键的形成 降低蛋白酶对表达蛋白的降解 可获得确定的N末端 显著减少杂蛋白水平,简化纯化 不需要细胞破碎 表达水平低 多数蛋白不能进行分泌表达表达蛋白需要进行浓缩 细胞周质空间表达增强正确二硫键的形成 可获得确定的N末端 显著减少杂蛋白水平,简化纯化好些蛋白不能分泌进入周质空间没有大规模选择性的释放周质空 间蛋白的技术 周质蛋白酶可引起重组蛋白酶解 胞内包涵体表达包涵体易于分离 保护蛋白质不被降解 蛋白质不具有活性对宿主细胞生 长没有大的影响,通常可获得高的 表达水平需要体外的折叠和溶解,得率较低具有不确定N末端 胞内可溶性蛋白表达不需要体外溶解和折叠 一般具有正确的结构和功能高水平的表达常难以得到需要复杂的纯化 可发生蛋白质的酶解具有不确定的N末端 在细胞的提取物中,除了目标蛋白外,还含有其它各种性质的蛋白、核酸、多糖等。在这样一个混合体系中,蛋白质纯化要求将目标蛋白与其它的成分分离,得到一定的量,达到一定的纯度,同时要尽可能保留蛋白的生物活性,并使蛋白保持完整。所以蛋白质的分离纯化可以看作是一系列的分部收集过程,总是希望目标蛋白富集于其中的一个收集部位,而大量的杂蛋白存在于其它的收集部位。当然对目标蛋白纯度的要求要根据纯化蛋白的用途而定,对于治疗性的蛋白要求有大于99%的纯度,并对处方有活性和稳定性的要求,对于某些酶的纯度则要求较低,需要在纯度和得率之间进行一个平衡,所以下游的工艺流程取决于最终对目标蛋白的要求。 蛋白质的功能依赖于蛋白质的结构,对于有生物活性的蛋白质,在分离纯化过程中必须根据目标蛋白的特点,采用合适的操作条件和方法,保证目标蛋白的活性尽量不损失。除了在分离纯化的

蛋白质复性

包涵体表达的蛋白复性 摘要综述了包涵体形成、包涵体分离和溶解、包涵体折叠复性的方法、复性产率低下的主要因素以及通过分子伴侣、低分子量添加物等的应用而提高了蛋白质复性产率。 关键词包涵体蛋白质复性 Abstract Strategies for decreasing the formation of inclusion bodies, isolation and resolution of inclusion bodies, refolding of inclusion body proteins and the cause of decreased refolding yields were included. Renaturation yield of recombinant protein have been improved by using some additives, such as molecular chaperone, small molecules. Key words inclusion body , protein , renaturation 外源基因在大肠杆菌中的高表达常常导致包涵体的形成,虽然包涵体具有富集目标蛋白质、抗蛋白酶、对宿主毒性小等优点,但包涵体蛋白质的复性率一般都很低,而分子伴侣、低分子量添加物等在复性过程中的应用及新的复性方法的建立都大大提高了重组蛋白质复性产率。 一、包涵体: 1.1包涵体的定义、组成与特性: 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1um,具有很高的密度(约1.3mg/ml),无定形,呈非水溶性,只溶于变性剂如尿素、盐酸胍等。NMR等新技术的应用表明包涵体具有一定量的二级结构,他们可能在复性的启动阶段中具有一定的作用。[1] 1.2包涵体的形成: 主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。 1.2.1、基因工程菌的表达产率过高,超过了细菌正常的代谢水平,由于细菌的δ因子的蛋白水解能力达到饱和,使之表达产物积累起来。研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。 1.2.2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。 1.2.3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。

包涵体表达的蛋白的复性(综述)

包涵体表达的蛋白的复性 外源基因在大肠杆菌中的高表达常常导致包涵体的形成,虽然包涵体具有富集目标蛋白质、抗蛋白酶、对宿主毒性小等优点,但包涵体蛋白质的复性率一般都很低,而分子伴侣、低分子量添加物等在复性过程中的应用及新的复性方法的建立都大大提高了重组蛋白质复性产率。 一、包涵体: 1.1包涵体的定义、组成与特性: 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1um,具有很高的密度(约1.3mg/ml),无定形,呈非水溶性,只溶于变性剂如尿素、盐酸胍等。NMR等新技术的应用表明包涵体具有一定量的二级结构,他们可能在复性的启动阶段中具有一定的作用。[1] 1.2包涵体的形成: 主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。 1.2.1、基因工程菌的表达产率过高,超过了细菌正常的代谢水平,由于细菌的δ因子的蛋白水解能力达到饱和,使之表达产物积累起来。研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二

硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。 1.2.2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。 1.2.3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。 1.2.4、重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类和辅助因子,如折叠酶和分子伴侣等,致使中间体大量积累,容易形成包涵体沉淀。 1.2.5、蛋白质在合成之后,于中性pH或接近中性pH的环境下,其本身固有的溶解度对于包涵体的形成比较关键,即是说,有的表达产率很高,如Aspartase和Cyanase,表达产率达菌体蛋白的30%,也不形成包涵体,而以可溶形式出现。[2] 1.2.6、在细菌分泌的某个阶段,蛋白质分子间的离子键、疏水键或共价键等化学作用导致了包涵体的形成。 1.3包涵体破菌、分离、洗涤及溶解 1.3.1基因工程菌发酵液,经离心浓缩后,可用:机械破碎、超声破碎:单纯超声破碎,在小规模下且菌量较少的情况下效果较好,由于能量传递和局部产热等原因,很难用于大体积细胞悬液的破碎,这样部分未破碎细胞与包涵体混在一起,给后期纯化带来困难。因此,在较大规模纯化时先用溶菌酶破碎细菌的细胞膜,再结合超声破碎方法,可显著提高包涵体的纯度和回收率。以及化学方法破碎使细菌裂

重组包涵体的纯化与复性

兽 医 临 床收稿日期:20070305 作者简介:龙英娜(19812),女,硕士研究生1通讯作者:刘焕奇(19702),男,副教授,博士.重组包涵体的纯化与复性 龙英娜,刘焕奇,王明志 (莱阳农学院动物科技学院,山东青岛266109) 中图分类号:Q816文献标识码:B 文章编号:100427034(2008)042007002 大肠杆菌表达系统是目前最常用的外源蛋白表 达系统,具有操作简单、生长快、成本低、产量高等优点。然而,此体系最大的问题在于表达产物往往为不可溶、无生物活性的包涵体。其包涵体中蛋白的一级结构(即氨基酸序列)是正确的,但是其立体结构是错误的,所以没有生物活性。包涵体一般含有50%以上的重组蛋白,其中无活性的重组蛋白量可占总重组蛋白表达量的95%,其杂质主要是核糖体元件、RNA 聚合酶、外膜蛋白、环状或缺口质粒DNA 以及脂体、脂多糖等。因此要获得高纯度的活性蛋白必须对其进行分离、纯化及进一步的复性处理。1 包涵体形成的原因1.1 目的基因的过度表达 基因工程菌的表达产率过高,超过了细菌正常的代谢水平,使得大肠杆菌无法及时分泌出蛋白后期加工所需的众多酶类及辅助因子,从而使蛋白无法实现折叠或者无法形成正确的次级键,造成大量蛋白以包涵体形式存在于细胞内。此外,过多的蛋白质之间非特异性沉淀也是形成包涵体的原因之一。1.2 重组蛋白的氨基酸组成 含硫氨基酸多的重组蛋白形成包涵体的机率大,其原因可能是宿主细胞内的还原性环境使表达蛋白二硫键稳定性下降,出现错配或多余的二硫键。已有试验证明,在胞质内形成氧化性环境将有利于二硫键的正确形成。1.3 重组蛋白所处的环境条件 蛋白质形成的动力学研究表明,蛋白质折叠是一个产热过程。多种蛋白质在体内折叠过程中均有不耐热的中间体形成,这些中间体在环境温度升高时成为包涵体的前体物质,随后聚合成包涵体;当环境pH 值接近某种蛋白的等电点时,蛋白的凝集也会增加,进而形成包涵体。此外,某些金属离子也能影响包涵体动力学的稳定,造成包涵体形成增加。1.4 原核细胞质内含物的限制 目的基因所表达的重组蛋白,对大肠杆菌是异源 蛋白,而大肠杆菌中缺乏真核生物翻译后修饰蛋白所需的酶类和辅助因子,如折叠酶或分子伴侣等,致使中间产物大量聚集,从而形成包涵体沉淀。2 包涵体的分离与纯化2.1 包涵体的分离 包涵体的分离首先要进行细胞破碎,方法有机械法、超声法和化学法等。机械破碎法利用包涵体与细胞碎片的密度差,通过离心将包涵体与细胞碎片及可溶性蛋白质分开,从而获得纯净的包涵体。化学破菌法所采用的试剂既可以破菌又可以溶解包涵体,将两道工序融为一道,节省了设备和时间,比较适合于实验室操作。为了充分破碎细胞,减少细胞碎片的共沉淀,目前多采用机械破碎和化学破碎联合的方法。2.2 包涵体的洗涤 细胞破碎后可经低速离心收获包涵体,分离出来的包涵体中除了目的蛋白外还含有脂类、脂多糖、核酸和杂蛋白等成分,故去折叠前应充分洗涤包涵体,以去除杂质。这一步很重要,因为大肠杆菌外膜蛋白OmpT (37ku )在4~8mol/L 尿素中具有蛋白水解酶活性,在包涵体的溶解和复性过程中可导致重组蛋白质的降解。常用E DT A 、低浓度的变性剂(尿素、盐酸胍)、弱去污剂Tri onX -100、脱氧胆酸等洗涤包涵体, 洗涤后包涵体的主要成分为聚合态的目的蛋白[1] 。2.3 包涵体的溶解 溶解包涵体需要用很强的变性剂,如6mol/L 盐酸胍或8mol/L 尿素。它们对包涵体氢键有较强的可逆性变性作用,并且易经透析和超滤除去。盐酸胍溶解能力比尿素强,且溶解作用快而不造成重组蛋白质的共价修饰。此外,用去垢剂也可溶解一些包涵体蛋白质。膜蛋白在E .coli 中形成的包涵体,通常不易溶于尿素或盐酸胍,可用强去垢剂或温和去垢剂与变 性剂联合使之溶解,如Sunitha K 等[2] 成功地用Tri 2t onX -100来溶解Zy mononas mobilis levansucrase 包涵体蛋白。 对于含有半胱氨酸的蛋白质,溶剂中常加入二硫 苏糖醇(DTT )、 β-巯基乙醇(β-ME )等,它们可以还原包涵体链间形成的二硫键和链内的非活性二硫键;通常还要加入螯合剂,如EDT A 、EGT A 等来捕获 7Heil ongjiang Ani m al Science and VeterinaryMedicine №4 2008

相关文档
最新文档